
Windows Media Format 9 Series SDK
This documentation describes the Microsoft® Windows Media® Format Software Development Kit (SDK).

The Windows Media Format SDK is a component of the Microsoft Windows Media Software Development Kit
(SDK). Other components include the Windows Media Services SDK, Windows Media Encoder SDK,
Windows Media Rights Manager SDK, Windows Media Device Manager SDK, and Windows Media Player
SDK.

The Windows Media Format SDK enables developers to create applications that play, write, edit, encrypt, and
deliver Advanced Systems Format (ASF) files and network streams, including ASF files and streams that
contain audio and video content encoded with the Windows Media Audio and Windows Media Video codecs.
ASF files that contain Windows Media–based content have the .wma and .wmv extensions. For more
information about the Advanced Systems Format container structure, see Overview of the ASF Format.

The key features of the Windows Media Format SDK are:

Support for industry-leading codecs. The Windows Media Format 9 Series SDK includes the Microsoft
Windows Media Video 9 codec and the Microsoft Windows Media Audio 9 codec. Both of these codecs
provide exceptional encoding of digital media content. This SDK also includes the Microsoft Windows
Media Video 9 Screen codec for compressing computer-screen activity during sessions of user
applications, and the new Windows Media Audio 9 Voice codec, which encodes low-complexity audio
such as speech and intelligently adapts to more complex audio such as music, for superior representation
of combined voice-music scenarios.
Support for writing ASF files. Files are created based on customizable profiles, enabling easy
configuration and standardization of files. This SDK can be used to write files in excess of 2 gigabytes,
enabling longer, better-quality, continuous files.
Support for reading ASF files. This SDK provides support for reading local ASF files as well as reading
ASF data being streamed over a network. Support is also provided for many advanced reading features,
such as native support for multiple bit rate (MBR) files, which contain multiple streams with the same
content encoded at different bit rates. The reader automatically selects which MBR stream to use,
depending upon available bandwidth at the time of playback.
Support for delivering ASF streams over a network. This SDK provides support for delivering ASF data
through HTTP to remote computers on a network, and also for delivering data directly to a remote
Windows Media server.
Support for editing metadata in ASF files. Information about a file and its content is easily manipulated
with this SDK. Developers can use the robust system of metadata attributes included in the SDK, or
create custom attributes to suit their needs.
Improved support for editing applications. This version of the Windows Media Format SDK includes
support for advanced features useful to editing applications. The features include fast access to
decompressed content, frame-based indexing and seeking, and general improvements in the accuracy of
seeking. The new synchronous reading methods provide reading capabilities all within a single thread, for
cleaner, more efficient code.
Support for reading and editing metadata in MP3 files. This SDK provides integrated support for reading
MP3 files with the same methods used to read ASF files. Applications built with the Windows Media
Format SDK can also edit metadata attributes in MP3 files using built-in support for the most common

Next

ID3 tags used by content creators.
Support for Digital Rights Management protection. This SDK provides methods for reading and writing
ASF files and network streams that are protected by Digital Rights Management to prevent unauthorized
playback or copying of the content.

This document describes how you can develop digital media applications using the Windows Media Format
SDK. It is divided into the following sections.

© 2000-2003 Microsoft Corporation. All rights reserved.

About the Windows Media Format SDK
The Microsoft® Windows Media® Format 9 Series Software Development Kit (SDK) enables developers to
create applications that manipulate digital media stored in files conforming to the Advanced Systems Format
(ASF) file structure. The ASF structure is a versatile container format for arbitrary streaming media. For more
information about the structure of ASF files, see Overview of the ASF Format.

This SDK also provides support for encoding and decoding audio and video content using the Windows Media
codecs. Each codec (compressor/decompressor) is optimized to get the best quality for a specific type of
content. For more information about the supported codecs, see Codec Features.

In addition to general file format support and codec integration, the Windows Media Format SDK provides
objects for editing descriptive information about digital media. File reading and metadata support is also
included for MP3 files, enabling you to create more flexible applications.

This overview includes the following sections.

Section Description

About the Windows Media Format SDK Provides overview and background information that you should
be familiar with before attempting to create applications.

Programming Guide Provides detailed instructions for performing various tasks,
such as reading, writing and indexing files, protecting files with
Digital Rights Management, streaming ASF data over a
network, and so on.

Programming Reference Provides reference information for the interfaces, methods,
functions, structures, enumeration types, and constants related
to Windows Media Format.

Glossary Defines the terms used in the Windows Media Format SDK
documentation.

Next

Previous Next

See Also

Windows Media Format 9 Series SDK

© 2000-2003 Microsoft Corporation. All rights reserved.

What's New
The Windows Media Format 9 Series SDK introduces new features to provide more power and flexibility to
applications that read, write, and manipulate ASF files. The following changes have been made to the SDK
since the release of version 7.

Synchronous Reading

You can now read ASF files with synchronous calls. When reading a file synchronously, you can change the
settings of the reader while it is reading. The synchronous reading operations of the SDK do not provide support
for reading files over the Internet, but you can use the standard COM interface, IStream, to read from custom
sources.

Section Description

What's New Discusses the differences between the previous and current
versions of the Windows Media Format SDK.

Overview of the Windows Media Format SDK Introduces the Windows Media Format SDK and discusses
the general applications that you can use it for.

Concepts Discusses the concepts involved in working with this SDK.
This includes terminology, features, and programming
concepts.

Features Describes the features supported by the objects of this
SDK. Each feature topic links to the appropriate how-to
and reference topics.

Sample Applications Describes the sample applications and sample code
contained in the Windows Media Format SDK.

Overview of the ASF Format Describes the structure and capabilities of the advanced
systems format (ASF), which is used by this SDK.

For More Information Describes information available online at the Windows
Media Developer Center.

Previous Next

Previous Next

Frame-based Indexing

You can now index ASF files based on video frames. Both the reader and the synchronous reader can seek to a
frame of a video stream and synchronize the other streams to that frame.

Indexing and Seeking with SMPTE Time Code

The Windows Media Format SDK now enables you to store SMPTE time codes in ASF files. Files can be
indexed by SMPTE time code, and both the asynchronous reader and synchronous reader can seek to SMPTE
time code index entries.

DirectShow Filters

The Windows Media Format SDK now includes two Microsoft DirectShow® filters that enable DirectShow-
based applications to read and write ASF files. DirectShow also enables applications to capture data from
audio-video devices and decompress data from a variety of formats before re-encoding it as Windows Media-
based content.

Enhanced Profiles

Profiles can now contain bandwidth sharing information and stream prioritization information. Bandwidth
sharing enables you to specify that two or more streams, regardless of their individual bit rates, will never use
more than a specified amount of bandwidth. The bandwidth sharing data in a profile is purely informational; it
is not enforced by any logic in the SDK. Stream prioritization enables you to specify an order of priority for the
streams in a profile. If there is not enough bandwidth at playback to stream the file properly, the lowest priority
streams can be ignored in order to improve performance.

DRM Writing Capability

In addition to the existing DRM-reading support, the Windows Media Format 9 Series SDK adds support for
writing ASF files with either DRM version 1 or DRM version 7 protection. This new capability enables "Live
DRM" scenarios such as pay-per-view webcasting of live sporting events or concerts.

Enhanced File Sink

Several new file sink capabilities have been added to this version of the SDK. You now have the ability to
configure the file sink to disable automatic indexing of newly created ASF files. You also have the option to
configure it for unbuffered input and output.

DirectX Video Acceleration

DirectX Video Acceleration (DXVA) is a technology that enables playback of high bit rate video (DVD quality
or better) on less powerful machines with DXVA-enabled graphics cards. You can use the reader object of this
SDK to enable DirectX Video Acceleration, if the hardware supports it, when playing ASF files.

Multichannel Audio

You can encode and play multichannel audio. The new Windows Media Audio 9 Professional codec supports
formats with 6 channels and 8 channels as well as high definition stereo.

Watermarking

You can encode ASF files with digital watermarks for security. All watermarking systems are different in their
approach, but all embed identification into encoded content. Watermarking is performed using special third-
party DirectX® media objects (DMOs).

Support for Multiple Languages in ASF files

You can support multiple languages in ASF files, both in streams and in metadata. For example, you can create
a video file with audio streams in several languages. At playback, the user can select which language to use, or
your application can query the system information on the playing computer and select a language automatically.
Metadata attributes can also be entered multiple times, with the values in different languages.

Device Conformance Templates

To assist in targeting content to specific client devices, the Windows Media codecs now support device
conformance templates. Each template contains a defined range of settings and codec features that should be
used for media intended for a particular category of platforms. System profiles are no longer supported with the
latest versions of the Windows Media codecs. All profiles must be customized to suit your needs. You can use
device conformance templates to assist you in designing your profiles.

Expanded Codec Enumeration

The profile manager object can query the Windows Media Audio and Video codecs for supported formats. Now
you can set parameters for the formats retrieved. For example, you can retrieve all the quality-based variable bit
rate formats supported by the Windows Media Audio 9 codec.

Improved Mutual Exclusion

You can now create named records containing multiple streams within a mutual exclusion object. You can also
name mutual exclusion objects to make them easier to identify. This enables you to create layers of mutual
exclusion. For example, a file can contain streams that are mutually exclusive by bit rate and by language. The
language-based mutual exclusion would involve groups of streams, each group consisting of streams in the
same language but mutually exclusive by bit rate.

Expanded Multiple Bit Rate Support

Mutual exclusion support is now included for multiple bit rate (MBR) audio and for video with streams of
varying image sizes.

Attributes for Streams

You can now assign attributes to individual streams in ASF files. You must still use file-level attributes for MP3
files. This feature does not add any methods to the SDK, but the existing methods will now accept stream
numbers other than zero.

Transcoding with Smart Recompression

Smart recompression allows you to transcode Windows Media audio files from a high bit rate to a lower bit rate
with better quality than previously achievable.

Expanded Metadata Support

The Windows Media Format SDK provides the following new metadata features:

Index-based metadata tags, enabling multiple tags with the same name.
Ability to read DRM header attributes without a WMStubDRM.lib file.
Attributes with more than 64 kilobytes of associated data.
Attributes in multiple languages.
Dozens of new predefined attributes.

Dynamic Pixel Aspect Ratio

Video streams that are composed of various types of content can be accommodated by identifying the pixel
aspect ratio of the disparate samples in the stream. This enables the playing application to provide better
playback of such content.

Interlaced Video Streams

Previous versions of the Windows Media Format SDK have provided the ability to encode interlaced content
into a progressive-scan video stream. Now you can encode interlaced video while preserving its interlaced
format. This can result in improved playback, particularly on interlaced devices, such as television sets.

Two-Pass Encoding

The new Windows Media codecs enable two-pass encoding. Content encoded in two passes can achieve higher
quality output.

New Speech Codec

This SDK includes the new Windows Media Audio 9 Voice codec which is optimized for encoding the human
voice while using a low bit rate. This codec also provides superior performance for mixed music-voice content.

Accessible Video Frame Duration

You can have the writer object of this SDK provide the duration of video frames to the reader.

Streaming HTML

With previous version of this SDK, you were able to use a script command to signal your application to open a
Web page. You can now store the components of Web pages in your ASF files, to ensure that there is no lag in
presentations.

WMStub.lib no longer required for build environment

The build-environment settings for the Windows Media Format SDK have changed since the last version. You
no longer need to include WMStub.lib for applications using this SDK. However, DRM-enabled applications
still must obtain and sign a separate license agreement, and obtain a unique static library from Microsoft.
Contact wmla@microsoft.com for more information about the DRM library and license agreement. For more
information about building projects with this SDK, see SDK Library Files and Compiler Settings.

See Also

About the Windows Media Format SDK

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Overview of the Windows Media Format SDK
The Windows Media Format SDK contains objects to perform tasks at three points in the life of an ASF file:
creation, editing, and playback. In a realistic, end-to-end Windows Media-based solution, each of these stages is
handled by a separate application. That is, it would be rare to find an application that writes, edits, and plays
ASF files. Some applications, notably those for video editing, will use the broad functionality of the Windows
Media Format SDK to read the contents of ASF files, alter that content, and write the results to a new file.
However, it is easiest to think of this SDK in the three stages of file creation, editing, and playback.

ASF File Creation with the Windows Media Format SDK

The process of writing ASF files with the Windows Media Format SDK is, at a high level, fairly simple. File
creation is managed by a writer object. You tell the writer object what sort of file you want to create by
specifying a profile object for it to use. Each profile object contains the settings for an ASF file. Some profiles
are included with this SDK, and profile editing support is provided by a number of objects. When you have set
a profile for the writer object to use, you can begin passing samples to the writer for processing. In most cases, a
sample is a piece of audio or video that is uncompressed, but a sample can be any type of data.

Internally, the writer performs three major tasks. First, if the stream that a sample belongs to is to be
compressed, the writer communicates with the encoding portion of the codec (compressor/decompressor) to
compress the sample. Once the samples are in the form specified by the profile, the writer breaks the samples
apart into packets of appropriate size to be streamed over a network. Finally, the data from the various streams
is multiplexed, or interleaved so that samples with similar presentation times across all streams are close to one
another in the data section of the ASF file.

The writer object does not actually write a file itself. It communicates with one or more objects called sinks,
which deliver the data from the writer to its destination. In the case of local files, a file sink manages writing the
data to the file. You can also configure network sinks to deliver the ASF data across a network. Commonly,
more than one sink is used. For example, an application can stream a file across a network and save a copy as a
file on a local disk simultaneously. A new feature in the Windows Media Format 9 Series SDK is the push sink.
By using a push sink, you can broadcast content from your writing application to one or more servers running
Windows Media Services, which will then distribute the content to users.

ASF File Editing with the Windows Media Format SDK (Metadata Editing)

It is somewhat misleading to say that you can edit ASF files. It is not possible to open an ASF file, change the
contents of a stream and save the changes you have made. In order to change the contents of a stream, add a
new stream, remove a stream, or change the data section of the file in any way, you must rewrite the file. You
can read and write samples from ASF streams in their compressed state to avoid content degradation, but doing
so combines reading and writing of files. The only thing you can really edit in an existing ASF file is the
information in the header section.

Previous Next

The header of an ASF file contains many different types of data. The most commonly edited are metadata
attributes, which are name/value pairs that describe aspects of the content and the people involved in making it.
You can edit metadata using the metadata editor object of the Windows Media Format SDK. This object will
open an ASF file, enable you to change some of the contents of the header, write the changes to the file, and
close the file. Metadata editing is very straightforward, with simple method calls to retrieve and set values.

ASF File Reading with the Windows Media Format SDK

The Windows Media Format SDK provides two distinct objects for reading ASF files: the reader object and the
synchronous reader object. The reader object is available in all versions of the SDK, while the synchronous
reader object requires the Windows Media Format 9 Series SDK. The primary difference between the two is
that the reader object delivers samples to your application by firing events to a callback method, while the
synchronous reader provides individual samples in response to method calls.

To use the reader object, you must implement several callback methods to react to status and sample messages
from the reader object. You configure the reader to deliver the content as you like, start the reader, and wait for
the sample messages. The process of retrieving samples from an ASF file is basically the reverse of the writing
process. The reader object communicates with the codecs required to decode any compressed streams and
delivers uncompressed data to your application. You can also configure the reader object to deliver samples in
their compressed state, so that you can include a previously encoded stream in a new file.

The synchronous reader object works in much the same way as the reader object. But instead of configuring
callbacks, you must request each sample from the synchronous reader individually. Using the synchronous
reader requires only a single thread, while using the reader requires multiple threads. The synchronous reader
object has several advantages over the reader object in certain circumstances, mostly for content editing
applications that need to quickly access different parts of a file and copy data between files. The synchronous
reader object is much simpler to use, and makes seeking to specific places in the data section easy. However,
the synchronous reader does not support reading files over a network and does not support digital rights
management.

Other Operations with the Windows Media Format SDK

In addition to the three main functional areas just described, the Windows Media Format SDK has objects to
perform other operations relating to ASF files. The profile manager object is used to create and access profiles
and to save them. The indexer object creates index objects in ASF files that allow seeking in video files.
Finally, the reader object and writer object support digital rights management to protect the intellectual rights of
content creators.

Note The intention of the ASF file structure and this SDK in general is to produce digital media files
containing audio and video, and this documentation is written with that end in mind. However, the ASF file
structure will work for other types of content, too. You may find many applications for ASF files that are not
related to audio and video.

See Also

About the Windows Media Format SDK

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Concepts
This section introduces the key concepts behind the Windows Media Format SDK. The following topics are
discussed.

Advanced Systems Format (ASF) Files
Profiles
Media Samples
Inputs, Streams and Outputs
Formats
Bit Rate
Metadata
Presentation Time
Buffering Content

See Also

Programming Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Advanced Systems Format (ASF) Files
All of the objects of the Windows Media Format SDK work with files that conform to the Advanced Systems
Format (ASF) file structure. These files are referred to as ASF files in this documentation. For more information
about the structure of ASF files, see Overview of the ASF Format.

Sometimes the term Windows Media file is used to describe files created by using this SDK or other Windows
Media technologies. It is not accurate to call an ASF file a Windows Media file unless it contains only content
encoded by using Windows Media codecs. For more information, see the guidelines for the use of the .wma
and .wmv file extensions in the File Name Extension Guidelines section.

See Also

Concepts

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Profiles
A profile is a collection of data that describes the configuration of an ASF file. At a minimum, a profile must
contain configuration settings for a single stream.

The stream information in a profile contains the bit rate, buffer window, and media properties for the stream.
The stream information for audio and video describes exactly how the media is configured in the file, including
which codec (if any) will be used to compress the data.

A profile also contains information about the various ASF file features that will be used in files created with it.
These include Mutual Exclusion, Stream Prioritization, Bandwidth Sharing, and Data Unit Extensions.

Previous versions of the Windows Media Format SDK provided preconfigured system profiles, which could be
used to create common types of files, or altered slightly to suit the needs of your application. System profiles
are not supported for the Windows Media 9 Series codecs. This is because the number of "common" types of
files has grown exponentially with the addition of new features. It is expected that virtually every content
creator has needs that go beyond the simple solutions provided by system profiles. You can still use the old
system profiles as a starting place. For more information, see Using System Profiles.

You must supply the writer with a profile for every file you write. You can specify a profile to use with the
writer by calling IWMWriter::SetProfile.

Profile data exists in several different forms that can be used by the Windows Media Format SDK. Profile
information can also be accessed in several ways. This can lead to confusion about what a profile is and how it
is used.

The following diagram shows how profile data is used in the SDK.

Previous Next

Previous Next

Profile data takes three different forms: data contained within a profile object in an application, an XML file on
disk, and data in the header of an ASF file. Each of these forms of data is shown as a shaded rectangle in the
diagram.

Data in a Profile Object

When you are editing a profile, you use a profile object, which encapsulates all of the profile data. You can
create an empty profile object by using the profile manager object. You can also use the profile manager object
to load existing profile data into a profile object.

Most profile data must be added and manipulated through the use of objects representing individual parts of the
profile. These include stream configuration objects, mutual exclusion objects, bandwidth sharing objects, and a
stream prioritization object. Each of these object types can be created using methods in the profile object.
Making changes to these objects does not affect the profile object until you use a method in the profile object to
include the updated data from the other object.

Data in an XML File

Profile data is stored on disk in the form of an XML file with the .prx file name extension. Included with the
Windows Media Format SDK is a collection of profiles called system profiles that cover the most common
types of ASF files. System profiles are stored in a file named WMSysPr9.prx. (Note that this file actually
contains no system profiles for Windows Media 9 Series because the concept of system profiles is no longer
used.) When you save your own custom profiles, you must save them to your own files.

You can use the profile manager object to save the data from a profile object to a string of XML text. You can
then use whatever file I/O functions you like to save the string to a file on disk.

Data in the Header of an ASF File

The writer takes the information from the profile and uses it to create the streams that go into the data section of
the ASF file. The bulk of the profile data is stored in the header section of the file when a file is written. At
playback, the reader object (or the synchronous reader object) can access the information in the header of the
file. In this case, the reading object creates a profile object and populates it with the data from the header.

When you access the profile data by using the reader (or synchronous reader), you can make changes to the
profile information, but there is no way to apply those changes to the file in the reader. You can apply the
profile information from a file in a reader to a profile in a writer to create a new file with the same settings as
the file in the reader. In this case, any changes you make to the profile information prior to setting the profile in
the writer will be reflected in the profile information registered by the writer.

Using Profile Editor

Rather than creating profiles through the Windows Media Format SDK, you can use Profile Editor, a utility that
is included with Windows Media Encoder 9 Series. In your encoding application, use the
IWMProfileManager::LoadProfileByData to load the saved profile. In some scenarios, for example if you
use a limited number of profiles that are never modified dynamically, it might be more convenient to use the
Profile Editor to create your profiles.

However, if you do use Profile Editor, it is recommended that you do not use the "Video Size: Same As Video
Input" setting. When this checkbox is checked, Profile Editor will create a profile with the video output height
and width set to zero. When the Windows Media Encoder encounters these profiles, it sets the correct values to
match its video input. However, the Writer in the Windows Media Format SDK does not do so automatically,
and it must be done by the application.

See Also

Bandwidth Sharing Object
Concepts
IWMProfile Interface
IWMProfileManager Interface
Mutual Exclusion Object
Profile Manager Object
Stream Configuration Object
Stream Prioritization Object
Working with Profiles

© 2000-2003 Microsoft Corporation. All rights reserved.

Media Samples
A media sample, or sample, is a block of digital media data. A sample is the basic unit that is manipulated by

Previous Next

Previous Next

the reading and writing objects of the Windows Media Format SDK. The contents of an individual sample are
dictated by the media type associated with the sample. For video, each sample represents a single frame. For
audio, the amount of data in an individual sample is set in the profile used to create the ASF file.

Samples can contain uncompressed data, or they can contain compressed data, in which case they are called
stream samples. When creating an ASF file, you pass samples to the writer. The writer coordinates compression
of the samples with the appropriate codec and arranges the compressed data in the data section of the ASF file.
On playback, the reader reads the compressed data, decompresses it, and provides the reconstructed
uncompressed data as output samples.

All samples used by the Windows Media Format SDK are encapsulated in buffer object whose memory is
allocated automatically by the SDK run-time components. You can also allocate your own buffers if you need
to, using advanced features of the writer and reader.

Note The term sample is used in this SDK to refer to a media sample, not an audio sample. In audio encoding,
a sample refers to a single encoded audio value. Typically, the quality of encoded audio is specified by a
number of samples per second. For example, CD quality sound is recorded at 44,100 samples per second. This
value is commonly abbreviated with the Hz notation, so 44,100 samples per second would be 44,100 Hz or 44.1
kHz.

See Also

Concepts
INSSBuffer Interface
Inputs, Streams and Outputs

© 2000-2003 Microsoft Corporation. All rights reserved.

Inputs, Streams and Outputs
An "input" in this documentation is any digital media data stream (such as audio or video) that your application
delivers to the writer object from a source by using appropriate APIs. Inputs must be delivered in a supported
format. Several standard RGB and YUV formats are supported as input, and the audio codecs support PCM. If a
specified input format is not supported natively by the codec, the writer object will instantiate either an audio or
video helper object that is capable of converting a wide variety of formats into formats the codec can accept.
For audio inputs, the helper object will adjust the bit depth, sample rate, and number of channels as necessary.
For video inputs, the video helper object will perform color-space conversions and rectangle-size adjustments.
In some cases, compressed audio and video data can be passed in an input stream. An input may be of some
other media type besides audio and video, such as text, script commands, still images, or arbitrary file data.

An "output" in this documentation refers to data that the reader object passes to an application for rendering. An
output equates to a single stream at the time of playback. If you are using mutual exclusion, all of the mutually

Previous Next

Previous Next

exclusive streams share a single output. Typically, output data is in the form of uncompressed audio or video
data, although it can contain any type of data. Supported video output formats are listed elsewhere in this
documentation.

The term "stream" in this documentation refers to data in an ASF file, as opposed to (1) the input source data
before it is processed by the writer object, and (2) the output data after it is decompressed by the reader object.
An ASF stream contains data that comes from a single input on the writer object, although more than one
stream can be created from the same input. A stream has the same format and compression settings from
beginning to end. A simple ASF file has two streams, one for audio and one for video. A more complex file
might have two audio streams and several video streams. The audio streams might have the same compression
settings but contain different content, such as a narration in different languages. The video streams might
contain the same content, but have different compression settings. The media format and compression settings
that the writer object will apply to each stream are specified in the profile.

The relationship between inputs, streams, and outputs can be of three basic types. The following three diagrams
illustrate the relationships.

In the most basic relationship, which is a profile without any mutual exclusion, each input is processed by the
writer and inserted in the ASF file as a single stream. On playback, the reader reads the stream and delivers
uncompressed samples as a single output.

A more complex relationship occurs when multiple bit rate mutual exclusion is used. In this case, a single input
is processed by the writer and encoded at several bit rates. Each encoding of the data is inserted in the ASF file
as a separate stream. On playback, the reader determines which stream to decompress based upon the available
bandwidth. The reader then reads the selected stream and delivers uncompressed samples as a single output.

The third type of relationship can occur when a language-based or custom mutual exclusion is used. In this

relationship, multiple inputs are processed by the reader and each is inserted into the ASF file as an individual
stream. On playback, your application manually selects which stream to decompress based upon logic you
provide. The reader then reads the selected stream and delivers uncompressed samples as a single output. This
process can be used for including soundtracks in multiple languages.

There is some variation in the relationships described above. For example, a file can contain all three
relationships, or one or two of them. It is also possible for some inputs to be compressed, in which case the
writer performs no additional compression. The reader, also, can deliver compressed samples. But when it does,
you must access them by stream number, not by output number.

Note Inputs, steams, and outputs are all assigned numbers by the objects of the Windows Media Format SDK.
Streams have a stream number, which is 1-based, that you define in the profile. Each stream is also assigned a
stream index for use in enumerating streams in a profile. None of these numbers are guaranteed to be consistent
with each other. That is, input number 1 may not correspond with stream number 1, stream number 1 may not
correspond with stream index 1, and so on.

See Also

Concepts
Mutual Exclusion

© 2000-2003 Microsoft Corporation. All rights reserved.

Formats
The information in a format describes everything you need to know about a particular type of media. Every
format has a major type, like audio or video, and may have a subtype. Formats contain different information
based on major type. Audio and video formats require much more information than other types.

Previous Next

Previous Next

Just as the objects of the Windows Media Format SDK differentiate between input numbers, stream numbers,
and output numbers (see Inputs, Streams and Outputs), there are important distinctions between input formats,
stream formats, and output formats. These differences are described here:

Input Formats

An input format describes the digital media that you pass to the writer object. If a stream in an ASF file is
compressed with a codec, the codec will support only certain input formats. When using the Windows Media
Audio and Video codecs, you can enumerate the supported input formats using the writer object. When writing
a file, you are responsible for selecting an input format that matches your input media.

Although the input media format must be supported by the codec that will compress the data, some input format
settings need not match the stream format. For example, the input format for a video stream may have a frame
size that is different from that defined in the stream format. The codec will perform conversions in these cases.

Stream Formats

A stream format describes the form of the media as it is stored in the ASF file. The stream format is the format
described in the profile, and may or may not be the same as the input format and output format. If a codec is
used to compress the data in a stream, the stream format will be different than the input and output formats.

When using the Windows Media Audio and Video codecs, you must obtain a list of supported stream formats
from the codec to ensure that you are not attempting to specify a format that the code does not support. Some
format settings, such as the size and color depth of a video frame, must be configured manually after the codec
format is retrieved.

Output Formats

An output format describes the digital media that the reader (or synchronous reader) delivers to your
application. If a stream in an ASF file is compressed with a codec, the codec will support only certain output
formats. When using the Windows Media Audio and Video codecs, you can enumerate the supported output
formats by using the reader object. Each of the Windows Media codecs has a default output format, but you can
select any supported output format for sample delivery.

Although the output media format must be supported by the codec that compressed the data, some output
format settings need not match the stream format. For example, the output format for a video stream may have a
frame size that is different from that defined in the stream format. The codec will perform conversions in these
cases.

See Also

Concepts

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Bit Rate
Bit rate refers to the amount of data per second that is delivered from an ASF file. Bit rate measurements are in
bits per second (bps) or kilobits per second (Kbps). Bit rate is often confused with bandwidth, which is a
measurement of the data transfer capacity of a network. Bandwidth is also measured in bps and Kbps.

The Windows Media Format SDK can be used to create applications that deliver streaming Windows Media-
based content from Internet or intranet locations. When you are streaming data across a network or the Internet,
the bit rate is of vital importance to the end-user experience. If the bandwidth available to the network is less
than the bit rate of the ASF file, the playback of the file will be interrupted in some way. Usually, insufficient
bandwidth will result in either samples being skipped, or a pause in playback while more data is buffered.

Every ASF file is assigned a bit rate value at the time of creation, based upon the type and number of streams
that are included in the profile used. Individual streams have their own bit rates. Bit rates can be constant (the
original data is compressed in such a way as to maintain a constant flow of data at approximately the same rate)
or variable (the original data is compressed in such a way as to maintain the same quality throughout, even
though this may mean uneven data flow). Different bit rate types can be applied to different streams within the
same file.

You can encode the same content to several different streams, each with a different bit rate. Then you can
configure the streams so that they are mutually exclusive. This enables you to create a single file that can be
streamed to users with different bandwidths. This feature is called multiple bit rate, or MBR.

See Also

Concepts
Constant Bit Rate (CBR) Encoding
Inputs, Streams and Outputs
Profiles
Variable Bit Rate (VBR) Encoding

© 2000-2003 Microsoft Corporation. All rights reserved.

Metadata

Previous Next

Previous Next

Previous Next

Metadata, for the purposes of this SDK, is information that describes an ASF file or the contents of the file. The
header section of an ASF file contains all of the metadata associated with that file. Individual items of metadata
in an ASF file are called attributes. Each attribute has a name and a value. Throughout this documentation,
global constants are used to identify attributes. For example, the title of an ASF file is stored in the
g_wszWMTitle attribute.

A number of attributes are defined in the Windows Media Format SDK to handle the most common metadata
needs. In addition, you can create your own attributes. You should take care when naming custom attributes,
however, because other application developers can use the same names, and conflicts can occur.

Some attributes are set by the SDK and cannot be changed manually. For example, when you index an ASF file,
the SDK sets the g_wszWMSeekable attribute to show that the file can now be read from any specified point.

Other attributes are purely informational and must be set manually. For example, if you want to keep track of
the author of a file, you should set g_wszWMAuthor.

The Windows Media Format SDK provides support for attributes that apply to the entire file, and attributes that
apply to individual streams.

You can use the Windows Media Format SDK to edit the metadata in MP3 files, though you should always use
ID3-compliant attributes in MP3 files to maintain compatibility with other MP3 manipulation programs.

See Also

Concepts
Metadata Editor Object
Metadata Features
Working with Metadata

© 2000-2003 Microsoft Corporation. All rights reserved.

Presentation Time
A presentation time is a measurement of time from the first sample of the first stream in an ASF file. This
measurement, as well as most other measurements of time used by the objects of this SDK, is in 100-
nanosecond units. Presentation times are important because they enable the various streams in a file to be
synchronized. You must supply a presentation time for each input sample you pass to the writer. Every data
object in the data section of an ASF file has a presentation time associated with it. Every output sample
retrieved by the reader also has a presentation time.

See Also

Previous Next

Previous Next

Concepts
Inputs, Streams and Outputs
Media Samples

© 2000-2003 Microsoft Corporation. All rights reserved.

Buffering Content
When the reader object opens a streaming file, it determines the size of the buffer based upon settings in the
header of the file. You can think of the buffer as a bucket with a hole in the bottom that leaks at a constant rate.
As long as the rate at which the bucket is filled is not, on average, greater than the rate at which it is leaking, the
bucket will never overflow.

The rate at which the imaginary bucket leaks is the bit rate of the stream. The rate at which the bucket fills is the
actual streaming bit rate. The data in a compressed stream varies in size from sample to sample depending on
the amount of compression that was achieved. Thus, even though the bit rate of the stream is set in the profile, it
represents the average bit rate, not a constant.

The other stream setting important to the buffering process is the buffer window. The buffer window is
measured in time and specifies how much content can be buffered. The capacity of the imaginary bucket can be
found using the buffer window. For example, if you have a stream with a bit rate of 32 Kbps and a buffer
window of 3 seconds, the buffer is sized to hold 3 seconds of 32 Kbps content, or 12,000 bytes
(32,000 bits per second x 3 seconds / 8 bits per byte). The codec limits the variation between the actual
streaming bit rate of encoded samples so that over a period of time equal to the buffer window, the average bit
rate is no greater than the bit rate of the stream.

Normally, you set the bit rate and buffer window for a stream in a profile, and the writer handles the rest. When
passing compressed samples to the reader, however, you must ensure that the correct values are transferred to
the new file by setting the bit rate and buffer window for the stream in the destination profile to the values from
the compressed stream.

See Also

Concepts
Media Samples
Inputs, Streams and Outputs

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Features
The Windows Media Format SDK provides many options for dealing with ASF files and other files using the
Advanced Systems Format. Many of these features are not easily classified in one of the major functions of the
SDK. This section describes the features of the Windows Media Format SDK from a programming perspective.
Each feature topic gives an overview of the feature and provides links to related topics in this documentation.

See Also

Programming Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

ASF File Features

Previous Next

Section Description

ASF File Features Describes the features that are inherent in the Advanced Systems
Format (ASF). These features are usually implemented through the
profile used to create a file.

Codec Features Describes the features of the Windows Media codecs that are
directly supported by the objects of the Windows Media Format
SDK

File Writing Features Describes the features that support file writing.

File Reading Features Describes the features that support file reading.

Metadata Features Describes the features that support metadata, which is information
about the file and its content.

Digital Rights Management Features Describes the digital rights management functionality that is
integrated into the Windows Media Format SDK.

Previous Next

Previous Next

The primary purpose of the Windows Media Format SDK is to provide support for encapsulating digital media
data in Advanced Systems Format (ASF) files and delivering the media to a client application. Delivery
scenarios can vary widely from application to application, but all use the ASF file structure between authoring
and delivery. ASF files conform to a well defined but very flexible structure. For more information about the
ASF file structure, see Overview of the ASF Format.

The Windows Media Format SDK provides support for the features of the ASF specification mostly through the
profile that is used to create a file. For more information about profiles, see Profiles.

The following features are discussed in this section.

Audio and Video Streams
Image Streams
Arbitrary Streams
Script Commands
Data Unit Extensions
SMPTE Time Code Support
Mutual Exclusion
Stream Prioritization
Bandwidth Sharing
Indexes
Markers
Reader Response to ASF Features

See Also

Features

© 2000-2003 Microsoft Corporation. All rights reserved.

Audio and Video Streams
The most common types of streams used in files created by using the Windows Media Format SDK are audio
and video streams. Digital representations of audio and video data are complex and take up large amounts of
memory. Under most circumstances, both audio and video are compressed before being added to an ASF file.
Compression is accomplished using a compressor/decompressor (codec).

Several Windows Media codecs are included with this SDK, and they provide excellent quality compression for
digital media. For more information about the Windows Media codecs, see Codec Features. Many other codecs
are available from various sources. You can use whatever codecs you like when creating ASF files, but only the
Windows Media codecs are directly supported by the objects of this SDK. To use other codecs, you must
compress samples and pass them to the writer object as arbitrary data.

Previous Next

Previous Next

The most important distinction between audio or video streams and arbitrary streams is that streams containing
Windows Media audio or video data are validated by the objects of the Windows Media Format SDK. Arbitrary
data streams are not validated automatically, and should be checked for integrity by your application.

The properties of an audio or video stream are described in the profile used to create the file.

See Also

Arbitrary Streams
ASF File Features
Working with Profiles

© 2000-2003 Microsoft Corporation. All rights reserved.

Image Streams
An image stream is a special type of stream that contains still images assigned to presentation times. An
application can display the pictures in an image stream as desired, but the typical implementation is to display
each picture until the next picture is delivered, like a slide show. Usually, an image stream is encoded in a file
with an audio stream to produce a simple presentation of images synchronized with music or speech.

Image streams are like video streams in that they are created from uncompressed samples that are compressed
as part of the file writing process, but they are also like arbitrary streams because you must assign a bit rate and
buffer window appropriate to the content without relying on codec-assigned properties.

See Also

Arbitrary Streams
ASF File Features
Audio and Video Streams
Writing Image Streams

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Arbitrary Streams
In addition to audio and video streams and image streams, an ASF file can accommodate streams containing a
variety of data. The objects of the Windows Media Format SDK provide support for script streams, file transfer
streams, Web streams, and arbitrary data streams. All of these stream types are arbitrary, meaning that no data
validation is performed by the reading object. When you include streams of these types in your files, be sure
that the reading application performs validation or data checking to ensure that your content has not been
corrupted or intentionally mangled by a malicious third party.

Although the objects of this SDK do not verify or validate data in arbitrary streams, several types of arbitrary
streams are natively supported. The following table lists the predefined arbitrary stream types. Script streams
are also supported, but are discussed separately in the Script Commands section. For more information about
creating custom types, see Custom Arbitrary Data Streams.

See Also

ASF File Features
Audio and Video Streams
Configuring Arbitrary Stream Types

© 2000-2003 Microsoft Corporation. All rights reserved.

Text Streams

Text streams contain plain text stored in samples. Your application can use text from a text stream in any way
you choose. For example, you might want to create a language tutor application that introduces words in a
foreign language. You could include each word as a text stream sample at a presentation time that corresponds

Previous Next

Arbitrary type Description

Text Streams Contain text strings.

File Streams Contain one or more data files.

Web Streams Contain data files equivalent to the cached version of
Web pages.

Previous Next

Previous Next

with the spoken word in an audio stream. Then your application could render the text when the sample is
delivered.

See Also

Arbitrary Streams
Configuring Text Streams

© 2000-2003 Microsoft Corporation. All rights reserved.

File Streams

A file stream contains one or more data files. When you transfer file information as a stream, you should attach
the file name to each sample in the stream. For information about attaching related information to samples, see
Data Unit Extensions.

See Also

Arbitrary Streams
Configuring File Transfer Streams

© 2000-2003 Microsoft Corporation. All rights reserved.

Web Streams

A Web stream is like a file stream in that it contains data files. In a Web stream, these files are typically HTML
pages and associated graphics in GIF or JPEG format.

Web streams can be particularly useful for ASF files that are used as presentations. Prior to the support of Web
streams, presentations would have URLs in script streams within a file so that a Web page would load at a
predetermined time. The difficulty was that network congestion could cause delays and create a poor viewing
experience.

Previous Next

Previous Next

Previous Next

Previous Next

With Web streams, the constituent parts of Web pages can be included in the ASF file as a stream. As the files
are received, they can be cached so that, when the command to display (or render) a URL is delivered, they can
be instantly accessed by a browser. This enables smooth, consistent playback. The render command is delivered
in the Web stream itself, not as a script command in a separate stream.

It is recommended that Web streams created by using the Windows Media Format 9 Series SDK be given the
version number 1. This value is specified in the WMT_WEBSTREAM_FORMAT structure in the wVersion
member. The SDK itself does nothing to enforce this version.

Note When connecting to live broadcast streams that have Web streams, it is possible that the user may
receive a render command before the specified file is actually in the local cache. Unless your application
handles this condition, the browser will display a "Page not found" error.

See Also

Arbitrary Streams
Configuring Web Streams

© 2000-2003 Microsoft Corporation. All rights reserved.

Custom Arbitrary Data Streams

You can create a stream in an ASF file to contain any sort of data. If none of the supported stream types suits
your needs, you must use an arbitrary data stream. The writer object handles an arbitrary data stream just as it
does any uncompressed stream; the samples are packetized and combined with the samples from other streams
in the data section of the file. Of course, only a reading application that has been specifically programmed to
deal with your arbitrary type will be able to handle the data after it is delivered by the reading object.

One common use of arbitrary data streams is for media data encoded by using a third-party codec. Because the
objects of this SDK do not interact directly with third-party codecs, your writing application must process the
samples with the encoding portion of the codec and pass the compressed samples to the writer.

See Also

Arbitrary Streams
Configuring Custom Arbitrary Streams

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Script Commands
The script commands supported by the Windows Media Format SDK are simple name and value string pairs.
For example, a common script command is "URL", which is used by Windows Media Player and other playing
applications to open Web pages. The other half of the script pair for "URL" command contains a valid uniform
resource locator (URL), like "http://www.adatum.com". No support is provided by the objects of this SDK for
any specific commands; your application must include logic to handle whatever commands you use. You can
use the commands supported by Windows Media Player to maintain compatibility with most players.

Script commands can be delivered in one of two ways: in a script stream or in the file header.

Script Streams

You can deliver script commands in their own stream in an ASF file. Each sample in a script stream contains
the two strings of the name/value pair. The advantage of using a script stream is that the commands will be
delivered at the correct presentation time.

Script Commands in the File Header

Script commands can be included in the file header for retrieval at the time of playback. The playing application
is responsible for executing the script commands at the proper time. The advantage of using script commands in
the file header is that all of the script commands are available before beginning to receive samples.

See Also

ASF File Features
Using Script Commands

© 2000-2003 Microsoft Corporation. All rights reserved.

Data Unit Extensions
The Windows Media Format SDK enables you to supplement data in samples with data unit extensions, also
called payload extension systems. This documentation uses the term "data unit extensions" in order to remain
consistent with method names such as AddDataUnitExtension. A data unit extension is a name/value pair that

Previous Next

Previous Next

Previous Next

is attached to the sample in the data section of the file. You can access the extended data using methods of the
buffer object when the sample is retrieved by the reader.

You can create data unit extensions to your own specifications, but several types are predefined and supported
by the objects of this SDK. These standard extensions are used to provide additional data for file names (in
script and Web streams), SMPTE time code data, non-square pixel aspect ratio, duration, and type of
interlacing.

See Also

ASF File Features
Configuring Data Unit Extensions

© 2000-2003 Microsoft Corporation. All rights reserved.

SMPTE Time Code Support
The Windows Media Format SDK provides limited support for SMPTE time code, which is a standard time
code format for movies and television. You can include SMPTE time code data with samples as data unit
extensions. The data portion of the extension is a WMT_TIMECODE_EXTENSION_DATA structure
containing the information from the original SMPTE time stamp.

Maintaining SMPTE time code in your ASF files comes with performance limits. Each sample with an
associated SMPTE time stamp requires transport of the 14 bytes in the time stamp structure. In a streaming
scenario, this increased bandwidth requirement could be catastrophic. As a result, it is suggested that SMPTE
time codes only be persisted in ASF files during the video editing process, which is typically done with local
files. When the final file is created, you should remove the data unit extensions.

You can read SMPTE time stamps just as you would read any other data unit extension, but the reading objects
provide integrated support for searching by SMPTE time code. To be able to search for SMPTE time stamps,
you must first index the file by SMPTE time code. You can configure the indexer to index time codes by using
the IWMIndexer2::Configure method.

Using the asynchronous reader, you can navigate a file by SMPTE time stamps using the methods of the
IWMReaderTimecode interface and the IWMReaderAdvanced3::StartAtPosition method. With the
synchronous reader, use IWMSyncReader2::SetRangeByTimecode.

See Also

ASF File Features
Configuring Data Unit Extensions

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Mutual Exclusion
Every ASF file contains one or more streams, each containing digital media data. Under normal circumstances,
each stream is associated with a single output. On playback, the reader object delivers samples for each output.
So, as a default, every stream in an ASF file is delivered by the reader on playback.

There are situations where you do not want every stream delivered to the client. For example, if you create a
video file with five audio streams, one for each of five languages, you want only one of them to be delivered at
a time. Mutual exclusion is a feature of the Windows Media Format SDK that enables you to specify a number
of mutually exclusive streams that all equate to the same output.

Mutual exclusion is defined in the profile used to create a file. You configure mutual exclusion in a profile by
using mutual exclusion objects. You add streams one at a time to the mutual exclusion object, set the type, and
include the object in the profile.

The Windows Media Format SDK recognizes four types of mutual exclusion:

Bit rate
Language
Presentation
Unknown

Mutual Exclusion by Bit Rate

Bit rate mutual exclusion is a special type of mutual exclusion and is more commonly referred to as multiple bit
rate (MBR) mutual exclusion. An MBR mutual exclusion contains a number of streams that all originate from
the same input, but are encoded at different bit rates. When playing a file with MBR, the reader determines the
best stream to use based on the available bandwidth.

The Windows Media Format SDK supports MBR for audio and video streams. The SDK also supports a special
type of MBR video called multiple video size MBR. This is like normal MBR video except that the individual
streams can have different frame sizes. For example, you might have some streams at the default 320 x 240
video size and some others with higher bit rates and 640 x 480 video size.

Mutual Exclusion by Language

Language-based mutual exclusion is designed for use with content (usually audio) recorded in several
languages. A language-based mutual exclusion includes several streams that originate from unique inputs. Each
input is the same content, but in a different language.

Previous Next

Previous Next

For mutual exclusion by language to work, the reading application must include logic to select the appropriate
language. If you write an application to play ASF files, and you want to support files with language-based
mutual exclusion, you should select the appropriate stream before beginning playback.

Mutual Exclusion by Presentation

Presentation-based mutual exclusion is provided to support video streams that contain the same content encoded
with different aspect ratios. Typically, this is used when providing video in a letterbox version (aspect ratio
16:9) as well as formatted for television screens (aspect ratio 4:3).

The selection of a presentation for playback is most often determined by the user. If you write an application to
play ASF files and want to support files with presentation based mutual exclusion, you should present the user
with the option of selecting a presentation type for viewing.

Unknown Mutual Exclusion

You can create mutual exclusion based on any criteria you like. All custom mutual exclusion types should be
created using the unknown type.

Advanced Mutual Exclusion Features

You can also use mutual exclusion to assign streams to groups that are mutually exclusive of one another. For
example, you might want to have audio streams in multiple languages and assign a different video stream to
each. You use mutual exclusion to group each audio stream with its corresponding video stream and make all
groups mutually exclusive.

The reader automatically selects streams for all mutual exclusions. For all types of mutual exclusion except
MBR and language-based mutual exclusion, the reader always selects the default stream, which is the first
stream added to the mutual exclusion object in the profile. For MBR, the reader selects the stream that best suits
the available bandwidth at the time of playback. If you do not want to use the default stream, you can set stream
selection to manual before starting to read a file.

Manual stream selection applies to the entire file. Difficulties can arise when you have mutual exclusions of
different types in the same file. For example, a file can contain both bit-rate-based mutual exclusion and custom
mutual exclusion. To select a stream other than the default in the custom mutual exclusion, you must use
manual stream selection. If you use manual stream selection, however, the reader will not automatically select
the multiple bit rate stream. You must plan for this eventuality in your application if you plan to support
multiple types of mutual exclusion in a single file. Typically this means creating your own stream selection
routines for normally automatic types of mutual exclusion.

See Also

ASF File Features
Using Mutual Exclusion

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Stream Prioritization
When you create an ASF file, you can specify a priority order for its constituent streams. If you stream a
prioritized file and the available bandwidth is not enough to deliver all of the streams, the reader will drop
streams in reverse priority order. In this way you can guarantee that the most important streams in your file will
not be dropped due to network difficulties.

Stream prioritization is configured with a stream prioritization object and added to the profile. A profile can
contain only one stream prioritization object.

See Also

ASF File Features
IWMProfile3::CreateNewStreamPrioritization
IWMProfile3::GetStreamPrioritization
IWMProfile3::RemoveStreamPrioritization
IWMProfile3::SetStreamPrioritization
IWMStreamPrioritization Interface
Using Stream Prioritization

© 2000-2003 Microsoft Corporation. All rights reserved.

Bandwidth Sharing
You can specify streams in a file that, when taken together, use less bandwidth than the sum of their stated bit
rates combined. By specifying bandwidth sharing in the profile, you clarify to reading applications that the
available bandwidth needed to stream the file is not what it might otherwise seem.

None of the objects of the Windows Media Format SDK change their behavior in response to bandwidth
sharing information, which is provided solely so that reading applications can take it into account when
determining whether a file can be played with restricted bandwidth delivery.

Bandwidth sharing is configured with a bandwidth sharing object and is added to a profile before beginning to
write a file.

Previous Next

Previous Next

Previous Next

See Also

ASF File Features
Bandwidth Sharing Object
IWMBandwidthSharing Interface
IWMProfile3 Interface
Using Bandwidth Sharing

© 2000-2003 Microsoft Corporation. All rights reserved.

Indexes
A common requirement for applications that read digital media files is the ability to seek to a specific point in
the content. Seeking can be difficult because there is no guarantee that the various streams in a file have
samples with concurrent start times. This problem is addressed with the use of indexes. An index is an object in
an ASF file that equates video samples with their presentation times. No index is required for audio streams
because audio data is more closely connected with presentation time than video data is.

The indexer object of the Windows Media Format SDK can create three different types of indexes: temporal
indexes, frame-based indexes, and SMPTE time code indexes.

Temporal indexes are the most common type. They simply equate video samples with the corresponding
presentation times.

A frame-based index equates video samples with video frame numbers and presentation times. Frame numbers
are particularly useful in applications that edit video.

A SMTPE time code index is the rarest type of index. It uses SMPTE time code as the basis of the index and
can be used only on streams that have SMPTE time stamps included with their samples. For more information
about SMPTE time code, see SMPTE Time Code Support.

An ASF file can contain an index of each type for each video stream it contains. As a default, a temporal index
is included for each video stream in files created by the writer object. You can change the automatic indexing
settings for your files to suit your needs.

See Also

ASF File Features
Working with Indexes
Reading Files with the Asynchronous Reader
Reading Files with the Synchronous Reader

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Markers
Markers are named places on the timeline of an ASF file. Each marker has a name and a presentation time that
you assign. You can specify as many markers as you need for a file.

Markers are useful for breaking up large ASF files in to logical pieces. An application that uses the reader
object to play ASF files can provide the user with the option to skip from marker to marker, simplifying
navigation of digital media. For example, if you are making an ASF file out of a presentation, you can put
markers in the timeline for each major topic that is discussed. On playback, instead of getting one long timeline
and having to guess at the location to seek to, a user can simply pick a topic from a list and go right to the
pertinent portion of the file.

Markers are manipulated by the metadata editor object. You can add, remove, and view the markers in a file at
any time after the file has been written.

See Also

ASF File Features
To Seek to Markers
Using Markers

© 2000-2003 Microsoft Corporation. All rights reserved.

Reader Response to ASF Features
Most of the special ASF file features can be set in files to interact with custom playing applications designed to
handle them. However, some of the features have built-in support in the reader object.

The reader object will automatically select streams from sets that are mutually exclusive by bit rate. This special

Previous Next

Previous Next

Previous Next

Previous Next

case is referred to as multiple bit rate (MBR). The stream the reader selects is based on the bit rate of the stream.
The stream number and the order in which it was added to the mutual exclusion object are irrelevant to the
automatic selection. If a file includes more than one set of streams mutually exclusive by bit rate, the reader will
select streams based on calculating the best use of the available bandwidth.

Language-based mutual exclusion is set using an output setting, before playback. If you combine both language
and bit-rate-based mutual exclusion, you should group the bit-rate-based mutually exclusive streams by
language and then make the groups mutually exclusive by language. The reader will check the language first,
and then determine which bit rate to use.

Stream prioritization is set using an array of records. The records in the array are in descending order of
priority. The last stream in the array is the first that will be dropped by the reader.

See Also

ASF File Features
Mutual Exclusion
Stream Prioritization

© 2000-2003 Microsoft Corporation. All rights reserved.

Codec Features
The Windows Media Format SDK is delivered with several audio and video codecs. You can use the codecs
provided to compress and decompress content to suit a variety of needs. The codec that is used by the writer to
compress data is specified by stream configuration information in the profile. Information from the profile is
then stored in the header of the file created by the writer. Then, when the file is opened by the reader or
synchronous reader, the profile information in the header identifies the codec needed to decompress the data.

The following features are discussed in this section.

Supported Codecs
Constant Bit Rate (CBR) Encoding
Variable Bit Rate (VBR) Encoding
Two-Pass Encoding
Video Image
Device Conformance Templates
Video Complexity Settings
Frame Interpolation

See Also

Previous Next

Previous Next

Features

© 2000-2003 Microsoft Corporation. All rights reserved.

Supported Codecs
The Windows Media Format SDK provides support for the following codecs which are included when you
install the SDK.

See Also

Choosing an Encoding Method
Codec Features

Previous Next

Previous Next

Codec Description

Windows Media Audio 9 Audio codec for general use in encoding complex
audio, like music.

Windows Media Audio 9 Professional Audio codec for complex audio, like music. Supports
multichannel and 24-bit encoding.

Windows Media Audio 9 Lossless Audio codec for lossless encoding.

Windows Media Audio 9 Voice Audio codec optimized for encoding the human voice
at high compression ratios. This is the preferred
codec for streams consisting mostly of spoken words.
For content that is mixed music and speech, this
codec can dynamically change the encoding
algorithm used to get optimal quality.

Windows Media Video 9 Video codec for general use in encoding complex
video, such as movies.

Windows Media Video 9 Screen Video codec optimized for encoding sequential
screenshots. This codec is often used for software
training or support by recording monitor images as
computer applications are used.

Windows Media Video 9 Image Video codec for converting bitmap images with
deformation information into compressed video.

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Constant Bit Rate (CBR) Encoding
Constant bit rate (CBR) encoding is the default method of encoding with the Windows Media Format SDK.
When using CBR encoding, you specify the target bit rate for a stream, and the codec uses whatever amount of
compression is necessary to achieve it.

With CBR encoding the bit rate and size of the encoded stream are known prior to encoding. For example, if
you are encoding a three minute song at 32,000 bits per second, you know that the file size will be about 704
kilobytes (32,000 bps x 180 seconds / 8 bits per byte / 1,024). You also know that the bandwidth required to
stream the encoded content is about 32,000 bits per second.

Constrained variable bit rate encoding (described in the following section) also enables you to know the bit rate
prior to encoding, but since the rate is variable, the resulting file cannot be streamed as efficiently as a file
encoded in CBR mode. With CBR, the bit rate over time always remains close to the average or target bit rate,
and the amount of variation can be specified.

The disadvantage of CBR encoding is that the quality of the encoded content will not be constant. Because
some content is more difficult to compress, parts of a CBR stream will be of lower quality than others. For
example, a typical movie has some scenes that are fairly static and some scenes that are full of action. If you
encode a movie using CBR, the scenes that are static, and therefore easy to encode efficiently, will be of higher
quality than the action scenes, which are much more difficult to encode efficiently.

CBR encoding can also result in inconsistent quality from one file to another. If you use CBR to encode several
songs of different genres at the same bit rate, you may notice some difference in quality between them.

In general, variations in the quality of a CBR file are more pronounced at lower bit rates. At higher bit rates, the
quality of a CBR-encoded file will still vary, but the quality issues will be less noticeable to the user. When
using CBR encoding, you should set the bandwidth as high as your delivery scenario allows.

See Also

Choosing an Encoding Method
Codec Features
Variable Bit Rate (VBR) Encoding

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Variable Bit Rate (VBR) Encoding
Variable bit rate (VBR) encoding is an alternative to constant bit rate encoding (CBR) and is supported by some
codecs. Where CBR encoding strives to maintain the bit rate of the encoded media, VBR strives to achieve the
best possible quality of the encoded media.

The quality of encoded content is determined by the amount of data that is lost when the content is compressed
and decompressed. Many factors affect the loss of data in the compression process, but in general, the more
complex the original data and the higher the compression ratio, the more detail is lost in the compression
process.

There are three types of VBR encoding: quality-based, unconstrained, and constrained.

Quality-based VBR Encoding

The first type of VBR encoding is quality-based, which uses one encoding pass. Quality-based VBR encoding
enables you to specify a level of quality for a digital media stream instead of a bit rate. The codec will then
encode the content so that all samples are of comparable quality.

The main advantage of quality-based VBR encoding is that quality is consistent within a file and from one file
to the next. For example, you can write a program to copy songs from CD to ASF files on a computer. In this
case, consistent quality is probably more important to the end-user experience than consistent file size. Using
quality-based VBR encoding would ensure that all of the songs copied are of the same quality.

The disadvantage of quality-based VBR encoding is that there is really no way to know the size or bandwidth
requirements of the encoded media before encoding. This can make quality-based VBR-encoded files
inappropriate for circumstances where memory or bandwidth are restricted, such as portable media players, or
low-bandwidth Internet connections.

In general, quality-based VBR encoding is well suited for local playback or high bandwidth network
connections. In those cases, the consistent quality will provide a better user experience.

Unconstrained VBR Encoding

Unconstrained VBR encoding uses two encoding passes. When using unconstrained VBR encoding, you
specify a bit rate for the stream, as you would with CBR encoding. However, the codec uses this value only as
the average bit rate for the stream and encodes so that the quality is as high as possible while maintaining the
average. The actual bit rate at any point in the encoded stream can vary greatly from the average value.

You do not set a buffer window for unconstrained VBR encoding as you would for a CBR-encoded stream.
Instead, the codec computes the size of the required buffer window based on the requirements of the encoded
samples.

The advantage of unconstrained VBR encoding is that the compressed stream has the highest possible quality
while staying within a predictable average bandwidth.

Previous Next

Constrained VBR Encoding

Constrained VBR encoding is identical to unconstrained VBR encoding, except that you specify a maximum bit
rate and a maximum buffer window in the profile. The codec then uses the maximum values to determine how
to compress the data. If you set the maximum values high enough, constrained VBR encoding will produce the
same encoded stream as unconstrained VBR encoding.

See Also

Choosing an Encoding Method
Codec Features
Configuring Streams
Configuring VBR Streams
Constant Bit Rate (CBR) Encoding
Two-Pass Encoding
Using Two-Pass Encoding

© 2000-2003 Microsoft Corporation. All rights reserved.

Two-Pass Encoding
Two-pass encoding is an encoding method available with some codecs, like the Windows Media Video 9 codec.
When you use two-pass encoding, the codec processes all of the samples for the stream twice. On the first pass,
the codec gathers information about the content of the stream. On the second pass, the codec uses the
information gathered on the first pass to optimize the encoding process for the stream.

In the Constant Bit Rate encoding mode, files that are encoded in two passes are generally more efficient than
files encoded in a single pass. Quality-based VBR, which is one pass, produces more consistent quality than
bitrate-based VBR, which is two-pass.

You cannot use two-pass encoding on live streams.

See Also

Codec Features
Using Two-Pass Encoding

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Video Image
The Windows Media Video 9 Image codec enables you to create Windows Media Video files whose content
consists of a series of still images such as digital photographs. End users can use this capability to create and
share simple slide shows which can also contain a music soundtrack or voice-over narration. Because of the
superior compression of the Windows Media Video 9 Image codec, a file containing several photographs is still
small enough to conveniently e-mail over the Internet.

A video image stream has its own media type and a specialized structure that defines the various transitions that
are possible when moving from one image to the next. You can pan and zoom the view of the images while
blending them together. The resulting file can then be played like any other Windows Media video file.

See Also

Codec Features
WMT_VIDEOIMAGE_SAMPLE
Writing Video Image Samples

© 2000-2003 Microsoft Corporation. All rights reserved.

Device Conformance Templates
The Windows Media 9 Series codecs support device conformance templates, which are defined ranges of
stream configuration settings and codec algorithms. Each template defines the ranges of values appropriate for
certain devices.

In the past, the hardware manufacturers that made devices capable of playing ASF files were all working to
their own standards. This resulted in the widely disparate range of capabilities on similar devices that continues
today.

With device conformance templates, the Windows Media codecs establish common ground for similar devices.
Hardware manufacturers can state which templates their devices conform to, enabling content creators to more
confidently target their files to reading devices. It is also easier for player applications to determine whether a
file is inappropriate for the device before attempting to play it.

Previous Next

Previous Next

Previous Next

A device conformance template is identified by a string, which is stored as a metadata attribute associated with
the stream to which the template applies. For a list of the templates and their strings and parameters, see Device
Conformance Template Parameters.

Device conformance templates are supported for all of the Windows Media 9 Series codecs except the Windows
Media Video 9 Screen codec and the Windows Media Audio 9 Lossless codec.

See Also

Codec Features
Working with Device Conformance Templates

© 2000-2003 Microsoft Corporation. All rights reserved.

Video Complexity Settings
Some video codecs support multiple complexity levels. The complexity level used to encode a stream does not
directly affect the bit rate of that stream, but can affect the quality. Where bit rate is a measure of the size of the
compressed samples in the ASF file, complexity level is a measure of the processing power needed to
reconstruct the compressed data. Complexity level is therefore dictated more by the processing power of the
playing platform than by the available bandwidth.

For information about working with complexity levels, see Configuring Video Streams.

See Also

Codec Features

© 2000-2003 Microsoft Corporation. All rights reserved.

Frame Interpolation

Previous Next

Previous Next

Previous Next

Previous Next

Frame interpolation is the process of creating intermediate video frames based on the data in two consecutive
frames of encoded video. In effect, frame interpolation increases the frame rate of encoded video at the time of
decoding. You can use frame interpolation to improve the smoothness of playback for video streams with low
frame rates.

Because this is a decoding feature, it does not involve any special encoding options and adds no overhead to the
content. Frame interpolation is specified as an output setting in the reader object.

Only the Windows Media Video 9 codec supports frame interpolation.

See Also

Codec Features
IWMReaderAdvanced2::SetOutputSetting
Output Settings

© 2000-2003 Microsoft Corporation. All rights reserved.

File Writing Features
One of the primary features of the Windows Media Format SDK is the ability to write files in the Advanced
Systems Format (ASF). The writer object is used to write ASF files. For more information see, Writer Object.

In the most basic file writing scenario, you assign a profile to use and a name of the file to create. You pass
samples to the writer one at a time. When you have finished passing samples to the writer, it finishes its
operations and completes the ASF file. For more information about basic file writing, see Writing ASF Files.

The writer supports several advanced features, which are discussed in the following sections.

Video Resizing
Color Space Conversion
Audio Resampling
Sinks
Watermarking Support
Input Formats, Input Settings, and Data Unit Extensions
Input Format Enumeration

See Also

Features

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Video Resizing
When you define the settings for a video stream, you must specify a width and height for the video frames. This
video size determines the size of the video frames encoded in the data section of the file. However, the video
size in a profile does not determine, or limit, the size of the input media that you deliver to the writer, or the size
of the output media you receive from the reader. The writer can resize the video frames to suit the needs of your
application.

Video image size can be thought of as going through three stages: input video size, stream video size, and
output video size.

Input video size is the size of the frames that you pass as samples to the writer object. You define this size as
one of the required video input properties. For more information about input properties, see To Enumerate Input
Formats.

Stream video size is the size of the frames in the data section of the ASF file. You define this size as one of the
required stream configuration settings in the profile. If you are writing a file and the input video size is different
from the stream video size, the writer resizes the frames while encoding. For more information about video
stream properties, see Configuring Video Streams.

Output video size is the size of the frames delivered by the reader or synchronous reader. You define this size as
one of the required video output properties. If you are reading a file and the output video size is different from
the stream video size, the reader resizes the frames while decoding.

You cannot set a stream video size to an odd number of pixels wide. If you set the width of a video stream to an
odd value, either the profile will not be accepted by the writer, or the resulting video will be encoded with a
black line down one side to make up the difference.

You should take care when resizing video. Images tend to look their best at their original resolution. Resizing
images can often cause distortion and make text illegible. If you are compressing video to a low bit rate, you
will also find that resizing distortions can lead to severe compression artifacts.

The Windows Media Video 9 Screen codec does not support resizing.

See Also

File Writing Features
Working with Inputs
Working with Outputs

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Color Space Conversion
There is often a difference between the color depth of the compressed video format in the profile and the input
format. When this happens, the source video must be converted to conform to the color space of the destination.
The writer handles this process, communicating with an internal color-space converter.

The reader also communicates with the color-space converter to reconcile any difference between the
compressed format and the output format.

As with all transforms performed on data, converting between color depths can reduce the quality of the output.
When possible, you should use input and output formats with the same color depth as the compressed format.

See Also

File Writing Features
Working with Inputs
Working with Outputs

© 2000-2003 Microsoft Corporation. All rights reserved.

Audio Resampling
Every compressed format of an audio codec has a specific sample rate and sample size. These do not need to
match the settings of the input format or output format. If an input format has different settings than the
compressed format described in the profile, the writer will resample the audio, during the encoding process, to
match the compressed format. Only certain formats are accepted by the writer as input. When you enumerate
the input formats for a compressed audio stream, all of the formats retrieved can be resampled to match the
format in the profile.

Previous Next

Previous Next

Previous Next

Previous Next

When reading compressed audio, the reader will resample the content to match the output format. You must use
one of the output formats enumerated by the reader, so you are guaranteed that the audio can be resampled to
the output format settings.

Each resampling potentially affects the quality of the audio. When possible, you should use input and output
formats with settings that match the compressed format.

See Also

File Writing Features
Working with Inputs
Working with Outputs

© 2000-2003 Microsoft Corporation. All rights reserved.

Sinks
The writer object of the Windows Media Format SDK delivers processed content to sinks. Each sink is an
object that delivers data. The point of delivery depends upon the type of sink. There are three types of sinks: file
sinks, network sinks, and push sinks.

File Sinks

File sinks write ASF content to a file on a local or network drive. When you use the writer object to write a file
without explicitly adding a file sink, the writer will create one for you using the name you pass to
IWMWriter::SetOutputFilename. You can assign multiple file sinks to a writer object to write the content in
several files at once.

By using a file sink, you can control many aspects of the file. The following features are available through a file
sink.

File statistics monitoring. You can monitor the file size and duration as it is being created.
Partial content file creation. File sinks can be configured to begin writing content at a specific time and to
end writing at a specific time. This enables you to create multiple files containing different sections of the
same content in the same writing pass.

Network Sinks

Network sinks broadcast content to a network address. Reading clients can connect to the address to receive the
broadcast.

Push Sinks

Previous Next

Previous Next

Push sinks deliver content from the writer to a server running Windows Media Services. Push sinks are
typically used in scenarios where one computer encodes live content and delivers it to one or more servers for
wide distribution. Using a push sink enables you to dedicate computers to specific tasks, saving bandwidth and
processing power on each server.

See Also

File Writing Features
Working with Writer Sinks

© 2000-2003 Microsoft Corporation. All rights reserved.

Watermarking Support
Digital watermarking is a way to embed copyright or other information in the data of a media stream.
Techniques for watermarking vary widely from one solution to the next. The simplest form of watermarking is
simply adding an identifying image to each frame of a video stream. Television stations frequently use this
technique to insert a semi-transparent logo in a bottom corner of their broadcast. More sophisticated forms of
digital watermarking are imperceptible to the user watching or listening to the content.

The Windows Media Format SDK supports the use of digital watermarking DMOs. In practice, a watermarking
system is very similar to a codec: it takes media samples, runs algorithms on the data, and outputs the altered
samples. When a watermarking system is specified for a stream, the writer object includes the DMO in its
processing of input samples.

You must specify watermark configuration information when you configure a stream for watermarking. The
configuration values will be different depending upon the watermarking DMO. The DMO you use should come
with instructions describing the configuration values it supports.

For information about the settings used to specify a watermarking system, see
IWMWriterAdvanced2::SetInputSetting

You can program your application to enumerate the watermarking DMOs installed on the client computer. For
more information, see the IWMWatermarkInfo interface.

See Also

File Writing Features

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Input Formats, Input Settings, and Data Unit
Extensions
The writer object supports input settings, input formats, and data unit extensions, all of which enable you to
control features of the writer. It is not always obvious which methods to use to control a specific feature.

Input formats are media formats that describe the basic properties of the media that you pass to the writer for
encoding. For example, the frame size and color space of input video is described by the input format.

Input settings are characteristics of the input data beyond the basics, or information about transforms to perform
on the data. Interlaced video settings and information about a watermarking system are examples of input
settings.

Data unit extensions, also called payload extension systems, are values that are attached to individual samples
in the data section of the file. SMPTE time codes and non-square pixel information are examples of data unit
extensions.

See Also

Configuring Data Unit Extensions
Data Unit Extensions
File Writing Features
Input Format Enumeration
Input Settings
Working with Inputs

© 2000-2003 Microsoft Corporation. All rights reserved.

Input Format Enumeration
The writer object gets stream format information from the profile you give it. Stream configuration information

Previous Next

Previous Next

Previous Next

in a profile gives the writer all of the information it needs about how the data is to be written in the file. The
profile does not provide the writer with any information about the format of the input samples that your
application delivers. Input formats will be unknown only for streams compressed with one of the Windows
Media codecs; inputs for arbitrary stream types are predictable based on the information in the profile.

The writer object can communicate with the codec for a stream to determine the input types that can be used.
Methods are provided to enumerate the possible input types. You should always find the input type that matches
your input media by enumerating the supported types rather than setting the input media properties manually.
For more information, see To Enumerate Input Formats.

See Also

File Writing Features
Working with Inputs

© 2000-2003 Microsoft Corporation. All rights reserved.

File Reading Features
Reading ASF files is one of the primary features of the Windows Media Format SDK. Two types of reading are
supported: asynchronous and synchronous. Asynchronous file reading is handled by the reader object. The
synchronous reader object is used to read files synchronously. For more information about the different reading
objects, see Reader Object and Synchronous Reader Object.

In the most basic asynchronous file reading scenario, you must implement a callback method that the reader
object will call when samples are ready. After you begin reading a file, your application waits for the samples to
be delivered to your callback method. Asynchronous reading is useful for player applications, and supports
features not available with synchronous reading. If your application needs to read files from a network location,
or interact with a server running Windows Media Services, you must use the reader object. The disadvantage of
the reader object is that a separate thread is used for each output delivered. Additionally, the reader object is not
as flexible as the synchronous reader in how it can deliver samples.

With the synchronous reader you do not need to use any callback methods. Instead, you select a portion of the
file to read and retrieve the samples one at a time with method calls. The synchronous reader is well suited to
the needs of content-editing applications, where quick access to specific samples is essential. Because no
callback methods are used by the synchronous reader, you can create applications to read ASF files with a
minimum of coding overhead. However, the synchronous reader cannot open a file from a network location, or
interact with a server running Windows Media Services, or read files protected with DRM.

The following topics discuss the features of the reader and the synchronous reader.

Previous Next

Previous Next

In addition, the following topics from the writing features section also apply to file reading:

Video Resizing
Color Space Conversion
Audio Resampling

See Also

Features
Reading ASF Files

© 2000-2003 Microsoft Corporation. All rights reserved.

User Allocated Sample Support
Under normal circumstances, both the reader object and the synchronous reader object create a new buffer
object for each sample delivered to your application. This is because the reading object has no way of knowing
what your application does with the samples after it gets them. Even though many applications read samples
only to render them immediately, some applications may need to maintain samples for a long time. The reading
object cannot, therefore, reuse any of the buffers it allocates; it delivers them to your application, which then
has control over them.

The problem with this approach is that a file can contain an immense number of samples. If each one of them
requires a new buffer object to be created, a lot of processor time is wasted allocating and releasing memory. In
time-sensitive applications such as media players, this overhead can be very detrimental to performance.

To alleviate the performance issues of reader-allocated samples, both the reader and the synchronous reader
support user-allocated samples. To use samples allocated by your application, the reading object makes calls to
a sample allocation callback method that you implement. The logic used by the callback to deliver buffers to the
reading object is entirely up to you. You can use a pool of buffers for the entire file or use multiple pools of
buffers, one for each output or stream, or any other scheme that works for your application.

See Also

Allocating Buffers for File Reading

Topic Description

User Allocated Sample Support Discusses buffer allocation in the reader and synchronous
reader, and how user allocation can improve performance.

Output Format Enumeration Discusses output format enumeration.

Previous Next

Previous Next

File Reading Features

© 2000-2003 Microsoft Corporation. All rights reserved.

Output Format Enumeration
Both the reader object and the synchronous reader object communicate with the codecs to enumerate the
possible output formats for compressed streams. When you read a file containing content compressed with one
or more of the Windows Media codecs, you can examine the possible output formats to choose the one that best
suits your needs. For convenience, each codec has a default output format which is set to the most commonly
used format. For more information about output enumeration, see Working with Outputs.

You can make certain changes to an output format depending upon the media type. For video streams, for
example, you can change the frame size and color depth. The reading objects both support an interface to test
changes you make to the output format, called IWMReaderTypeNegotiation.

See Also

File Reading Features

© 2000-2003 Microsoft Corporation. All rights reserved.

Metadata Features
Metadata is used in ASF files to describe file contents and properties. All ASF files you create should include
appropriate metadata. (For an overview, see Metadata.) The Windows Media Format SDK includes support for
metadata editing through the writer object, the metadata editor object, and both the reader and synchronous
reader objects. Native support for a wide variety of metadata attributes is included. See Attributes for a list of
the predefined attributes.

The metadata support provided by the various objects of the Windows Media Format SDK is flexible and

Previous Next

Previous Next

Previous Next

Previous Next

powerful. The main metadata features are summarized in the following list:

Flexible attribute size. Metadata attributes are not limited in size, except by the general limitation that the
total size of all attributes in a given file cannot exceed 64 kilobytes.
Stream-level attributes. Metadata in ASF files can be assigned to the file as a whole, or to a particular
stream.
Duplicated attributes. A named attribute can be used multiple times in the same file. This feature is of
particular use when assigning content descriptive attributes. For example, a song may have several
authors, each requiring a separate Author attribute in the file.
Multiple languages. Every attribute has a language associated with it. You can set the supported
languages and then assign one to each attribute you write. Because you can duplicate attributes, you can
provide the most important attributes in several languages to reach a larger audience. If you do not
specify a language, the default language (obtained from the operating system of the computer running
your application) will be used.
Complex attributes. Some of the predefined attributes support structured data. For these attributes, the
data type is binary, but the value is a structure defined in this SDK.

The following topics discuss the other supported metadata features.

See Also

Features
IWMHeaderInfo Interface
IWMHeaderInfo2 Interface
IWMHeaderInfo3 Interface
Metadata

© 2000-2003 Microsoft Corporation. All rights reserved.

ID3 Support
ID3 is an organization that has defined a set of standards for including metadata in MPEG Layer-3 (MP3) audio
files. The objects of the Windows Media Format SDK provide support for ID3 compatible attributes. Three
distinct ID3 versions are supported: ID3v1.x, ID3v2.2, and ID3v2.3/v2,4. For a list of the attributes that equate
to ID3 frames, see ID3 Tag Support.

Topic Description

ID3 Support Discusses the support for ID3 frames using the objects of the
Windows Media Format SDK.

Custom Metadata Discusses the implications of using custom metadata.

Previous Next

Previous Next

Unless otherwise noted, no validation of ID3 frame data is performed by the objects of this SDK. For example,
the metadata attribute WM/Lyrics_Synchronised stores the song lyrics with corresponding time stamps. When
writing a WM/Lyrics_Synchronised attribute, the objects of this SDK will not check to ensure that the time
stamps are in chronological order or perform validation of any kind.

See Also

Attributes
Metadata Features
Working with Metadata

© 2000-2003 Microsoft Corporation. All rights reserved.

Custom Metadata
In addition to the many supported attributes provided with the Windows Media Format SDK, you can create
metadata attributes to your own specifications. When creating custom metadata attributes, you should use an
easily identifiable naming convention to avoid possible conflict with attributes created by others.

It is recommended that you use the methods of IWMHeaderInfo3 to create your metadata because of the added
flexibility they provide over the methods of IWMHeaderInfo.

See Also

Attributes
Metadata Features
Working with Metadata

© 2000-2003 Microsoft Corporation. All rights reserved.

Digital Rights Management Features

Previous Next

Previous Next

Previous Next

Previous Next

Digital rights management (DRM) is a technology that content owners can use to protect digital media files by
encrypting them with a key (a piece of data that locks and unlocks the content). To play a protected ASF file, a
consumer must obtain a separate license containing the key. Each license also contains rights, determined by the
content owner or license issuer, which specify how the consumer can use the file. Using DRM technology,
content owners can deliver songs, videos, and other digital media files over the Internet in a protected file
format and control the use of their digital content. Microsoft DRM technology is also supported by the
Windows Media Rights Manager, the Windows Media Encoder, and Windows Media Player. For more
background information on Microsoft's DRM technology, see the Microsoft Windows Media Web site.

The Windows Media Format SDK in previous releases has supported the reading of DRM-protected files and
the license acquisition process. The Windows Media Format 9 Series SDK now additionally supports the ability
to write DRM-protected files as well as live streams using either DRM version 1 or DRM version 7. DRM
protection can be applied either as a separate post-production operation after a file has been completely
encoded, or "on the fly" during encoding.

The following sections discuss the main DRM-related features of the Windows Media Format 9 Series SDK.

See Also

Features

© 2000-2003 Microsoft Corporation. All rights reserved.

Section Description

DRM Version 1 and Version 7 Describes the main differences between the two
versions of DRM protection available to applications.

Live DRM Describes the scenarios made possible by "on the fly"
DRM protection.

DRM Individualization Describes the application security upgrade that DRM
content owners or license issuers can require.

Backing Up and Restoring of DRM Licenses Describes the pros and cons of permitting users to
back up and restore their content licenses.

Viewing DRM Attributes in the Metadata Editor Describes the capabilities of this DRM helper object
and the scenarios it was designed to support.

Microsoft Secure Audio Path Describes the Microsoft Secure Audio Path
architecture, which provides the highest degree of
protection for protected audio content.

Previous Next

Previous Next

DRM Version 1 and Version 7
In this documentation, the terms "DRM version 1" and "DRM version 7" refer to the two versions of DRM
technology that were made available in versions 1 and 7 of the Windows Media Rights Management Software
Development Kit (SDK). When you create protected files with the Windows Media Format 9 Series SDK, you
should support both DRM version 1 and DRM version 7 licenses. The only difference between version 1 and
version 7 files is the presence of an additional header object in version 7 files. Files that contain this additional
header object can still be used on clients that render only version 1 content. While DRM version 7 offers a
higher level of security and an improved license acquisition process, it is not supported on as many players as
DRM version 1. Therefore, in some scenarios it might still be appropriate to create version 1 licenses for your
content. DRM version 7 is supported on Windows Media Player beginning with version 7.0. These licenses
therefore exclude users of Windows Media Player on the Apple Macintosh, Windows 95, and Windows NT®
4.0 operating systems from accessing protected content.

Applications enable users to obtain licenses for content protected with DRM version 1 and version 7 by
navigating to an HTTP address of a Windows Media License Service that is specified in the license acquisition
URL in the DRM header. Prior to Windows Media 9 Series, the license acquisition URLs were not protected in
any way, and were therefore vulnerable to spoofing by malicious attackers. Starting with Windows Media 9
Series, the license acquisition URL, along with the rest of the version 1 and version 7 DRM information in the
file header, is authenticated by a digital signature, and applications are notified when an unsigned or altered
header is detected. For more information on DRM version 1 and version 7, see the Windows Media Rights
Manager SDK documentation.

Note DRM version 7 has sometimes been called "DRM version 2". These two terms refer to the same
technology.

See Also

Digital Rights Management Features

Enabling DRM Support

© 2000-2003 Microsoft Corporation. All rights reserved.

Live DRM
Starting with Windows Media 9 Series, the Windows Media Format SDK can be used to write DRM-protected
files. This enables scenarios such as Live DRM, in which DRM protection is applied to a file or stream as it is
being encoded, rather than as a post-processing step after encoding has been completed. Live DRM enables
content owners to protect live broadcasts, such as pay-per-view concerts or sporting events. Live DRM also
represents a simplified or streamlined way to create protected files. You can use Live DRM to apply version 1

Previous Next

Previous Next

as well as version 7 protection. A protected file created using Live DRM is exactly the same as a file protected
as a post-processing step.

See Also

Digital Rights Management Features
Protecting Files with DRM Version 7

© 2000-2003 Microsoft Corporation. All rights reserved.

DRM Individualization
Owners of protected content may require users to upgrade some of the digital rights management (DRM)
components included in the Windows Media Format SDK before accessing their content. If a user accepts the
upgrade, an individualized version of a security file (one unique to their computer) will be downloaded from a
Microsoft Web site. If the user declines the upgrade, they will not be able to access the content; however, they
will still be able to access unprotected content and protected content that does not require the upgrade.
Performing a security upgrade helps increase the level of protection offered by DRM.

Individualization can be done either at setup time or when an application first encounters a protected ASF file
that requires it. Because this process modifies a user's system components, the application must notify the user
and obtain their informed consent before performing the upgrade. Microsoft Windows Media Player, for
example, shows a dialog box with the following text:

Security Upgrade Required

The owner of the protected content you are trying to access requires you to first upgrade some of the Microsoft
digital rights management (DRM) components on your computer.

Click OK to upgrade your DRM components.

Details:

When you click OK, a unique identifier and a DRM security file are sent to a Microsoft service on the Internet.
The file is replaced with a customized version that contains your unique identifier. This increases the level of
protection provided by DRM.

Any application that supports individualization should use the same or similar wording. For more information
on Microsoft's Privacy Policy with respect to DRM, see the Windows Media 9 Series Privacy Statement on the
Microsoft Web site.

See Also

Previous Next

Previous Next

Digital Rights Management Features
Individualizing DRM Applications

© 2000-2003 Microsoft Corporation. All rights reserved.

Backing Up and Restoring of DRM Licenses
With the Backup Restore feature, users can back up and restore licenses to the same computer or to other
computers. This feature enables users to transfer licenses to a new computer or back to the same computer (after
reformatting the hard disk, for example). In addition, users can play protected ASF files on more than one
computer.

To encourage legitimate use of a license, a fraud detection policy restricts the number of times a license can be
restored. Microsoft provides a service that tracks the number of computers to which a license has been restored;
if a limit is reached, the user cannot restore the license.

Allowing or Disallowing the Right to Back Up and Restore

The Backup Restore feature works only for licenses for which the Backup and Restore right is given. If content
owners or license issuers do not want this feature, or if they issue licenses that contain a secure state (such as
counted operations or limited time), they can disallow this right.

When a license cannot be restored because a user does not have the right, a key ID is passed to the application.
At a minimum, the user should be notified that some licenses could not be backed up, although the user does
not know which licenses this message refers to. If you know the key ID for available protected files, you can
develop a more robust solution for informing the user.

For example, a player could be developed for a record label that provides protected songs on the Internet. These
songs and their key IDs could be tracked in a database. If some licenses could not be backed up, the player
application could use the key ID to query the database for the name of the songs, then inform the user for which
songs the licenses cannot be backed up. Or, a music library could be created for each user locally, and the key
ID could be used to retrieve more information about which licenses could not be backed up.

The License Management Service

When the Backup Restore feature is implemented, a License Management Service that is hosted by Microsoft
manages the restoration of licenses.

First, users back up licenses in the application, for example, by choosing a menu option. All licenses on the
computer are backed up to a specified location, such as a floppy disk. Then, users restore licenses by using the
application, for example, by choosing a menu option and specifying their backup location.

Previous Next

Previous Next

At this point, the user must be connected to the Internet; a request from the application is sent to the License
Management Service. If the computer from which the license was backed up is different from the original
computer (or the original computer has been reformatted), the License Management Service issues a new
license to the new computer. Otherwise, the license that was previously issued to that computer is reissued.

Because the License Management Service retrieves information from the user, you must display the Microsoft
privacy policy or provide a link to that page at the Microsoft Web site.

Note When an end user restores a license to a different computer and the license requires individualization, the
end user must authorize the DRM components to be updated. You must implement a process in your player
application to support this feature.

Detecting Fraud

The user is allowed to restore a license a limited number of times. Each time a license is restored, the License
Management Service tracks it and increments the count for that license by one. When restoring a license to a
computer to which the license has been restored previously (for example, the computer from which the license
was backed up), the count is not increased. A computer is considered to be different if it has a new operating
system, or the operating system has been re-installed.

In accordance with Microsoft's fraud detection policy, when a license has been restored a certain number of
times, the application receives a URL from the DRM components and is responsible for opening a browser and
displaying the Web page, which indicates that the license agreement might have been violated. The user must
contact the license distributor, who must then determine whether the request is valid.

See Also

Digital Rights Management Features
Backing Up and Restoring Licenses

© 2000-2003 Microsoft Corporation. All rights reserved.

Viewing DRM Attributes in the Metadata Editor
The Metadata Editor exposes the IWMDRMEditor interface, which enables editing applications to examine
certain attributes of a DRM header in a protected ASF file, and attributes in the content license, if one is
present, even if the application doesn't have the DRM-specific static library (wmstubdrm.lib) that is required for
fully-enabled DRM player and writer applications.

See Also

Digital Rights Management Features

Previous Next

Previous Next

IWMDRMEditor Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Microsoft Secure Audio Path
Content creators and distributors can specify in a DRM license that an audio file is only allowed to be played on
a system with Microsoft Secure Audio Path (SAP) components. Secure Audio Path provides a much higher
degree of protection to audio content by making it virtually impossible for untrusted applications or audio
drivers to access the unencrypted audio bits. Secure Audio Path is supported on Microsoft Windows® Me and
Windows XP. It secures digital music in the operating system kernel. In addition, the Digital Millennium
Copyright Act makes circumventing antipiracy measures in software a crime.

Secure Audio Path is activated and implemented completely automatically by the Microsoft DRM component
when a DRM license requires SAP. For applications running on Windows® XP Service Pack 1, you can enable
SAP encryption to any audio content, outside the context of the Microsoft DRM solution, by using the Secure
Audio Path SDK. For more information on the Secure Audio Path SDK, see the Microsoft Web site.

See Also

Digital Rights Management Features

© 2000-2003 Microsoft Corporation. All rights reserved.

The Secure Audio Path Model

Microsoft Secure Audio Path (SAP) is a feature of Microsoft Windows® Me and Microsoft Windows XP. The
requirement that an audio file be played only through a secure audio path is specified in the DRM license and
enforced by the DRM client components. There is no extra encryption added for SAP-only files when they are
initially protected. The SAP encryption is added automatically by the DRM components at playback time, as is
the authentication process for all software components involved in playback. The workings of SAP are therefore
completely transparent to applications, and that is why there is no method or property in the Windows Media

Previous Next

Previous Next

Previous Next

Previous Next

Format SDK for enabling or disabling SAP. If desired, when creating a protected file a content owner can add a
custom header attribute called something like "DRMHeader.SAPRequired" in order to instruct a license server
to add the SAP requirement to the license. The implementation of such a scheme is up to the content owner and
the license service.

In the current DRM model, if SAP is not applied, when protected digital music is played, the encrypted content
passes to the DRM client component. The DRM client verifies that the application and the DRM component
incorporating the Windows Media Format SDK are valid. If they are valid, the DRM client decrypts the content
and sends it to the application, which then sends it to the lower-level audio components. At this point, the
decrypted music is available to user mode applications and plug-ins and kernel mode drivers that can intercept
the decrypted audio bits.

When the Secure Audio Path requirement is applied, the content is not decrypted by the application, but rather
is passed in an encrypted state to lower level components, all of which have been authenticated by Microsoft as
trustworthy. A trusted audio component is one that does not make the audio content available to any system
component except other specific trusted components. In this way, the digital content remains protected all the
way down to the driver level.

The following diagram displays the current model in comparison to the Secure Audio Path model.

© 2000-2003 Microsoft Corporation. All rights reserved.

Viewing or Modifying the Music Signal

Previous Next

Previous Next

In the Microsoft Secure Audio Path (SAP) model, applications cannot modify protected music in any way. For
example, when an application attempts to intercept a music signal, the signal sounds like random noise. As a
result, applications that normally modify signals (such as an equalizer) cannot change the sound of the music.

Some applications merely view a music signal. For example, some applications display flashing lights in time
with the music signal, but do not modify it. To accommodate applications that view signals, a small part of the
music is decrypted and passed in clear form with the encrypted content. The resulting signal is very poor (worse
than telephone quality) but can suffice for applications that view signals.

See Also

Microsoft Secure Audio Path

© 2000-2003 Microsoft Corporation. All rights reserved.

The DRM Kernel Component

In the Microsoft Secure Audio Path (SAP) model, the DRM kernel component provides two basic features that
protect the integrity of encrypted music.

First, the DRM client component and the DRM kernel component are in communication when a music file is
played. This communication between components prevents anyone from tampering with the encrypted signal or
from inserting false information.

Second, the DRM kernel component does not decrypt the music signal until all remaining components are
authenticated. That is, before decrypting content and passing it to the next system component, the DRM kernel
component checks each component that remains in the path to the sound card (each component that can access
the content) and verifies that these components are signed with a certificate from Microsoft. An unsigned
component might indicate a suspicious component or a malicious driver. So, when the DRM kernel component
validates remaining components, if any component fails this test, the signal is halted and cannot be played.
Otherwise, if all components pass validation, the DRM kernel component decrypts the music and passes it to
the next component.

Microsoft digitally signs drivers that pass the Windows® Hardware Quality Lab (WHQL) tests to assure users
that they are using the highest-quality drivers. This practice is standard and guarantees the authenticity of
components because the signature cannot be forged, nor can the code be modified without destroying the
signature. Drivers that are certified for Secure Audio Path must protect the audio data they process from access
by untrusted components. For more information about the Windows Hardware Quality Labs, see the Windows
Hardware Quality Labs page at the Microsoft Web site.

Drivers included with Windows Millennium Edition and Windows XP are updated for Secure Audio Path and
signed. Drivers that are not signed for use with Windows Me or Windows XP cannot play protected music.
Driver manufacturers can reissue updated versions of their drivers that are signed by WHQL, and publish them

Previous Next

Previous Next

on the Internet for consumers to download.

See Also

Microsoft Secure Audio Path

© 2000-2003 Microsoft Corporation. All rights reserved.

Disabling Digital Output

Another feature of Microsoft Secure Audio Path is the ability to disable digital output. Certain sound cards
provide a way to send digital output from a hardware device; these devices might be certified and will pass
authorization from the DRM kernel component. So, if a legitimate sound card has digital output enabled, people
can still capture a perfect digital recording of protected music.

This feature lets content owners or license issuers disable digital output by setting a parameter in licenses for
their music. If this parameter is set, the sound card disables its digital output capability when playing protected
music. Users can listen to decrypted music, but they cannot make copies.

See Also

Microsoft Secure Audio Path

© 2000-2003 Microsoft Corporation. All rights reserved.

Sample Applications
The sample code supplied with the SDK is in the form of projects for Microsoft Visual C++® version 6.0.

The following samples are installed by default in C:\WMSDK\WMFSDK9\samples. The samples will not work
unless the Windows Media Format SDK has been installed.

Previous Next

Previous Next

Previous Next

Previous Next

Usage information for each sample is contained in a readme.txt file in each sample directory.

Sample Description

AudioPlayer Plays Windows Media files including DRM-protected files. It is controlled
through a GUI, and commands include Play, Pause, Seek and Stop. It can
play local files or files read from the Internet (including those output to the
Internet by using the WMVNetWrite sample).

DRMHeader DRMHeader is a console application that uses the metadata editor's
IWMDRMEditor interface to read DRM attributes of files without linking
to the DRM static library.

DRMShow DRMShow is a console application that shows how to read DRM properties
of a Windows Media file using the IWMDRMReader::GetDRMProperty
method.

This sample demonstrates the use of the
IWMDRMReader::GetDRMProperty method and the properties that can
be retrieved from the DRM reader. It does not demonstrate how to acquire a
license for DRM-protected content. This sample requires the DRM stub
library wmstubdrm.lib to build.

DSCopy (DirectShow) Transcodes one or more files to an ASF file using the DirectShow® WM
ASF Writer filter. The input file may be any compressed or uncompressed
format supported by DirectShow.

DSPlay (DirectShow) This sample is an interactive audio/video media file player with DRM
support. It uses DirectShow's WM ASF Reader filter to play Windows Media
files (ASF, WMA, WMV) without DRM protection and files which use
DRM at a level of 100 or below. See readme.txt in the sample's directory for
more information.

DSSeekFm (DirectShow) This sample demonstrates how to use the DirectShow WM ASF Reader
Filter to play ASF content in a DirectShow filter graph, and also how to use
the frame seeking support in the Windows Media Format 9 Series SDK.

ManagedWMFSDKWrapper This managed assembly serves as a wrapper for accessing the functions of
this SDK from a managed code base.

Managed MetadataEdit This C# application can be used to view and edit metadata from Windows
Media files.

MetadataEdit This is a C++ version of the Managed MetadataEdit application.

ReadFromStream This console application sample shows how to read data from IStream with
WMReader. IStream source has been implemented to use a file in Windows
Media Format (WMA/WMV/ASF).

Note: This sample does not show how to process the media samples coming
out of WMReader. For examples on how to process audio/video or other
types of media samples, please refer to other samples, for instance
AudioPlayer, that are included with the Windows Media Format SDK.

UncompAVIToWMV This console application sample shows the necessary code to compress an
AVI file to a WMV file. It shows how to merge samples for audio and video

streams from several AVI files and either merge these into similar streams or
create a new stream based on the source stream profile. It also shows how to
create an arbitrary stream, do multipass encoding, add SMPTE time code,
and apply DRM version 1 protection.

WMGenProfile (exe) This sample has been updated from the 7.1 release. It is now an MFC Dialog
application. GenProfile sample demonstrates the use of the GenProfile static
library. It also serves as a tool for the creation of profiles. This tool is meant
for developers familiar with the Windows Media Format. The UI has not
been tested for user experience and is not meant as a recommendation about
how to present this information to a user.

WMGenProfile (lib) The GenProfile library sample demonstrates the creation of profiles. It shows
how to create media types and streams for various stream types (audio,
video, script, image, file transfer, and Web). It does not demonstrate how to
work with system profiles or how to convert system profiles to profiles that
specify the Windows Media Audio and Video 9 Series codecs.

WMProp This console application demonstrates how to retrieve attributes by using the
metadata editor object and profile information from the reader.

WMStats This console application displays Reader and Writer statistics. Multiple
instances of WMStats can also be used concurrently on one machine. Start
one instance as a server to send the stream to the network and then run a
second instance as a client to verify that server is streaming correctly.

WMSyncReader This console application sample shows how to read a media file using
IWMSyncReader without creating any extra thread or using callbacks. The
following features are implemented :

 Reading compressed or decompressed samples

 Time-based seeking

 Frame-based seeking

 IStream derived source

WMVAppend This console application takes two Windows Media files for input, and
attempts to create an output file with the contents of the first followed by the
second. The sample compares the profiles of the two input files to ensure
they are similar enough to be appended. If this is not the case, an error
message appears. For example, an error message occurs when one file is
audio only and the second is an audio-video file, or when two audio files
have different bit rates.

The sample accepts variable bit rate (VBR) sources. However, when
comparing the profiles of the two VBR sources, the sample ignores the
average bit rate difference because two VBR streams will have different
average bit rates even if they were created using the same profile.
WMVAppend cannot compare the peak bit rate of unconstrained bit-rate-
based VBR streams, or the quality level of quality-based VBR streams,
because this information does not exist in the source files. It is therefore the
user's responsibility to make sure that two source files are created using the

See Also

About the Windows Media Format SDK
Programming Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Overview of the ASF Format
The Advanced Systems Format (ASF) is an extensible file format designed primarily for storing and playing
synchronized digital media streams and transmitting them over networks. ASF is the container format for
Windows Media Audio and Windows Media Video-based content. The extension wma or wmv is used to
specify an ASF file that contains content encoded with the Windows Media Audio and/or Windows Media
Video codecs. The Windows Media Format SDK can be used to create and read Windows Media files, as well
as ASF files that contain other types of compressed or uncompressed data.

This section provides a general description of the ASF format as background information. Because the reader
and writer objects handle all low-level file parsing and formatting tasks, it is not necessary to have a detailed
understanding of ASF before using this SDK to create ASF files. The complete ASF specification can be found
on the Microsoft Web site.

The primary goals of the ASF format are:

To support efficient playback from media servers, HTTP servers, and local storage devices.
To support scalable media types such as audio and video.
To permit a single multimedia composition to be presented over a wide range of bandwidths.
To allow authoring control over media stream relationships, especially in constrained-bandwidth

same profile. Otherwise, invalid content can be created.

WMVCopy This sample shows the code necessary to copy a WMV file. It shows how to
read and write compressed samples, read header attributes and scripts, and
modify header attributes.

WMVNetWrite This console application shows how a Windows Media file is streamed
across the Internet. The sample requires a port to be specified, and then the
file can be played using a player.

WMVRecompress This console application shows how to recompress a WMV file. It
demonstrates reading uncompressed samples, writing uncompressed samples,
and doing multi-pass encoding, multi-channel output, and smart
recompression.

Previous Next

Previous Next

scenarios.
To be independent of any particular multimedia composition system, computer operating system, or data
communications protocol.

An ASF file can contain multiple independent or dependent streams, including multiple audio streams for
multichannel audio, or multiple bit rate video streams suitable for transmission over different bandwidths. The
streams can be in any compressed or uncompressed format; however, the best compression is achieved with the
Microsoft Windows Media Audio and Video 9 Series codecs. In addition to the standard audio and video media
stream types, an ASF file can also contain text streams, Web pages and script commands, and any other
arbitrary data type. ASF supports live and on-demand multimedia content. It can be used as a vehicle to record
or play back H.32X (for example, H.323 and H.324) or MBONE conferences.

An ASF file is organized into sections called "objects." There are three top-level objects, a Header object and a
Data object (both required), plus an optional Index object. The Header object contains general information
about the file, such as file size, number of streams, error correction methods, and codecs used. Metadata is also
stored here. The Header object is the only top level object that can contain other objects. The Data object
contains the stream data, organized in packets. The Simple Index object contains a list of associated timestamp–
key frame pairs that enables applications to seek through a file efficiently.

Each top-level or lower-level object begins with a globally unique identifier (GUID) and a size value. These
numbers allow the file reader to parse the information at appropriate places into identifiable objects. Because of
these GUIDs, lower-level objects can be sent in any order and still be recognized. The ASF format is designed
to overcome inaccurate data reception. A partially downloaded ASF file can still be read, as long as it contains
the Header object and at least one Data object.

The following diagram shows the objects that make up an ASF file. Shaded objects are optional. Certain
objects, such as the Stream Properties object, can have multiple instances.

The following topics explain the objects in an ASF file in more detail:

The Header Object
The Data Object
The Index Objects

See Also

About the Windows Media Format SDK

© 2000-2003 Microsoft Corporation. All rights reserved.

The Header Object
The Header object is the first object in an ASF file; it contains information about the contents of the file. It is
the only top-level object that can contain other objects. The following table shows the objects that can or must
be included in the Header object.

Previous Next

Previous Next

Object Description

File Properties Object Holds general information about the ASF file, including a unique file ID,
size, number of packets, number of streams, creation date, play duration,
and data packet size. The file ID should be changed each time a file is
modified. This object is mandatory,

Stream Properties Object Gives stream-specific information, such as its stream number, stream
type, error correction type used, and encoding information such as the
codec ID and encoding details. One Stream Properties object is required
per stream.

Stream Bitrate Properties Object Defines the average bit rate of each media stream in the file. Optional.

Codec List Object Holds human-readable codec information, such as a codec's name and
description. Optional.

Script Command Object Stores a list of strings with corresponding time stamps specifying when
associated content should be presented. A string may be a file name, a
URL, a script command, or a user-defined type. These strings can be
used to cause the hosting application to jump to a Web page, execute a
script command, launch a file, or take some other action. Optional.

Marker Object Contains time stamp–string pairs that specify human-readable jump
locations within a file. These pairs can be used to provide topic labels in
a long lecture, or song titles in a music stream. Optional.

Bitrate Mutual Exclusion Object Identifies a list of mutually exclusive, same-medium streams. This could

Extended Header Objects

The following table lists the standard extended header objects defined by the specification. These objects are all
optional and follow the header extension object in the file. Non-standard objects of this type may also be
defined.

be used to enforce a different video stream for different bandwidths.
Optional.

Content Description Object Stores human-readable information about the content, including title,
author, copyright, description, and rating. Optional.

Extended Content Description
Object

Holds any additional file information that was not provided for in the
Content Description object. Optional.

Content Encryption Object Stores DRM version 1 information. Optional.

Extended Content Encryption
Object

Stores DRM version 7 information. Optional.

Digital Signature Object Stores information that enables authors to sign the portion of the Header
object from the end of the File Properties object to the beginning of the
Digital Signature Object. Optional.

Content Branding Object Permits authors to brand their content using a banner ad image and
associated URLs. Optional.

Error Correction Object Defines the error correction method used. Optional.

Padding Object Dummy object that is used to pad out the size of the Header Object. This
object allows for growing/shrinking the size of any object stored in the
Header Object without having to rewrite the entire ASF file, but only the
Header Object itself. Optional.

Header Extension Object Provides a slot for extended header objects to be included in an ASF file,
while allowing the file to remain backward compatible. Optional.

Extended header object Description

Extended Stream Properties Object Defines additional properties and characteristics of a
media stream that are not described in the Stream
Properties Object.

Stream Prioritization Object Indicates the author's intentions as to which streams
should or should not be dropped in response to
varying network congestion situations.

Advanced Mutual Exclusion Object Identifies streams that have a mutual exclusion
relationship to each other (in other words, only one of
the streams within such a relationship can be
streamed – the rest are ignored). There should be one
instance of this object for each set of objects that
contain a mutual exclusion relationship.

Group Mutual Exclusion Object Describes groups of streams that have mutual
exclusion relationships.

See Also

Overview of the ASF Format

© 2000-2003 Microsoft Corporation. All rights reserved.

The Data Object
The Data object in an ASF file holds the media data streams, divided into packets. In addition to the data
packets, the top level Data object contains the file ID and a packet count. In a streamed file, the packet count is

Index Parameters Object Supplies information about those streams that are
actually indexed (there must be at least one stream in
an index) by the Index Object and how they are being
indexed.

Media Object Index Parameters Object Supplies a sufficient amount of information to
regenerate the Media Object index for an ASF file,
should the original index be omitted or deleted.

SMPTE Index parameters Object Supplies a sufficient amount of information to
regenerate the SMPTE index for an ASF file should
the original index be omitted or deleted.

Language List Object Contains an array of Unicode-based language IDs.
All other header objects refer to languages through
zero-based positions into this array.

Bandwidth Sharing Object Indicates streams that share bandwidth, so that the
maximum bandwidth of the set of streams is less than
the sum of the maximum bandwidths of the
individual streams. There should be one instance of
this object for each set of objects that share
bandwidth.

Metadata Object Enables authors to store stream-based metadata in a
file.

Metadata Library Object Enables authors to store stream-based, language-
attributed, multiply-defined, and large metadata
attributes.

Compatibility Object Enables the author of the content to specify the
compatibility profile and mode.

Previous Next

Previous Next

not a meaningful value.

Each data packet contains its send time as well as its send-time duration. This allows the reader to discover gaps
in the transmission stream.

A packet contains data encapsulated into payloads. A payload contains one or more media objects. An example
of a media object is a frame in a video stream. With large objects, such as key frames or audio data (which can
be divided into more or less arbitrary segments), the payload contains a single object and is called a simple
payload. Often, with large objects, a single media sample will span multiple payloads. With smaller payloads,
such as delta video frames, several objects can be packed into a single payload. This is called a compressed
payload. Compressed payloads must be smaller than 256 bytes while uncompressed payloads may be any size
as long as they can fit in the maximum packet size of 64 kilobytes. A packet can contain several payloads
(called subpayloads) from one or more streams. Thus, packets are designated as single-payload or multiple-
payload, compressed or uncompressed.

Particularly large objects, typically key frames, can be divided and sent across several payloads, or even across
packets. To keep track of which fragments go together, objects are assigned a number that cycles from 0 to 255.
Each fragment of an object is given an offset value that indicates how far into the object it fits. Thus, the first
fragment of a divided object has an offset value of 0, and each succeeding fragment has some larger number.

In addition to data, payloads include presentation time stamps in milliseconds. A time stamp indicates when a
frame should be rendered, or when the first audio sample should be played. The player uses presentation time
stamps to determine decoding order and to synchronize audio and video streams.

All packets are a uniform size, specified in the Header object. When a packet contains less data than the
designated size, additional meaningless "padding" data is added to expand it to the proper size.

The following diagram shows the two possible constructions of a data packet. The opaque data structure is used
only for backward compatibility. As with the Header object, some of the components of a data packet are
optional. Optional objects are shaded in the diagram.

A data packet contains the following components:

Error correction data

This component contains the error correction data for the packet, using the error correction method specified in
the Header object.

Payload parsing information

This component specifies the packet length, the amount of padding added to expand the packet to the proper
size, the packet's send time, a multiple-payload flag, a compressed data flag, and the send time duration of the
packet.

Payload data

This component contains the media data, as well as its stream number, media object number (for example,
frame number in a video stream), offset value into the media object (if the packet contains an internal or ending
portion of a media object), presentation time, and compressed data length (if compressed).

See Also

Overview of the ASF Format

© 2000-2003 Microsoft Corporation. All rights reserved.

The Index Objects
The ASF specification defines four top-level Index objects. Because an index is the last object transmitted in an
ASF file, applications viewing live streamed media cannot depend on access to these objects.

Previous Next

Previous Next

Index object Description

Simple Index Object For each video stream in a file, the application should create one
Simple Index object. This object contains a list of packet numbers,
created at regular presentation intervals. Because the packets are
indexed at consistent intervals, an application can calculate which
packet holds a frame for a particular presentation time. For video types
that use key frames (for example, MPEG-2), a packet listed in the index
is one containing the last complete key frame or the last piece of a
fragmented key frame. Although it is not required for seeking in a
stream, an index allows more efficient seeking.

ASF Top-Level Index Object Supplies the necessary indexing information for an ASF file that
contains more than just a script, audio, and video data. It includes
stream-specific indexing information based on an adjustable index-
entry time interval.

ASF Top-Level Media Index
Object

Supplies media object indexing information for the streams of an ASF
file. It includes stream-specific indexing information based on an
adjustable index-entry media-object count interval. This object can be
used to index all the video frames or key frames into a video stream.

ASF Top-Level SMPTE Index
Object

Supplies SMPTE indexing information for the streams of an ASF file.

See Also

Overview of the ASF Format

© 2000-2003 Microsoft Corporation. All rights reserved.

For More Information
For features, articles, and answers to frequently asked questions on streaming media in general and the
Windows Media SDKs in particular, see the Windows Media Developer Center at the Microsoft Web site.

For more information about obtaining a license for the Windows Media Format SDK, see the Windows Media
Licensing page at the Microsoft Web site.

For more information about newsgroups, visit the Windows Media Newsgroups and E-mail Aliases page at the
Microsoft Web site.

See Also

About the Windows Media Format SDK

© 2000-2003 Microsoft Corporation. All rights reserved.

Programming Guide
The Programming Guide is intended to help you learn how to use the Microsoft® Windows Media® Format
Software Development Kit (SDK) to build applications that work with files using the Advanced Systems
Format (ASF).

You can use the Windows Media Format SDK to create applications that write digital media streams to and read
streams from ASF files. This SDK also supports the editing of metadata in ASF files. In addition, this SDK can

Previous Next

Previous Next

Previous Next

Previous Next

be used to read and manipulate metadata in MP3 files.

The following sections explain in detail the steps required to write, read, and edit ASF files by using this SDK.

See Also

About the Windows Media Format SDK
Windows Media Format 9 Series SDK

© 2000-2003 Microsoft Corporation. All rights reserved.

Section Description

Getting Started Provides general information about getting ready to use this
SDK.

Using the Callback Methods Describes the callback methods used in many different tasks.

Working with Profiles Describes how to use, edit, and create profiles.

Writing ASF Files Describes how to use the writer object to create ASF files.

Reading ASF Files Describes how to receive content from ASF files.

Working with Metadata Describes how to manage the contents of the header section of
an ASF file.

Working with Indexes Describes how to work with indexes.

Working with Profiles Describes how to use, edit, and create profiles.

Using Script Commands Describes how to use script commands in your ASF files.

Copying Data from One File to Another Describes how to copy data from one ASF file to another, with
without decoding and encoding.

Enabling DRM Support Describes how to enable support for playback of DRM-
protected ASF files.

Implementing Network Functionality Describes the use of this SDK to perform the network
operations that are essential to successful streaming media.

Advanced Topics Describes how to use some of the advanced features of this
SDK in your applications.

DirectShow and Windows Media Describes how you can use DirectShow® to create and read
ASF files.

Project Considerations Provides details about finishing and distributing your
applications.

Previous Next

Getting Started
The following sections list the settings and issues that should be taken into account before developing
applications with this SDK.

See Also

Programming Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

SDK Library Files and Compiler Settings
To develop an application by using the Windows Media Format SDK, you must use Microsoft® Visual C++®
version 6.0 or later. The only programming languages appropriate for development are C++ and C.

Several header files are included with this SDK, and are installed in C:\WMSDK\WMFSDK9\include. The
contents of the various header files are described in the following table.

Previous Next

Section Description

SDK Library Files and Compiler Settings Describes the development environment required to
develop applications with this SDK and lists the
libraries to include.

Using the Code Examples Describes the conventions of the code examples
included in this guide.

Previous Next

Previous Next

Header file Description

asferr.h Defines error codes relating to ASF file operations. This header is
included in wmsdk.h.

drmexternals.h Defines structures, enumerations, and constants used for digital
rights management (DRM). Include this header when writing an

To use the Windows Media Format SDK, your compiler must be properly configured. The configuration is
different for building in debug mode than for release mode. Configure your setting according to the following
table. All these setting are configured in the Project Settings dialog box. To get to the dialog box, select
Settings from the Project menu.

application that uses DRM.

dshowasf.h Defines the Microsoft DirectShow QASF filters. Include this header
when writing a DirectShow application that creates or reads ASF
files. For more information, see DirectShow and Windows Media.

nserror.h Defines error codes for Windows Media Technologies. Only a
subset of these error codes are relevant to the Windows Media
Format SDK. This header is included in wmsdk.h.

wmdxva.h Includes other headers and definitions needed to enable Microsoft
DirectX® Video Acceleration for playback of Windows Media–
based content. For more information, see Enabling DirectX Video
Acceleration.

wmnetsourcecreator.h Contains information needed to create network source plug-ins.

wmsbuffer.h Defines the interfaces used by buffer objects. Include this header
when creating your own buffers for file reading.

wmsdk.h The main header for applications using the Windows Media Format
SDK. This header contains no definitions, but includes asferr.h,
nserror.h, windows.h, and wmsdkidl.h. Include this header for all
applications using this SDK.

wmsdkidl.h Defines the interfaces, functions, structures, enumerations, and
constants for most of the objects of the Windows Media Format
SDK. This header is included in wmsdk.h.

wmsdkvalidate.h Defines helper functions for validating files as readable by the
objects of the Windows Media Format SDK.

wmsinternaladminnetsource.h Defines the interfaces of network source plug-ins.

wmsysprf.h Defines the constants for the system profiles. Include this header in
applications that load system profiles by identifier.

Setting Debug value Release value

(C/C++ tab, Category = Code
Generation) Use run-time
library

Debug Multithreaded DLL Multithreaded DLL

(Link tab, Category = General)
Ignore all default libraries
(check box)

Selected Selected

(Link tab, Category = General)
Object/library modules

Include Msvcrtd.lib and
Wmvcore.lib.

Do not include Libc.lib or any

Include Msvcrt.lib and
Wmvcore.lib.

Do not include Libc.lib or any

If you are using Microsoft Visual Studio® .NET, the settings have been changed to different locations, as
shown in the following table. All of these settings are configured in the Property Pages dialog box. To get to
the dialog box, right-click on your project in the Solution Explorer pane and select Properties from the
context menu.

Additionally, you need to include the directories for the libraries and headers of the Windows Media Format
SDK. To find the directory settings for Visual C++ 6.0, on the Tools menu, click Options, and then click the
Directories tab. When using Visual C++ .NET, click Options on the Tools menu, and then select Projects /
VC++ Directories in the options list. Add directories as shown in the following table. If you changed the
installation directory for the Windows Media Format SDK, your path will be different.

Before calling any of the creation functions, COM should be initialized with a call to Coinitialize or
CoinitializeEx. Either the free threading model or the apartment threading model can be used, but the
apartment threading model imposes threading restrictions on the application. For more information on the
Microsoft Component Object Model (COM), see the COM page at the Microsoft Web site.

Note Applications that play or create files protected by Digital Rights Management (DRM) require an
individualized static library that must be obtained separately from Microsoft. For more information, see the
Windows Media Licensing Form at the Microsoft Web site. If you use the DRM library, you should not link to
Wmvcore.lib.

See Also

Getting Started

variation. variation.

Setting Debug Value Release value

(Configuration Properties /
C/C++ / Code Generation)
Runtime Library

Multi-threaded Debug DLL
(/MDd)

Multi-threaded DLL (/MD)

(Configuration Properties /
Linker / Input) Additional
Dependencies

Include Msvcrtd.lib and
Wmvcore.lib.

Do not include Libc.lib or any
variation.

Include Msvcrt.lib and
Wmvcore.lib.

Do not include Libc.lib or any
variation.

(Configuration Properties /
Linker / Input) Ignore All
Default Libraries

Yes (/NODEFAULTLIB) Yes (/NODEFAULTLIB)

Directory type Default path

Include files C:\WMSDK\WMFSDK9\include

Library files C:\WMSDK\WMFSDK9\lib

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Using the Code Examples
Many of the explanatory sections of this SDK include code examples. The examples are written to be as clear
and concise as possible. When reading the examples, you should be aware of the following conventions.

All examples are assumed to include windows.h and wmsdk.h. Any other required header files are
mentioned in the explanatory text.
Error checking has been restricted to breaking out of the function if an error occurs. In an application, you
should check for specific error codes and provide some kind of error reporting.

When checking return values from methods or functions that return an HRESULT value, you should use
the FAILED macro to discover whether the return value indicates failure.

HRESULT hr;
hr = SomeFunction();
if (FAILED(hr))
{
 // Check for specific error values.
}

Many of the examples in this documentation use a macro named GOTO_EXIT_IF_FAILED, which is
defined in the following code.

#ifndef GOTO_EXIT_IF_FAILED
#define GOTO_EXIT_IF_FAILED(hr) if(FAILED(hr)) goto Exit;
#endif

These example functions each have a tag named "Exit:", after which all interfaces and memory allocated
in the function are released and the error code, if any, is returned.

Interfaces and memory are released in the code examples using macros named SAFE_RELEASE and
SAFE_ARRAY_DELETE. These macros are defined in the following code:

#ifndef SAFE_RELEASE
#define SAFE_RELEASE(x) \
 if(x != NULL) \
 { \
 x->Release(); \
 x = NULL; \
 }
#endif

#ifndef SAFE_ARRAY_DELETE
#define SAFE_ARRAY_DELETE(x) \
 if(x != NULL) \
 { \

Previous Next

 delete[] x; \
 x = NULL; \
 }
#endif

Often, you will need to include the logic of one example in another example for the example to be
meaningful. In those instances, a TODO comment is included, with a reference to the appropriate code
example.
To make the code easier to read, none of the example functions in this documentation validate their input
parameters. If you copy any of these functions into your code, you should validate any input parameters.

See Also

Getting Started

© 2000-2003 Microsoft Corporation. All rights reserved.

Using the Callback Methods
Several interfaces in the Windows Media Format SDK contain methods that are called asynchronously. Most of
these methods use callback functions to pass information to the controlling application.

The following sections describe some of the general issues regarding the use of callback methods with the
Windows Media Format SDK.

See Also

Programming Guide

Previous Next

Previous Next

Section Description

Using the OnStatus Callback Describes how to implement the
IWMStatusCallback::OnStatus callback method,
which is used by several objects to advise
applications of SDK operation progress.

Using Events with Asynchronous Calls Describes a common technique to handle
asynchronous method calls in an application.

Using the Context Parameter Introduces the pvContext parameter, shared by several
callbacks and their calling methods, and explains how
to use it.

© 2000-2003 Microsoft Corporation. All rights reserved.

Using the OnStatus Callback
The IWMStatusCallback::OnStatus callback method is called by several objects in the Windows Media
Format SDK. OnStatus receives messages that represent changes in the status of SDK operations.

To use the OnStatus callback method, you must implement a class in your application that inherits from the
IWMStatusCallback interface. Include code for your version of OnStatus in the class. Several examples of
OnStatus implementations can be found in the samples included with this SDK. For more information about
the samples, see Sample Applications.

You must associate your implementation of the status callback with various objects of the Windows Media
Format SDK. Each object has a different way of making this association. For a list of the methods that associate
specific objects, see the IWMStatusCallback reference page.

The status messages that can be received by OnStatus are defined in the WMT_STATUS enumeration type.

You can choose which messages to trap and which to ignore. However, responding to some status messages is
required for certain features. For example, when using the asynchronous reader, the IWMReader::Open
method opens a file asynchronously. The only way to tell when the file has been opened is to trap the
MWT_OPENED message. Typically, the messages you respond to are notifications of the completion of
asynchronous tasks.

See Also

Using the Callback Methods

© 2000-2003 Microsoft Corporation. All rights reserved.

Using Events with Asynchronous Calls

Previous Next

Previous Next

Previous Next

Previous Next

Frequently, when using methods that are called asynchronously, you will want to halt further processing of your
application until after the method completes processing. You can implement any technique you like to handle
this situation. This section describes using an event to wait for asynchronous calls in the calling thread. This
technique is frequently used with the Windows Media Format SDK, and is demonstrated in some of the sample
applications.

The following list summarizes the use of events to wait for asynchronous calls.

1. Create an event for use with your application by calling the CreateEvent function of the Platform SDK.
2. When implementing the appropriate callbacks for your application, trap the messages for which you need

to wait. In the message handling logic for the desired messages, signal the event by calling the SetEvent
function of the Platform SDK.

3. After calls to asynchronous events are made in your application, wait for the event to signal by calling the
WaitForSingleObject function of the Platform SDK. If you are designing a Windows application, you
should create a loop to check for Windows messages and include a call to WaitForSingleObject in the
loop with a short wait time.

See Also

Using the Callback Methods

© 2000-2003 Microsoft Corporation. All rights reserved.

Using the Context Parameter
Some of the callbacks used by the Windows Media Format SDK take a parameter called pvContext. The calling
objects pass along the value you specify in the method that began the asynchronous action. For example, when
you call IWMReader::Open, you can pass a value for pvContext. When the IWMStatusCallback::OnStatus
method is called by the reader object to notify your application that the file has been opened, it will pass
whatever value you used in your call to Open as the pvContext parameter of OnStatus. This context parameter
is provided for your use and you can use it in any way you like.

The pvContext parameter is most often used when multiple objects need to share the same callback. For
example, several objects use the IWMStatusCallback::OnStatus method. You can use pvContext to enable the
different objects to share one implementation of OnStatus by passing a different value for pvContext on your
original call. In your implementation of OnStatus, you can branch the message handling logic based on the
value of pvContext.

See Also

Using the Callback Methods

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Working with Profiles
This section describes how to design, create, and modify profiles. Each profile describes the streams that will
make up a file and their relationships with each other. A profile object contains stream configuration
information for each stream, mutual exclusion information for streams that cannot be delivered simultaneously,
bandwidth sharing information, and stream prioritization information.

The main purpose of profiles is to provide stream configuration information to the writer object. The writer uses
the information in a profile to coordinate with the codecs the process of compressing inputs. When you
configure a compressed media stream, you specify the codec used to compress the data and the settings the
codec uses. You can also create profiles for uncompressed streams. Several uncompressed stream types are
supported. Even though they do not require a codec, these types have their own requirements for stream
configuration. For more information, see Configuring Streams and Using Uncompressed Audio and Video
Streams.

Stream configuration information for a stream using one of the Windows Media codecs must be obtained from
the codec by using the methods of the IWMCodecInfo3 interface. The procedure for using stream formats is
different for video codecs than it is for audio codecs, but in both cases you must begin by obtaining the format
from the codec. You should never try to manually configure a stream using one of the Windows Media codecs,
because small errors in the profile can have a profound effect on the ASF file.

The basic steps in creating and/or modifying profiles are:

1. Create an empty profile, or load an existing profile to edit.
2. Configure each of the streams, if required, based on supported profile data retrieved from the codec that

will be used to encode the stream.
3. Configure mutual exclusion, if needed.
4. Configure bandwidth sharing, if needed.
5. Set the priority of the streams in the file, if required.

The following sections explain the process of creating and editing profiles.

Previous Next

Previous Next

Section Description

Designing Profiles Describes how to design a profile.

Creating Profiles Describes how to create an empty profile.

Configuring Streams Describes how to configure streams and include them
in a profile.

Note Users of previous versions of the Windows Media Format SDK may be accustomed to using system
profiles without modification to create their files. The Windows Media Format 9 Series SDK does not include
any system profiles that use the Windows Media 9 Series codecs. This is because of the increasing number of
profiles that would be needed to cover the various features now offered by the codecs. You can still use the
version 8 system profiles as a starting place for your profiles. For more information see Using System Profiles.
For information about the new mechanism for targeting profiles to specific delivery devices, see Working with
Device Conformance Templates.

See Also

ASF File Features
Programming Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

Designing Profiles
The implementation of a profile is not very difficult, but it is often hard to decide what settings best suit your
needs. The profiles you use will directly affect the playback experience of your users.

The following sections discuss the factors involved in designing profiles.

Using Mutual Exclusion Describes how to create mutual exclusion objects and
include them in a profile.

Using Bandwidth Sharing Describes how to use bandwidth sharing in a profile.

Using Stream Prioritization Describes how to use stream prioritization in a
profile.

Saving Profiles Describes how to save your custom profiles to a file.

Using System Profiles Describes how to work with system profiles to save
time and effort in creating profiles.

Managing Packet Size Discusses how to control the size of packets in the
data streams of files made using your profile.

Previous Next

Previous Next

Section Description

Selecting Profile Features Discusses the various profile features and when to use
them.

See Also

Working with Profiles

© 2000-2003 Microsoft Corporation. All rights reserved.

Selecting Profile Features
The following table lists the profile features and describes when you would or would not want to use them.

Choosing an Encoding Method Discusses the encoding methods available using the
Windows Media Audio and Video 9 Series codecs,
and when to use them.

Selecting Bit Rates Discusses the process of selecting the right bit rates
for the streams in your profile.

Working with Device Conformance Templates Discusses the new device conformance templates, and
how to use them to tailor content for your target
audience.

Previous Next

Previous Next

Feature When to use When not to use

Mutual exclusion by bit rate
(MBR)

The file will be streamed to an
audience with connection speeds
that vary from user to user (for
example, files delivered over the
Internet).

The file will not be streamed over a
network.

The file will be streamed over a network
with a consistently reliable available
bandwidth (for example, files delivered
over a corporate local area network).

Mutual exclusion by
language

The file contains streams that
duplicate the same data in different
languages. (For example, a movie
dubbed in several languages would
have the soundtrack encoded as
mutually exclusive streams.)

The file contains only streams in a single
language.

If the file contains only streams that must
be changed for individual languages, it
may be simpler to create a new file for
each language (for example, for a
training film with lots of text in the video
stream).

Mutual exclusion by You want to provide video in more There is only one version of each video

It is also important to consider the codec features that you want to use with your file when creating a profile.
For more information see Codec Features.

See Also

ASF File Features
Designing Profiles

© 2000-2003 Microsoft Corporation. All rights reserved.

Choosing an Encoding Method
Some codecs, like the Windows Media Video 9 codec, support multiple encoding methods. The encoding
method that you choose for a stream will depend upon how the stream is to be delivered. The following table
describes when to use the various encoding methods.

presentation than one aspect ratio. For example,
a file might contain the same video
formatted for television and for the
original theatrical wide-screen
format.

stream.

Bandwidth sharing The file will be streamed and has
two or more streams that, when
combined, use less available
bandwidth than the bit rate values
of both streams added together.
Because the bit rate of a stream is
essentially the maximum required
bandwidth for the stream, some
streams may have some periods of
lower data transfer.

The file will not be streamed over a
network.

All streams have consistent bit rates.

Stream prioritization The file will be streamed and some
streams are more important than
others.

The file will not be streamed over a
network.

All streams are of equal importance.

Data Unit Extensions There is important information
related to the samples in a stream
that must be kept with the samples.

The file is intended for delivery through
a restricted bandwidth. In this case, data
unit extensions may use too much
overhead.

Previous Next

Previous Next

The following table lists the encoding methods that are supported by the codecs that ship with the Windows
Media Format SDK.

See Also

Designing Profiles
Constant Bit Rate (CBR) Encoding
Two-Pass Encoding
Variable Bit Rate (VBR) Encoding

© 2000-2003 Microsoft Corporation. All rights reserved.

Encoding method Description

1-pass Constant Bit Rate (CBR) The only option for live streaming. Encodes to a predictable bit
rate and delivers the lowest quality of all encoding methods.

2-pass CBR Use for files that will be streamed over a network to a client
reader, but that are not broadcast from a live source. Encodes to
a predictable bit rate, but with better quality than 1-pass CBR.

1-pass Variable Bit Rate (VBR) Use when you need to specify the quality of the encoded output.
Delivers the most consistent quality of all encoding methods.
Use only for local files or for downloading.

2-pass VBR – unconstrained Use when you need to specify a bandwidth, but fluctuations
around the specified bandwidth are acceptable. For local files or
downloading only.

2-pass VBR – constrained Use under the same circumstances as unconstrained, but when
you need to specify a maximum momentary bit rate. For local
files or downloading only.

Codec CBR 2-pass
CBR

VBR 2-pass
VBR

Windows Media Video 9 X X X X

Windows Media Audio 9 X X X X

Windows Media Video 9 Screen X X

Windows Media Audio 9 Voice X

Windows Media Audio 9 Professional X X X X

Windows Media Audio 9 Lossless X

Windows Media Video 9 Image X X

Previous Next

Selecting Bit Rates
For files that will be streamed over a network, you must consider carefully what bit rates you should use. Under
most circumstances you can add the bit rates of all of the streams in a file together to get a general idea of the
available bandwidth required to stream the file. However, a certain amount of overhead is also required for each
stream. This overhead is summarized in the following table.

The normal overhead required for a stream does not take data unit extensions into account. Every data unit
extension adds to the size of the sample to which it is attached. Depending upon the type of data unit extension,
this can greatly increase the bit rate for the stream.

You must also consider that the theoretical maximum bandwidth available over a network connection is not a
practical target bit rate. The average available bandwidth for any given connection falls well short of the
bandwidth capacity of the connection, because of network traffic and many other factors.

See Also

Designing Profiles

© 2000-2003 Microsoft Corporation. All rights reserved.

Working with Device Conformance Templates

Previous Next

Bit-rate range (Kbps) Additional bandwidth required for overhead (Kbps)

10 – 16 3

17 – 30 4

31 – 45 5

46 – 70 6

71 – 225 7

>225 9

Previous Next

Previous Next

Because of the great flexibility of ASF files, it is often difficult to determine whether a file is appropriate for
playback on a specific device. For example, files written for local playback on desktop computers are not
optimal for use on handheld devices. Device conformance templates enable applications to quickly identify the
type of playback device for which a file was intended. If the device conformance template does not match the
device, the application can inform the user that the file is inappropriate for the device. In this way, the user can
be assured of a better playback experience.

If you are writing files exclusively for use on personal computers, device conformance templates will not be as
much of a factor in creating profiles. The main purpose of these templates is to ensure that files created for use
with special hardware are compatible with a whole range of devices and not just a single device.

A device conformance template is an assertion that an ASF file contains data encoded within certain
parameters. For more information about the settings appropriate to the individual templates, see Device
Conformance Template Parameters.

The following codecs support device conformance templates:

Windows Media Video 9
Windows Media Audio 9
Windows Media Audio 9 Professional
Windows Media Audio 9 Voice

You do not need to take any special steps to use device conformance templates. The codec automatically writes
a template string for each appropriate stream in the file. The codec will decide which template to use, based on
the stream configuration settings in the profile. There is some overlap in device conformance template
parameters, so you may want to request a specific template instead of letting the codec assign one for you. You
can specify which template you want by setting the g_wszDecoderComplexityRequested property with the
methods of the IWMPropertyVault interface of the appropriate stream configuration object.

When an ASF file is written, the actual device conformance template for each stream is set to the value passed
to the writer by the codec. When opening a file for reading, you can find out which template the streams of the
file conform to by using the methods of the IWMHeaderInfo3 interface to retrieve the
g_wszDeviceConformanceTemplate stream-level attribute. For more information about attributes, see Working
with Metadata.

See Also

Designing Profiles
Device Conformance Template Parameters

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Creating Profiles
In many cases, you will want to create an empty profile to configure for your needs. In other cases it is easier to
edit an existing profile, like a system profile. For more information about using system profiles, see Using
System Profiles.

Creating an empty profile, ready for you to configure, requires a profile manager object. To get the
IWMProfileManager interface of a profile manager object, call the WMCreateProfileManager function.

To create an empty profile, call IWMProfileManager::CreateEmptyProfile. When you create an empty
profile, the only thing you specify is the version of the Windows Media Format SDK with which the profile
complies. Unless you have a specific need to use a previous version, you should always use the latest version.
The version dictates the structure of the profile; previous versions did not support some properties.

The following example code shows how to create a new profile. To compile this code in your application,
include stdio.h. For more information about using this code, see Using the Code Examples.

HRESULT CreateProfile(IWMProfileManager* pProfileMgr, IWMProfile** ppProfile)
{
 HRESULT hr = S_OK;

 // Create the empty profile.
 hr = pProfileMgr->CreateEmptyProfile(WMT_VER_9_0, ppProfile);
 if(FAILED(hr))
 {
 printf("Could not create the profile.\n");
 return hr;
 }

 return S_OK;
}

See Also

IWMProfile Interface
IWMProfileManager Interface
Working with Profiles

© 2000-2003 Microsoft Corporation. All rights reserved.

Configuring Streams
The only thing that is required in a profile is at least one stream. The other options provide access to more

Previous Next

Previous Next

advanced features, but with the minimum of one stream you can make an ASF file. It is essential that you
understand how to configure streams before creating complex profiles.

For the purpose of profiles, streams can be divided into two types: those that are compressed with Windows
Media codecs and arbitrary streams that are not processed with any codecs. Audio streams and video streams
are the types that use the Windows Media codecs. Of course, streams can contain audio or video compressed
with a third-party codec, but the process of configuring such a stream is a special case. For more information,
see To Create ASF Files Using Third-Party Codecs.

The following list summarizes the process of configuring a stream.

1. Obtain a stream configuration object for the stream.
If you are creating a stream using one of the Windows Media codecs, you must obtain the stream
configuration object as a codec format using the methods of IWMCodecInfo3.
If the stream is an arbitrary type, get an empty stream configuration object using
IWMProfile::CreateNewStream.

2. Configure the stream to meet your needs.
Streams of all types should be assigned a name, connection name, and stream number.
Streams using Windows Media codecs should be altered only in predefined ways from the codec
format. For audio streams, only variable bit rate (VBR) settings for two-pass VBR should be
changed. Video streams need to be configured with the desired frame properties.
Arbitrary streams have varying configuration requirements by type. All require a bit rate and buffer
window.

3. Add the stream to the profile by calling IWMProfile::AddStream.

All streams are defined using stream configuration objects. The main interface for a stream configuration object
is IWMStreamConfig, which provides methods for setting the basic settings of a stream, such as the stream
number, bit rate, and so on. IWMStreamConfig is inherited by the newer interfaces, IWMStreamConfig2 and
IWMStreamConfig3. As with all numbered interface revisions, you should always retrieve the most recent
version using the QueryInterface method.

Most settings in a stream are accessed through IWMMediaProps. These settings are encapsulated in a
WM_MEDIA_TYPE structure. For audio and video, the WM_MEDIA_TYPE structure points to another
structure with further information specific to the type of media. This secondary structure is typically
WAVEFORMATEX for audio and WMVIDEOINFOHEADER for video. In addition, video streams have a
tertiary structure, BITMAPINFOHEADER, which describes the characteristics of an individual frame of
video. BITMAPINFOHEADER is a common structure and can be found in the Graphics Device Interface
(GDI) section of the Platform SDK.

The following sections describe how to configure streams.

Section Description

Configuration Common to All Streams Describes the basic stream configuration common to
all types of streams.

Getting Stream Configuration Information from
Codecs

Describes how to get stream configuration
information from the codecs to ensure proper
configuration of streams using the Windows Media
Audio and Video 9 Series codecs.

Configuring Audio Streams Describes how to configure audio streams.

Configuring Video Streams Describes how to configure video streams.

See Also

Inputs, Streams and Outputs
Working with Profiles

© 2000-2003 Microsoft Corporation. All rights reserved.

Configuration Common to All Streams
All streams, regardless of type, should be assigned a stream name, a connection name, and a stream number.

The stream name is simply a descriptive name you assign to the stream. A stream does not need to have a
stream name, but it helps you to identify the stream when editing the profile at a later time. You can set a name
for the stream by calling IWMStreamConfig::SetStreamName.

Every stream should have a connection name, also called an input name. When you set the profile in the writer
object to write a file, the writer will associate each connection name with an input. To identify the inputs, you
must call IWMInputMediaProps::GetConnectionName to retrieve the connection name. Typical connection
names are simple descriptions of the content, such as "audio". If your profile contains streams that are mutually
exclusive by bit rate, each of the mutually exclusive streams must have the same connection name. If they do
not, the profile is invalid and will be rejected by the writer. You can set a connection name by calling
IWMStreamConfig::SetConnectionName.

Configuring Screen Capture Streams Describes how to configure video streams for screen
capture.

Configuring Image Streams Describes how to configure image streams.

Using Uncompressed Audio and Video Streams Describes how to set up an uncompressed audio or
video stream.

Configuring Arbitrary Stream Types Describes how to configure streams to use the
predefined arbitrary stream types.

Configuring VBR Streams Describes how to configure streams to use variable
bit rate encoding (VBR).

Configuring Data Unit Extensions Describes how to configure a stream so that data unit
extensions can be attached when the file is written.

Reusing Stream Configurations Describes the ways in which you can use stream
configuration objects from existing profiles to make
new profiles.

Previous Next

Previous Next

The stream number identifies the stream within the file. Unlike input numbers and output numbers, stream
numbers start at 1, not 0. A stream number is different than a stream index, which you use when getting streams
in a profile by using IWMProfile::GetStream. The stream index is a number assigned to the stream by the
profile object. Stream indexes range between 0 and one less than the number of streams retrieved by
IWMProfile::GetStreamCount. Stream numbers need not be sequential, though they usually are, and can
range from 1 to 63. You can set a stream number by calling IWMStreamConfig::SetStreamNumber.

See Also

Configuring Streams
Inputs, Streams and Outputs

© 2000-2003 Microsoft Corporation. All rights reserved.

Getting Stream Configuration Information from
Codecs
For audio and video streams that use the Windows Media Audio and Video codecs, you should get the values
for the stream configuration structures from the codec you want to use. While it is possible to set these values
yourself, using the codecs ensures that the values are accurate. You should not alter the values in these
structures unless the documentation specifically recommends a particular change.

Information from the codecs comes in the form of codec formats. Each codec format is a single stream format
supported by the codec. For more information about stream formats, see Formats.

You can request information from the Windows Media codecs using the IWMCodecInfo, IWMCodecInfo2,
and IWMCodecInfo3 interfaces of the profile manager object. To get the IWMProfileManager interface of a
profile manager object, call the WMCreateProfileManager function. Call QueryInterface on
IWMProfileManager to get IWMCodecInfo3.

The following sections describe how to get the information you need.

Previous Next

Previous Next

Section Description

To Enumerate All Installed Windows Media Codecs Describes how to use the methods of the
IWMCodecInfo and IWMCodecInfo2 interfaces to
retrieve the name and codec index of each Windows
Media codec installed.

To Enumerate Codec Formats Describes how to get stream configuration objects
from codecs for use in your profiles.

See Also

Configuring Streams

© 2000-2003 Microsoft Corporation. All rights reserved.

To Enumerate All Installed Windows Media Codecs

The codec information interfaces all use codec indexes to identify individual codecs. Codecs are indexed
independently for audio and for video. Within one type of codec, indexes range from 0, to one less than the
number of codecs of that type.

The following example code shows how to get the index associated with each codec. To compile this code in
your application, include stdio.h.

HRESULT GetCodecNames(IWMCodecInfo3* pCodecInfo)
{
 HRESULT hr = S_OK;
 DWORD cCodecs = 0;
 WCHAR* pwszCodecName = NULL;
 DWORD cchCodecName = 0;

 // Retrieve the number of supported audio codecs on the system.
 hr = pCodecInfo->GetCodecInfoCount(WMMEDIATYPE_Audio, &cCodecs);

 if(SUCCEEDED(hr))
 printf("Number of audio codecs: %d\n\n", cCodecs);
 else
 {
 printf("Could not get the count of audio codecs.\n");
 return hr;
 }

 // Loop through all the audio codecs.
 for(DWORD dwCodecIndex = 0; dwCodecIndex < cCodecs; dwCodecIndex++)
 {
 // Get the codec name:
 // First, get the size of the name.
 hr = pCodecInfo->GetCodecName(WMMEDIATYPE_Audio,
 dwCodecIndex,
 NULL,
 &cchCodecName);
 if(FAILED(hr))
 {
 printf("Could not get the size of the codec name.\n");
 return hr;
 }

Previous Next

Previous Next

 // Allocate a string of the appropriate size.
 pwszCodecName = new WCHAR[cchCodecName];
 if(pwszCodecName == NULL)
 {
 printf("Could not allocate memory.\n");
 return E_OUTOFMEMORY;
 }

 // Retrieve the codec name.
 hr = pCodecInfo->GetCodecName(WMMEDIATYPE_Audio,
 dwCodecIndex,
 pwszCodecName,
 &cchCodecName);
 if(FAILED(hr))
 {
 delete[] pwszCodecName;
 printf("Could not get the codec name.\n");
 return hr;
 }

 // Print the codec name.
 printf("%d %S\n", dwCodecIndex, pwszCodecName);

 // Clean up for the next iteration.
 delete[] pwszCodecName;
 pwszCodecName = NULL;
 cchCodecName = 0;
 }

 // Retrieve the number of supported video codecs on the system.
 hr = pCodecInfo->GetCodecInfoCount(WMMEDIATYPE_Video, &cCodecs);

 if(SUCCEEDED(hr))
 printf("\n\nNumber of video codecs: %d.\n\n", cCodecs);
 else
 {
 printf("Could not get the count of video codecs.\n");
 return hr;
 }

 // Loop through all the video codecs.
 for(dwCodecIndex = 0; dwCodecIndex < cCodecs; dwCodecIndex++)
 {
 // Get the codec name:
 // First, get the size of the name.
 hr = pCodecInfo->GetCodecName(WMMEDIATYPE_Video,
 dwCodecIndex,
 NULL,
 &cchCodecName);
 if(FAILED(hr))
 {
 printf("Could not get the size of the codec name.\n");
 return hr;
 }

 // Allocate a string of the appropriate size.
 pwszCodecName = new WCHAR[cchCodecName];
 if(pwszCodecName == NULL)
 {
 printf("Could not allocate memory.\n");
 return E_OUTOFMEMORY;
 }

 // Retrieve the codec name.
 hr = pCodecInfo->GetCodecName(WMMEDIATYPE_Video,
 dwCodecIndex,
 pwszCodecName,
 &cchCodecName);
 if(FAILED(hr))
 {
 printf("Could not get the codec name.\n");
 return hr;
 }

 // Print the codec name.
 printf("%d %S\n", dwCodecIndex, pwszCodecName);

 delete[] pwszCodecName;
 pwszCodecName = NULL;
 cchCodecName = 0;
 }
 return S_OK;
}

See Also

Getting Stream Configuration Information from Codecs

© 2000-2003 Microsoft Corporation. All rights reserved.

To Enumerate Codec Formats

A codec format is a stream configuration object populated with data from a codec. Each codec format contains a
media configuration supported by the codec. Most audio codecs support a finite number of formats, each of
which is enumerated by the codec and can be accessed using the methods of IWMCodecInfo. Video codecs, on
the other hand, provide only a single format. This is because video streams have variables, like frame size, that
are more flexible than the settings of an audio stream. With a video stream, you must fill in some of the stream
configuration values; audio stream configurations should only be edited to assign a name, connection name, and
stream number. For more information, see Configuration Common to All Streams.

The codec formats enumerated depend upon the current codec enumeration settings, which are set using
IWMCodecInfo3::SetCodecEnumerationSetting. Currently, only two codec properties are supported:
g_wszNumPasses, which specifies the number of encoding passes that the codec will perform, and
g_wszVBREnabled, which specifies whether the codec will use variable bit rate encoding. The maximum
number of encoding passes supported by any of the codecs is two, so there are four distinct configurations for
which you can retrieve codecs, as shown in the following table.

Previous Next

Previous Next

To enumerate the formats supported for a codec, use IWMCodecInfo::GetCodecFormatCount to find the
number of supported codecs. Then call IWMCodecInfo::GetCodecFormat for each format. The format
indexes range from zero, to one less than the total number of supported formats. You can retrieve a description
of the format by calling IWMCodecInfo2::GetCodecFormatDesc. When using GetCodecFormatDesc, you
do not need to use GetCodecFormat, because the stream configuration object is retrieved by both methods.
Video codec formats do not include a description. Each video codec has only one format that is used for all
streams of that type.

When you retrieve a codec format, you get the IWMStreamConfig interface of a stream configuration object
containing the format settings.

See Also

Getting Stream Configuration Information from Codecs

© 2000-2003 Microsoft Corporation. All rights reserved.

Configuring Audio Streams
Audio streams are generally the most straightforward to configure. You should get a stream configuration from
the codec using the methods of IWMCodecInfo as described in Getting Stream Configuration Information
from Codecs. Under most circumstances, you should not alter the settings from those retrieved.

The codec format that you select from those enumerated depends upon the intended use of the ASF files made
with the profile. The codec format description retrieved by IWMCodecInfo2::GetCodecFormatDesc
summarizes the characteristics of the format. If your application does not display the descriptions to choose
between them, you can call QueryInterface on the IWMStreamConfig interface of the codec format to get the
IWMMediaProps interface. Then you can retrieve the WM_MEDIA_TYPE structure by calling
IWMMediaProps::GetMediaType. By examining the WM_MEDIA_TYPE structure and the
WAVEFORMATEX structure it points to, you can determine the settings of the codec format and compare
them to your requirements.

In quality-based VBR profiles, the nAvgBytesPerSec member of the WAVEFORMATEX structure contains

 Constant bit rate
(CBR) stream

2-pass CBR stream Quality-based
variable bit rate
(VBR) stream

Bit-rate-based
VBR stream
(constrained or
unconstrained)

g_wszVBREnabled FALSE FALSE TRUE TRUE

g_wszNumPasses 1 2 1 2

Previous Next

Previous Next

the quality level (1 through 100) in the low-order byte and the three high-order bytes are set to 0x7fffff. Do not
attempt to modify the quality setting by modifying this value manually; you must use the IWMPropertyVault
methods. Also, nAvgBytesPerSec will not be preserved in the ASF file; when you obtain the
WAVEFORMATEX structure for a file that has been opened with the reader object, nAvgBytesPerSec
contains an approximate value representing the average number of bytes per second.

The Windows Media Audio 9 codec and Windows Media Audio 9 Professional codec both support formats in
two modes: audio-only and audio/video. The audio-only formats are optimized for files containing only audio
data, while the audio/video formats are optimized for audio that is in a file with a video stream. When
enumerating codec formats for these codecs, the audio/video formats come after the audio-only formats.
However, the only way to clearly differentiate between these two types of formats is to check the descriptions.
The audio/video format descriptions all contain the string "(A/V)"

When you need a variable bit rate (VBR) format for one of the Windows Media audio codecs, you can get it by
setting the enumeration settings in the IWMCodecInfo3::SetCodecEnumerationSetting method. Set
g_wszVBREnabled to True, and set g_wszNumPasses to 1 for quality-based VBR or 2 for two-pass VBR
(constrained or unconstrained). If you are using constrained two-pass VBR, you must manually set the
maximum bit rate and buffer window for the stream using the methods of IWMPropertyVault as described in
Configuring VBR Streams.

Note When configuring audio streams, you should never have an audio buffer window value that is greater
than the value for any video streams in the file. Normally this is not an issue, as audio buffer window values
should range between 1.5 and 3 seconds and video values should range between 3 and 5 seconds. If an audio
buffer window is greater than a video buffer window, the file will play back with the streams slightly out of
synchronization.

See Also

Configuration Common to All Streams
Configuring Streams

© 2000-2003 Microsoft Corporation. All rights reserved.

Configuring Video Streams
Video streams are more flexible in their configuration than audio streams. This is because the properties of the
frames that make up the video can vary widely from one file to the next. When you retrieve the codec format for
the codec you are using, you must set the following values for video stream configuration objects.

Previous Next

Previous Next

Value Description

Video content does not play correctly unless it is encoded to a size that is a multiple of four for both width and
height. The exception is RGB uncompressed video, which can be any size. If you try to set a size that is not a
multiple of four, one of the following errors will be returned by the writer:

NS_E_INVALID_INPUT_FORMAT
NS_E_INVALID_OUTPUT_FORMAT
NS_E_INVALIDPROFILE

If you are using variable bit rate encoding, you may need to make other adjustments. For more information, see
Configuring VBR Streams.

Some Windows Media Video codecs support multiple complexity levels. Complexity levels determine the
algorithms that the codec will use when encoding a video stream. Using a high complexity level will require
more processing power for encoding and decoding.

Each codec that supports complexity settings exposes the following settings that you can retrieve with the
IWMCodecInfo3::GetCodecProp method.

To set the complexity for a video stream in a profile, use the IWMPropertyVault::SetProperty method using
the property g_wszComplexity. The value you set must be less than or equal to the maximum supported

Bit rate Call IWMStreamConfig::SetBitrate to set to the
desired value. The video codec will try to compress the
media to meet your specifications. If your values are too
low, the resulting compressed video will be very
degraded.

Buffer window Call IWMStreamConfig::SetBufferWindow to set to
the desired value. The video codec will try to compress
the media to meet your specifications. If your values are
too low, the resulting compressed video will be very
degraded.

WMVIDEOINFOHEADER.rcSource The upper left corner must be set to 0,0. The lower right
corner must be set to the frame dimensions. For
example, in a 640x480 stream, these settings would be
0,0,640,480.

WMVIDEOINFOHEADER.rcTarget Must match rcSource.

WMVIDEOINFOHEADER.dwBitRate Must match the bit rate set for the stream.

WMVIDEOINFOHEADER.AvgTimePerFrame Set to the approximate time per frame.

BITMAPINFOHEADER.biWidth Set to the width, in pixels, of the desired frame size.

BITMAPINFOHEADER.biHeight Set to the height, in pixels, of the desired frame size.

Setting Description

g_wszComplexityMax The maximum quality level supported by the codec.

g_wszComplexityOffline The suggested quality level for offline playback.

g_wszComplexityLive The suggested quality level for streaming playback.

complexity for the codec.

See Also

Configuration Common to All Streams
Configuring Streams
Video Complexity Settings

© 2000-2003 Microsoft Corporation. All rights reserved.

Configuring Screen Capture Streams
Streams that use the Windows Media® Video 9 Screen codec are configured by applications in the same way as
normal video streams. However, if you set the video complexity level to 0, the writer will ignore any video
quality value set with IWMVideoMediaProps::SetQuality. For more information, see Getting Good Results
with the Windows Media Video 9 Screen Codec.

See Also

Configuring Streams
Configuration Common to All Streams
Configuring Video Streams

© 2000-2003 Microsoft Corporation. All rights reserved.

Configuring Image Streams
Image streams contain still images in JPEG format. Even though image streams are like video streams in that
they take uncompressed images as inputs, they require a slightly different configuration. To configure an image
stream, you must set the values for the members of the video configuration structures as shown in the following
table.

Previous Next

Previous Next

Previous Next

Previous Next

See Also

Configuration Common to All Streams
Configuring Streams

Setting Description

WM_MEDIA_TYPE.majortype Set to WMMEDIATYPE_Image.

WM_MEDIA_TYPE.subtype Set to WMMEDIASUBTYPE_RGB24.

WM_MEDIA_TYPE.bFixedSizeSamples Set to FALSE.

WM_MEDIA_TYPE.bTemporalCompression Set to FALSE.

WM_MEDIA_TYPE.lSampleSize Set to 0.

WM_MEDIA_TYPE.formattype Set to WMFORMAT_VideoInfo.

WM_MEDIA_TYPE.pUnk Set to NULL.

WM_MEDIA_TYPE.cbFormat Set to sizeof(WMVIDEOINFOHEADER).

WM_MEDIA_TYPE.pbFormat Set to the address of a properly configured
WMVIDEOINFOHEADER structure.

WMVIDEOINFOHEADER.rcSource and
WMVIDEOINFOHEADER.rcTarget

Set both rectangles so that the top left corners are
coordinates (0, 0) and the bottom right corners
are coordinates(x, y) where x is the image width
and y is the image height.

WMVIDEOINFOHEADER.dwBitRate Set to the bit rate of the stream.

WMVIDEOINFOHEADER.dwErrorRate Set to 0.

WMVIDEOINFOHEADER.dwBitErrorRate Set to 0.

WMVIDEOINFOHEADER.AvgTimePerFrame Set to 0.

BITMAPINFOHEADER.biWidth Set to the width of the image.

BITMAPINFOHEADER.biHeight Set to the height of the image.

BITMAPINFOHEADER.biPlanes Set to 1.

BITMAPINFOHEADER.biBitCount Set to 24.

BITMAPINFOHEADER.biCompression Set to BI_RGB.

BITMAPINFOHEADER.biSizeImage Set to ((x * y * c) / 8), where x is the width of the
image, y is the height of the image, and c is the
color depth of the image (in this case always 24).

BITMAPINFOHEADER.biXPelsPerMeter Set to 0.

BITMAPINFOHEADER.biYPelsPerMeter Set to 0.

BITMAPINFOHEADER.biClrUsed Set to 0.

BITMAPINFOHEADER.biClrImportant Set to 0.

Getting Good Results with the Windows Media Video 9 Screen Codec
Image Streams

© 2000-2003 Microsoft Corporation. All rights reserved.

Configuring Video Streams for Seeking
Performance
Some playback applications perform a lot of seeking on individual streams. Seeking is an area where
performance can vary greatly depending upon the settings of the stream. If you know your content needs to be
optimized for quick seeking, you can tailor your stream configuration to improve performance.

The biggest factor affecting the speed of seeking operations in video is the spacing of the key frames. Because
every frame between key frames needs to be reconstructed based on the frames that come before it, widely
spaced key frames result longer seek times. For example, if a video stream with 30 frames per second has a
maximum key-frame spacing of 10 seconds, there are potentially 300 frames between key frames. If you seek to
the last delta frame, 299 frames have to be reconstructed for the frame to be decompressed. If each frame
reconstruction took .01 second, the seek would take almost 3 seconds. If you want to increase the efficiency of
seeking, lowering the key-frame spacing can help. However, if you set the key frames too close together, you
can lose quality.

You can set the maximum key-frame spacing by calling IWMVideoMediaProps::SetMaxKeyFrameSpacing.
The recommended values, based on the bit rate of the stream, are listed in the following table. These values
provide a good balance of seeking performance and quality. The SDK does not enforce any limit on the time
between key frames. In general, times longer than 30 seconds can adversely affect seek times both when the
content is streamed over a network, and when it is played back locally.

For more information about getting the best performance when seeking video files, see Getting the Best Video
Seeking Performance.

See Also

Previous Next

Previous Next

Bit rate Suggested maximum key-frame spacing

22 Kbps to 300 Kbps 8 seconds

300 Kbps to 600 Kbps 6 seconds

600 Kbps to 2 Mbps 4 seconds

2 Mbps and higher 3 seconds

Configuring Streams

© 2000-2003 Microsoft Corporation. All rights reserved.

Using Uncompressed Audio and Video Streams
Under most circumstances, uncompressed media has prohibitively large storage and delivery requirements, but
for some local playback scenarios, the quality level is important enough to warrant not using compression..

The settings for an uncompressed media stream should reflect the settings of the source media. When
configuring an uncompressed stream, you must calculate the bit rate of the media and set the stream
appropriately by calling IWMStreamConfig::SetBitrate. Because uncompressed streams are not viable for
streaming, you should always set the buffer window for uncompressed media streams to zero by calling
IWMStreamConfig::SetBufferWindow.

The following pixel formats are supported for uncompressed video streams:

WMMEDIASUBTYPE_RGB555
WMMEDIASUBTYPE_RGB24
WMMEDIASUBTYPE_RGB32
WMMEDIASUBTYPE_I420
WMMEDIASUBTYPE_IYUV
WMMEDIASUBTYPE_YV12
WMMEDIASUBTYPE_YUY2
WMMEDIASUBTYPE_UYVY
WMMEDIASUBTYPE_YVYU

See Also

Configuration Common to All Streams
Configuring Audio Streams
Configuring Streams
Configuring Video Streams

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Configuring Arbitrary Stream Types
Most arbitrary stream types just need a bit rate, a buffer window, and a proper major media type in the
WM_MEDIA_TYPE structure. However, some arbitrary types require additional configuration.

If you have trouble configuring a stream, refer to the sample application called GenProfile, which is included
with this SDK. The library defined in GenProfile contains code for including all types of streams. For more
information about GenProfile and the other samples, see Sample Applications.

The following sections describe how to configure arbitrary stream types.

See Also

Arbitrary Streams
Configuring Streams

© 2000-2003 Microsoft Corporation. All rights reserved.

Configuring Script Streams

Like all arbitrary stream types, script streams need to have a bit rate and buffer window defined for them. The

Previous Next

Section Description

Configuring Script Streams Describes how to configure script streams.

Configuring File Transfer Streams Describes how to configure file transfer streams.

Configuring Web Streams Describes how to configure Web streams.

Configuring Text Streams Describes how to configure text streams.

Configuring Custom Arbitrary Streams Describes how to configure streams for custom
arbitrary stream types.

Calculating Bit Rate and Buffer Window Values for
Arbitrary Streams

Describes how to calculate the bit rate and buffer
window settings for an arbitrary stream.

Previous Next

Previous Next

major media type in the WM_MEDIA_TYPE structure must be set to WMMEDIATYPE_Script.

Script streams need to have the formattype member of WM_MEDIA_TYPE set to WMFORMAT_Script,
which indicates that the pbFormat member points to a WMSCRIPTFORMAT structure.

There is only one supported script type, WMSCRIPTTYPE_TwoStrings.

See Also

Configuration Common to All Streams
Configuring Arbitrary Stream Types
Script Commands

© 2000-2003 Microsoft Corporation. All rights reserved.

Configuring File Transfer Streams

File transfer streams do not require any special settings in the WM_MEDIA_TYPE structure. They do require
a data unit extension to associate a file name with each sample. To send a name with file transfer samples, you
must implement a data unit extension system for the stream.

To set a data unit extension for the stream, perform the following steps:

1. Obtain a pointer to the IWMStreamConfig2 interface of the stream configuration object by calling
IWMStreamConfig::QueryInterface.

2. Add a data unit extension for the stream by calling IWMStreamConfig2::AddDataUnitExtension as
follows:

hr = pStreamConfig2->AddDataUnitExtension(CLSID_WMTPropertyFileName,
 -1, NULL, 0);

See Also

Configuration Common to All Streams
Configuring Arbitrary Stream Types
File Streams

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Configuring Web Streams

Web streams are a specialized type of file transfer stream used to deliver the files associated with a Web site in
a single stream. Web stream configuration is summarized in the following table.

See Also

Configuration Common to All Streams
Configuring Arbitrary Stream Types
Web Streams

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Setting Description

WM_MEDIA_TYPE.majortype Set to WMMEDIATYPE_Filetransfer.

WM_MEDIA_TYPE.subtype Set to
WMMEDIASUBTYPE_WebStream.

WM_MEDIA_TYPE.bFixedSizeSamples Set to False.

WM_MEDIA_TYPE.bTemporalCompression Set to True.

WM_MEDIA_TYPE.lSampleSize Set to 0.

WM_MEDIA_TYPE.formattype Set to WMFORMAT_WebStream.

WM_MEDIA_TYPE.pUnk Set to NULL.

WM_MEDIA_TYPE.cbFormat Set to sizeof
(WMT_WEBSTREAM_FORMAT).

WM_MEDIA_TYPE.pbFormat Set to the address of a properly
configured
WMT_WEBSTREAM_FORMAT
structure.

WMT_WEBSTREAM_FORMAT.cbSampleHeaderFixedData Set to sizeof
(WMT_WEBSTREAM_SAMPLE_HEADER).

WMT_WEBSTREAM_FORMAT.wVersion Set to 1.

WMT_WEBSTREAM_FORMAT.wreserved Set to 0.

Previous Next

Configuring Text Streams

Text streams are essentially the same as custom arbitrary streams. There is no configuration information
associated with a text stream to identify the type of text encoding, so the writer object cannot verify samples.

To configure a text stream, you must ensure that the WM_MEDIA_TYPE structure contains a major media
type of WMMEDIATYPE_TEXT. You must also set a bit rate and buffer window for the stream.

See Also

Calculating Bit Rate and Buffer Window Values for Arbitrary Streams
Configuration Common to All Streams
Configuring Arbitrary Stream Types
Text Streams

© 2000-2003 Microsoft Corporation. All rights reserved.

Configuring Custom Arbitrary Streams

When using your own arbitrary data type, you must create a GUID value to serve as the major media type
identifier for it. When the writer encounters a stream in a profile with a major type it does not recognize, it
assumes that the stream is custom arbitrary data. It will accept your samples, packetize them, and combine them
with samples from the other streams in the file without verifying the data in any way.

You can also create your own subtype GUID identifiers to define subcategories of your custom data. The writer
will ignore these subtypes completely, but they will be preserved in the header section of the ASF file, so your
reading application can retrieve them and make decisions based on them.

An arbitrary stream requires a bit rate and buffer window, and must have a WM_MEDIA_TYPE structure with
the values cleared except for the major media type and subtype(if using one).

See Also

Configuration Common to All Streams
Configuring Arbitrary Stream Types
Custom Arbitrary Data Streams

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Calculating Bit Rate and Buffer Window Values for Arbitrary Streams

Calculating the proper bit rate and buffer window for an arbitrary stream type is not an exact science. One
simple approach is to set the bit rate to match the size of the stream divided by its length, in seconds. For
example, a stream containing a total of 68000 bits lasting 20 seconds might have a bit rate of 3400 bits per
second (68000 bits / 20 seconds = 3400 bits per second).

The problem with this simple technique of assigning bit rate is that it does not take into account the distribution
of data within the stream. Many arbitrary streams contain larger amounts of data at intervals along the timeline
of the file. Image streams, for example, have samples that are rather large, but are usually spaced several
seconds apart. The buffer window must be set to ensure that the buffer will not overflow.

To check the buffer window, multiply the bit rate (bits per second) by the buffer window (in seconds) and
divide by 1000 to get the size, in bits, of the buffer for the stream. Then make sure that the buffer size is large
enough to hold any combination of samples in the stream that are less than the buffer window apart in
presentation time. When in doubt, set both values a little higher than you think you need them.

See Also

Buffering Content
Configuring Arbitrary Stream Types

© 2000-2003 Microsoft Corporation. All rights reserved.

Configuring VBR Streams
You can use variable bit rate (VBR) encoding to produce high quality streams for local files or for downloading
and playing. There are three options for VBR: quality-based (one-pass), unconstrained (two-pass), and
constrained (two-pass). For more information about the types of VBR encoding, see Variable Bit Rate (VBR)
Encoding.

Previous Next

Previous Next

Previous Next

Previous Next

You can configure VBR encoding in a profile by setting properties with the IWMPropertyVault interface. The
following table describes the properties used to configure VBR encoding.

The following sections describe how to use the different types of variable bit rate encoding.

See Also

Configuring Streams

© 2000-2003 Microsoft Corporation. All rights reserved.

To Configure Quality-Based VBR

You can use quality-based variable bit rate (VBR) encoding on a stream to specify a quality level that will be
maintained for the entire stream, regardless of the bit-rate requirements that result.

For quality-based VBR video streams, you must specify a quality level from 1 to 100, with 100 representing the
highest quality. At present there are only 30 discrete quality settings. The following quality levels equate to
discrete quality settings: 1, 4, 8, 11, 15, 18, 22, 25, 29, 33, 36, 40, 43, 47, 50, 54, 58, 61, 65, 68, 72, 75, 79, 83,

Property Description

g_wszVBREnabled Boolean value. Set to True to use VBR encoding.

g_wszVBRQuality DWORD value. Set to the desired quality level (1 to 100) for
quality-based VBR encoding.

g_wszVBRBitrateMax DWORD value. Set to the maximum bit rate, in bits per
second, for constrained VBR encoding.

g_wszVBRBufferWindowMax DWORD value. Set to the maximum buffer window, in
milliseconds, for constrained VBR encoding.

Section Description

To Configure Quality-Based VBR Describes how to use variable bit rate encoding based on a
static quality level.

To Configure Unconstrained VBR Describes how to use variable bit rate encoding based on a
target average bit rate without an explicit peak value.

To Configure Constrained VBR Describes how to use variable bit rate encoding based on a
target average bit rate and an explicit peak value.

Previous Next

Previous Next

86, 90, 93, 97, 100. Numbers between two consecutive values in the preceding list equate to the same quality
setting as the lower number. For example, 1 and 4 are listed, so 2 and 3 both result in the same quality setting as
1.

For audio streams, you can enumerate the available modes and retrieve a stream configuration object. For more
information, see To Enumerate Codec Formats.

When using quality-based VBR video, you must set the dwBitrate member of the
WMVIDEOINFOHEADER structure to a positive value. This value is not used by the writer, but passing zero
or a negative number can cause errors when writing.

To configure a stream in a profile to be encoded with quality-based VBR, perform the following steps.

1. Create a profile manager object by calling the WMCreateProfileManager function.
2. Open an existing profile to which you want to add VBR support. For more information about opening

profiles, see Working with Profiles.
3. Get a stream configuration object for the stream you want to use by calling either

IWMProfile::GetStream or IWMProfile::GetStreamByNumber.
4. Get a pointer to the IWMPropertyVault interface of the stream configuration object by calling

IWMStreamConfig::QueryInterface.
5. Enable VBR for the stream by calling IWMPropertyVault::SetProperty for the g_wszVBREnabled

property.
6. Set the quality level for the VBR stream by calling IWMPropertyVault::SetProperty for the

g_wszVBRQuality property.
7. Set g_wszVBRBitrateMax and g_wszVBRBufferWindowMax both to zero with

IWMPropertyVault::SetProperty.
8. Save the changes made to the stream by calling IWMProfile::ReconfigStream.
9. Save the profile, or pass it to the writer object and start writing.

See Also

Configuring VBR Streams

© 2000-2003 Microsoft Corporation. All rights reserved.

To Configure Unconstrained VBR

You can use unconstrained variable bit rate (VBR) encoding on a stream to specify an average bit rate that will
be maintained in the encoded content. Unconstrained VBR differs from normal CBR in that the variance in bit
rate throughout the stream can be greater.

The bit rate of the stream, set with IWMStreamConfig::SetBitrate, is used as the desired average bit rate.
When encoding of the stream is complete, you can use IWMPropertyVault::GetPropertyByName to retrieve

Previous Next

Previous Next

two additional properties: g_wszVBRPeak and g_wszBufferAverage. These properties describe the peak bit
rate of the encoded content and the average buffer window of the content, respectively.

Unconstrained VBR must be used in conjunction with two-pass encoding. Two-pass encoding is not set in the
profile. You must configure the writer to perform a preprocessing pass before writing the stream. For more
information about using two-pass encoding, see Using Two-Pass Encoding.

To configure a stream in a profile to be encoded with unconstrained VBR, perform the following steps:

1. Create a profile manager object by calling the WMCreateProfileManager function.
2. Open an existing profile to which you want to add VBR support. For more information about opening

profiles, see Working with Profiles.
3. Get a stream configuration object for the stream you want to use by calling either

IWMProfile::GetStream or IWMProfile::GetStreamByNumber.
4. Get a pointer to the IWMPropertyVault interface of the stream configuration object by calling

IWMStreamConfig::QueryInterface.
5. Enable VBR encoding for the stream by calling IWMPropertyVault::SetProperty for the

g_wszVBREnabled property.
6. Set g_wszVBRBitrateMax and g_wszVBRBufferWindowMax both to zero with

IWMPropertyVault::SetProperty.
7. Save the changes made to the stream by calling IWMProfile::ReconfigStream.
8. Save the profile, or pass it to the writer object.
9. Configure the writer to perform a preprocessing pass.

See Also

Configuring VBR Streams

© 2000-2003 Microsoft Corporation. All rights reserved.

To Configure Constrained VBR

You can use constrained variable bit rate (VBR) encoding on a stream to specify an average bit rate that will be
maintained in the encoded content. You also specify the maximum bit rate of the stream and the maximum
required buffer window.

You cannot know what the average bit rate will be for a constrained VBR stream before encoding, but you can
use a rough estimate. As a general rule, the maximum bit rate you specify will end up being two to three times
the average bit rate.

Constrained VBR must be used in conjunction with two-pass encoding. Two-pass encoding is not set in the
profile. You must configure the writer to perform a preprocessing pass before writing the stream. For more
information about using two-pass encoding, see Using Two-Pass Encoding.

Previous Next

Previous Next

To configure a stream in a profile to use constrained VBR encoding, perform the following steps.

1. Create a profile manager object by calling the WMCreateProfileManager function.
2. Open an existing profile to which you want to add VBR support. For more information about opening

profiles, see Working with Profiles.
3. Get a stream configuration object for the stream you want to use by calling either

IWMProfile::GetStream or IWMProfile::GetStreamByNumber.
4. Get a pointer to the IWMPropertyVault interface of the stream configuration object by calling

IWMStreamConfig::QueryInterface.
5. Enable VBR encoding for the stream by calling IWMPropertyVault::SetProperty for the

g_wszVBREnabled property.
6. Use calls to IWMPropertyVault::SetProperty to set the desired maximum values for the

g_wszVBRBitrateMax and g_wszVBRBufferWindowMax properties.
7. Save the changes made to the stream by calling IWMProfile::ReconfigStream.
8. Save the profile, or pass it to the writer object.
9. Configure the writer to perform a preprocessing pass.

See Also

Configuring VBR Streams

© 2000-2003 Microsoft Corporation. All rights reserved.

Configuring Data Unit Extensions
Samples written to ASF files can contain additional information apart from the media samples themselves. This
information is included using data unit extensions. For more information about data unit extensions, see Data
Unit Extensions.

To use data unit extensions, you must configure the stream in the profile to accept them. To configure a data
unit extension for a stream, perform the following steps.

1. Obtain a pointer to the IWMStreamConfig2 interface by calling the QueryInterface method of
IWMStreamConfig.

2. Call IWMStreamConfig2::AddDataUnitExtension to register a type of data unit extension for the
stream.

You can examine all of the data unit extension types currently registered for a stream by calling
IWMStreamConfig2::GetDataUnitExtensionCount to retrieve the number of registered data unit extension
types. Then you can loop through all of the types using calls to IWMStreamConfig2::GetDataUnitExtension
for each.

Previous Next

Previous Next

Data unit extensions are assigned a size when configured for a stream. Many data unit extension systems use
data that is a constant size (usually a structure). However, you can also configure your data unit extensions to be
of variable size by setting the size to 0xFFFF. Each data unit extension assigned at encoding time can then be of
any size between 1 byte and 65534 bytes. Variably sized data unit extensions are also called dynamic data unit
extensions.

The advantage of using dynamic data unit extensions is that you can attach extension data as needed. If you
define a data unit extension with a set size, every sample for the stream must contain extension data of that size,
even if you have no data for some samples. With dynamic data unit extensions, you can omit data unit
extensions from some samples, which saves space and reduces bandwidth requirements. However, if data unit
extensions are of variable size, the reading object cannot verify the received extension data against a static size.
You must verify that the extension data that you receive is valid, and not malicious mangling of the bit stream.

See Also

Configuring Streams

© 2000-2003 Microsoft Corporation. All rights reserved.

Reusing Stream Configurations
There are often times when you want to reuse a stream configuration object from an existing profile. You may
have old profiles that need updating or you may need a stream identical to one in a system profile. It is easier to
reuse stream configurations than to create new ones, and you can often change a few settings in a configuration
to meet your needs rather than creating an entirely new one.

Be aware that there are limitations to how you can change stream configurations. If you change settings in the
wrong way, your profile may not accept the stream configuration object. Incorrect stream configurations are
frequently accepted by the profile but cause the writer object to reject the profile. Be aware of the following
limitations and issues when using and modifying existing stream configurations.

Never alter the contents of a .prx file to change stream settings. When profiles are saved to XML strings
and written to a .prx file they can be read with any text editor. Looking at a saved profile can help you
understand how profiles work. However, you should never alter a .prx file in any way. Even seemingly
trivial changes can invalidate the profile.
Several versions of the Windows Media Audio codec use the same stream configurations. If you have a
stream configuration object that is configured as subtype WMMEDIASUBTYPE_WMAudioV2,
WMMEDIASUBTYPE_WMAudioV7, or WMMEDIASUBTYPE_WMAudioV8, the resulting stream
will be compressed with the Windows Media Audio 9 codec. However, you should evaluate your needs
before using an existing audio codec. Many types of files can be improved by upgrading to the Windows
Media Audio 9 Professional codec, or the Windows Media Audio 9 Lossless codec.
Never change the subtype of a stream to upgrade to a new codec. When you use the methods of

Previous Next

Previous Next

IWMCodecInfo3 to obtain a stream configuration, the codec attaches some data to it that identifies the
bit stream format. If you change the subtype of an existing stream configuration object, the subtype will
not match the codec data. A profile with such a stream configuration will not be accepted by the writer
object.
Do not alter the settings of compressed audio stream configurations. If the settings of an audio stream do
not suit your needs, obtain a new stream configuration from the codec using the methods of
IWMCodecInfo3.

See Also

Configuring Streams
Getting Stream Configuration Information from Codecs

© 2000-2003 Microsoft Corporation. All rights reserved.

Using Mutual Exclusion
You can use mutual exclusion objects to specify groups of streams, only one of which will be delivered at a
time. Mutual exclusion can be used to handle a variety of scenarios, both native to the SDK and custom.

The following sections describe how to work with different types of mutual exclusion.

See Also

Working with Profiles

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Section Description

Using Multiple Bit Rate Mutual Exclusion Describes how to use mutual exclusion to encode one
input into multiple streams with different bit rate
settings.

Using Custom Mutual Exclusion Types Discusses custom mutual exclusion.

Previous Next

Using Multiple Bit Rate Mutual Exclusion
Multiple bit rate (MBR) mutual exclusion is useful when you want to encode content for a variety of playback
scenarios. An MBR video output consists of a single input encoded multiple times, each with different bit-rate
settings. When a file with MBR encoding is read, the reader will determine which stream to use based on the
available bandwidth.

The Windows Media Format SDK supports MBR encoding for both video and audio streams. In addition, you
can create a special type of MBR encoding called multiple-video-size MBR encoding. Multiple-video-size
MBR video functions identically to normal MBR video except that you can specify different image sizes for the
video streams in the mutual exclusion.

The following example demonstrates how to set up a profile for MBR video with multiple video sizes. It creates
a new profile with three video streams of varying bit rates and sizes, and includes them in a mutual exclusion
object.

IWMProfileManager* pProfileMgr = NULL;
IWMProfile* pProfile = NULL;
IWMMutualExclusion* pMutex = NULL;
IWMStreamConfig* pStream = NULL;
IWMMediaProps* pMediaProps = NULL;

WM_MEDIA_TYPE* pMediaType = NULL;
DWORD cbMediaType = 0;

HRESULT hr = S_OK;

// Initialize COM.
hr = CoInitialize(NULL);

// Create a profile manager object.
hr = WMCreateProfileManager(&pProfileMgr);

// Create an empty profile.
hr = pProfileMgr->CreateEmptyProfile(WMT_VER_7_0, &pProfile);

// Give the new profile a name and description.
hr = pProfile->SetName(L"MBR_Video_3_Stream_test");
hr = pProfile->SetDescription(L"Only for use with example code.");

// Create the first stream.
hr = pProfile->CreateNewStream(WMMEDIATYPE_Video, &pStream);

// Get the media properties interface for the new stream.
hr = pStream->QueryInterface(IID_IWMMediaProps, &pMediaProps);

// Get the media-type structure.
// First, get the size of the media-type structure.
hr = pMediaProps->GetMediaType(NULL, &cbMediaType);

// Allocate memory for the structure based on the retrieved size.
pMediaType = (WM_MEDIA_TYPE*) new BYTE[cbMediaType];

Previous Next

// Retrieve the media-type structure.
hr = pMediaProps->GetMediaType(pMediaType, &cbMediaType);

// Change the video size to 640 x 480.
pMediaType->pbFormat->bmiHeader.biWidth = 640;
pMediaType->pbFormat->bmiHeader.biHeight = 480;

// Replace the WM_MEDIA_TYPE in the profile with the one just changed.
hr = pMediaProps->SetMediaType(pMediaType);

// Release the media properties interface and delete the structure.
pMediaProps->Release();
pMediaProps = NULL;
delete[] pMediaType;
pMediaType = NULL;

// Set the bit rate to 200.
hr = pStream->SetBitrate(200000);

// Set the stream number.
hr = pStream->SetStreamNumber(1);

// Include the new stream in the profile.
hr = pProfile->AddStream(pStream);

// Release the stream configuration interface.
pStream->Release();
pStream = NULL;

// For the remaining two streams, leave the video at its default size of
// 320 x 240 –- just change the bit rates.

// Repeat for a 100K stream.
hr = pProfile->CreateNewStream(WMMEDIATYPE_Video, &pStream);
hr = pStream->SetBitrate(100000);
hr = pStream->SetStreamNumber(2);
hr = pProfile->AddStream(pStream);
pStream->Release();
pStream = NULL;

// Repeat for a 56K stream.
hr = pProfile->CreateNewStream(WMMEDIATYPE_Video, &pStream);
hr = pStream->SetBitrate(56000);
hr = pStream->SetStreamNumber(3);
hr = pProfile->AddStream(pStream);
pStream->Release();
pStream = NULL;

// Now that we have three streams, create a mutual exclusion object.
hr = pProfile->CreateNewMutualExclusion(&pMutex);

// Add the three streams to the mutual exclusion.
hr = pMutex->AddStream(1);
hr = pMutex->AddStream(2);
hr = pMutex->AddStream(3);

// Configure the mutual exclusion for MBR video.
hr = pMutex->SetType(CLSID_WMMUTEX_Bitrate);

// Add the mutual exclusion to the profile.
hr = pProfile->AddMutualExclusion(pMutex);

// Release the mutual exclusion object.
pMutex->Release();
pMutex = NULL;

// TODO: Save the profile to a string, and save the string to a file.
// For more information, see To Save a Custom Profile.

// Release remaining interfaces.
pProfile->Release();
pProfile = NULL;

pProfileMgr->Release();
pProfileMgr = NULL;

See Also

IWMMediaProps Interface
IWMMutualExclusion Interface
IWMProfile Interface
IWMStreamConfig Interface
Using Mutual Exclusion
WM_MEDIA_TYPE

© 2000-2003 Microsoft Corporation. All rights reserved.

Using Custom Mutual Exclusion Types
You can use mutual exclusion objects in a profile to meet the needs of custom scenarios. By passing the GUID
value CLSID_WMMUTEX_Unknown to IWMMutualExclusion::SetType, you inform the mutual exclusion
object that you are using a custom scenario.

You must manually control stream selection when you read a file with a custom mutual exclusion value. The
reader object will use the first stream you add to the mutual exclusion as the default.

Use the following steps to create a custom mutual exclusion object and add it to a profile:

1. Create a profile manager by calling the WMCreateProfileManager function.
2. Either start with an existing profile, or create an entirely new one.

If you are using an existing profile, call one of the load methods of the IWMProfileManager
interface. Then skip to step 4.
If you are creating an entirely new profile, call IWMProfileManager::CreateEmptyProfile.

3. Add streams to the new profile by calling IWMProfile::CreateNewStream. Configure the streams as
needed using the methods of IWMStreamConfig. You can also call QueryInterface to access other
interfaces in the stream configuration object.

Previous Next

Previous Next

CreateNewStream creates only a stream configuration object, and does not affect the profile. After a
stream is configured properly, you must call IWMProfile::AddStream to add the stream to the profile.

4. Create a mutual exclusion object by calling IWMProfile::CreateNewMutualExclusion.
5. Add the desired streams to the mutual exclusion object by calling IWMStreamList::AddStream

(available directly from IWMMutualExclusion, which inherits from IWMStreamList).
6. Set the type of mutual exclusion to custom by calling IWMMutualExclusion::SetType. Pass the

CLSID_WMMUTEX_Unknown as the type GUID.
7. Add the configured mutual exclusion object to the profile by calling

IWMProfile::AddMutualExclusion.

See Also

IWMMutualExclusion Interface
IWMProfile Interface
IWMProfileManager Interface
IWMStreamConfig Interface
IWMStreamList Interface
Using Mutual Exclusion
WMCreateProfileManager

© 2000-2003 Microsoft Corporation. All rights reserved.

Using Bandwidth Sharing
You can use bandwidth sharing objects to specify that certain streams, when combined, will not use more
bandwidth than specified. The information in a bandwidth sharing object is not generated or verified by the
writer nor used by the reader for anything.

When a file is written that has bandwidth sharing information in its profile, the data is stored in its header
section. You can use the IWMProfile interface in the reader to check for bandwidth sharing information when
the file is played.

Each bandwidth sharing object is defined by two settings. First is the bandwidth, as defined by a bandwidth and
a buffer window. The second setting is a bandwidth sharing type, which can be either exclusive or partial.
Exclusive bandwidth sharing means that the constituent streams are played back one at a time, while partial
means the streams are delivered concurrently.

See Also

IWMProfile Interface
IWMProfile3::AddBandwidthSharing

Previous Next

Previous Next

IWMProfile3::CreateNewBandwidthSharing
IWMProfile3::GetBandwidthSharing
IWMProfile3::GetBandwidthSharingCount
Working With Profiles

© 2000-2003 Microsoft Corporation. All rights reserved.

Using Stream Prioritization
Stream prioritization enables you to have more control over the playback of content by allowing you to specify
priority order for the streams in a profile. When the reader and streaming server encounter a bandwidth shortage
during playback, samples may have to be dropped to provide uninterrupted playback. If you specify a priority
order with a stream prioritization object in the profile, samples will be dropped from the lowest priority streams
first.

Unlike bandwidth sharing and mutual exclusion objects, a stream prioritization object does not use the
IWMStreamList interface to keep track of the list of streams. Instead, you must use an array of
WM_STREAM_PRIORITY_RECORD structures. The structures must be organized in the array in
descending order of priority. In addition to holding a stream number, the stream priority structure also enables
you to specify whether a stream is mandatory. Mandatory streams will not be dropped, regardless of their
position in the list.

The following example code shows how to include a stream prioritization in a profile. This profile is for a
classroom presentation, with an audio stream of the lecturer speaking, a video stream of the lecturer, and a
video stream capturing the presentation slides. The audio stream is the most important and will be mandatory.
The presentation slides will have the lowest priority because the image will be pretty constant, so a few frames
lost here and there won't make much difference.

IWMProfileManager* pProfileMgr = NULL;
IWMProfile* pProfileTmp = NULL;
IWMProfile3* pProfile = NULL;
IWMStreamPrioritization* pPriority = NULL;

WM_STREAM_PRIORITY_RECORD StreamArray[3];
HRESULT hr = S_OK;

// Initialize COM.
hr = CoInitialize(NULL);

// Create a profile manager object.
hr = WMCreateProfileManager(&pProfileMgr);

// Create an empty profile.
hr = pProfileMgr->CreateEmptyProfile(WMT_VER_7_0, &pProfileTmp)

Previous Next

Previous Next

// Get the IWMProfile3 for the new profile, then release the old one.
hr = pProfileTmp->QueryInterface(IID_IWMProfile3, &pProfile);
pProfileTmp->Release();
pProfileTmp = NULL;

// Give the new profile a name and description.
hr = pProfile->SetName(L"Prioritization_Example");
hr = pProfile->SetDescription(L"Only for use with example code.");

// Create the first stream.
hr = pProfile->CreateNewStream(WMMEDIATYPE_Audio, &pStream);

// TODO: configure the stream as needed for the scenario.

// Set the stream number.
hr = pStream->SetStreamNumber(1);

// Give the stream a name for clarity.
hr = pStream->SetStreamName(L"Lecturer_Audio");

// Include the new stream in the profile.
hr = pProfile->AddStream(pStream);

// Release the stream configuration interface.
pStream->Release();
pStream = NULL;

// Repeat for the other two streams.
hr = pProfile->CreateNewStream(WMMEDIATYPE_Video, &pStream);

// TODO: configure the stream as needed for the scenario.
hr = pStream->SetStreamNumber(2);
hr = pStream->SetStreamName(L"Lecturer_Video");
hr = pProfile->AddStream(pStream);
pStream->Release();
pStream = NULL;

hr = pProfile->CreateNewStream(WMMEDIATYPE_Video, &pStream);

// TODO: configure the stream as needed for the scenario.
hr = pStream->SetStreamNumber(3);
hr = pStream->SetStreamName(L"Slide_Video");
hr = pProfile->AddStream(pStream);
pStream->Release();
pStream = NULL;

// Create a stream prioritization object.
hr = pProfile->CreateNewStreamPrioritization(&pPriority);

// Fill the array with data.
StreamArray[0].wStreamNum = 1;
StreamArray[0].fMandatory = TRUE;

StreamArray[1].wStreamNum = 2;
StreamArray[1].fMandatory = FALSE;

StreamArray[2].wStreamNum = 3;
StreamArray[2].fMandatory = FALSE;

// Assign the stream array to the stream prioritization object.
hr = pPriority->SetPriorityRecords(StreamArray, 3);

// Add the stream prioritization to the profile.

hr = pProfile->SetStreamPrioritization(pPriority);

// Release the stream prioritization object.
pPriority->Release();
pPriority = NULL;

// TODO: Save the profile to a string, and save the string to a file.
// For more information, see To Save a Custom Profile.

// Release the remaining interfaces.
pProfile->Release();
pProfile = NULL;

pProfileMgr->Release();
pProfileMgr = NULL;

See Also

Working With Profiles

© 2000-2003 Microsoft Corporation. All rights reserved.

Saving Profiles
You can use the IWMProfileManager::SaveProfile method to save the contents of a profile object to a string
formatted with XML. No methods are provided to store the profile string to a file; you can use the file I/O
routines of your choice.

Note You should never alter the profile string written to a file. Any changes you want to make to a profile
should be made programmatically. Changing values in a .prx file can cause unpredictable results.

The following example is a function to save a profile to a file using standard C-style file I/O. To compile an
application that uses this example, you must include stdio.h in your project.

HRESULT ProfileToFile(IWMProfileManager* pProfileMgr,
 IWMProfile* pProfile)
{
 HRESULT hr = S_OK;

 FILE* pFile;

 WCHAR* pwszProfileString = NULL;
 DWORD cchProfileString = 0;

 // Save the profile to a string.
 // First, retrieve the size of the string required.

Previous Next

Previous Next

 hr = pProfileMgr->SaveProfile(pProfile,
 NULL,
 &cchProfileString);
 if(FAILED(hr))
 {
 printf("Could not get the profile string size.");
 return hr;
 }

 // Allocate memory to hold the string.
 pwszProfileString = new WCHAR[cchProfileString];

 if(pwszProfileString == NULL)
 {
 printf("Could not allocate memory for the profile string.");
 return E_OUTOFMEMORY;
 }

 // Retrieve the string.
 hr = pProfileMgr->SaveProfile(pProfile,
 pwszProfileString,
 &cchProfileString);
 if(FAILED(hr))
 {
 printf("Could not save the profile string.");
 return hr;
 }

 // Create the output file.
 pFile = fopen("MyProfile.prx", "w");

 // Write the profile string to the file.
 fprintf(pFile, "%S\n", pwszProfileString);

 // Close the file.
 fclose(pFile);

 delete[] pwszProfileString;

 return S_OK;
}

See Also

Working With Profiles

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Using System Profiles
The system profiles included with the Windows Media Format SDK were designed to cover the basic needs of
digital media content comprised of audio and video. Because of the great variety of features now available, and
the related increase in possible digital media scenarios, system profiles have been deemphasized. The most
recent set of system profiles make use of the version 8 Windows Media codecs which were released with
Windows XP. Despite not supporting the latest version of the codecs, the system profiles make an excellent
starting point for creating profiles to suit your needs.

The following topics describe how to use system profiles as the basis for your ASF files.

See Also

Working With Profiles

© 2000-2003 Microsoft Corporation. All rights reserved.

To Change System Profile Versions
Whenever you create a profile manager object, it parses the system profiles. You can iterate through the system
profiles using the IWMProfileManager::GetSystemProfileCount and
IWMProfileManager::LoadSystemProfile methods, but the profile manager will count and list only the
profiles of a single version at a time. If you want to use this method of finding system profiles, you need to
ensure that the profile manger deals with the version you want. Use the methods of the IWMProfileManager2
interface to set and retrieve the system profile version used by the profile manager.

Versions are specified using the members of the WMT_VERSION enumeration type. If you set the system
profile version to WMT_VER_9_0, the call will succeed, but the system profile count will be zero. This is
because no predefined system profiles use the Windows Media Audio and Video 9 Series codecs. For more
information about updating profiles to use the newest codecs, see Reusing Stream Configurations.

Section Description

To Change System Profile Versions Describes how to access older system profiles.

To Load a System Profile Describes how to load a system profile into a profile
object.

Working with Localized System Profiles Describes how to work with system profiles in
various languages.

Previous Next

Previous Next

If you load a system profile by its GUID identifier, it does not matter which system profile version the profile
manager is using. For more information about loading system profiles, see To Load a System Profile.

The following example code shows how to set and retrieve the system profile version. This example uses printf
for console output and requires stdio.h to be included. For more information about using this code, see Using
the Code Examples.

int main(void)
{
 HRESULT hr = S_OK;

 IWMProfileManager* pProfileMgr = NULL;
 IWMProfileManager2* pProfileMgr2 = NULL;

 WMT_VERSION profileVersion;

 // Initialize COM.
 hr = CoInitialize(NULL);
 if(FAILED(hr))
 {
 printf("Could not initialize COM.");
 return 0;
 }

 // Create a profile manager object.
 hr = WMCreateProfileManager(&pProfileMgr);
 if(FAILED(hr))
 {
 printf("Could not create a profile manager object.");
 return 0;
 }

 // Get the IWMProfileManager2 interface.
 hr = pProfileMgr->QueryInterface(IID_IWMProfileManager2,
 (void**) &pProfileMgr2);
 if(FAILED(hr))
 {
 printf("Could not get the IWMProfileManager2 interface.");
 SAFE_RELEASE(pProfileMgr);
 return 0;
 }

 // Release the old interface.
 SAFE_RELEASE(pProfileMgr);

 // Get the current system profile version.
 hr = pProfileMgr2->GetSystemProfileVersion(&profileVersion);
 if(FAILED(hr))
 {
 printf("Could not retrieve profile version.");
 printf("\nError code: 0x%X\n", hr);
 SAFE_RELEASE(pProfileMgr2);
 return 0;
 }

 // Display the current version.
 printf("Current version: ");
 switch(profileVersion)
 {
 case WMT_VER_4_0:
 printf("WMT_VER_4_0\n");
 break;

 case WMT_VER_7_0:
 printf("WMT_VER_7_0\n");
 break;
 case WMT_VER_8_0:
 printf("WMT_VER_8_0\n");
 break;
 case WMT_VER_9_0:
 printf("WMT_VER_9_0\n");
 break;
 }

 // Set the system profile version to 8.
 profileVersion = WMT_VER_8_0;

 hr = pProfileMgr2->SetSystemProfileVersion(profileVersion);
 if(FAILED(hr))
 {
 printf("Could not change profile version.");
 printf("\nError code: 0x%X\n", hr);
 SAFE_RELEASE(pProfileMgr2);
 return 0;
 }

 // Print verification.
 printf("Successfully set version to ");
 switch(profileVersion)
 {
 case WMT_VER_4_0:
 printf("WMT_VER_4_0\n");
 break;
 case WMT_VER_7_0:
 printf("WMT_VER_7_0\n");
 break;
 case WMT_VER_8_0:
 printf("WMT_VER_8_0\n");
 break;
 case WMT_VER_9_0:
 printf("WMT_VER_9_0\n");
 break;
 }

 // Clean up.
 SAFE_RELEASE(pProfileMgr2);
}

See Also

Using System Profiles

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

To Load a System Profile
To make changes to a system profile, you must load it into a profile object. The profile manager provides two
options for loading system profiles: by identifier, and by index.

A system profile identifier is a GUID value assigned to the system profile when it was created. For a list of the
GUID constants associated with the version 8 system profiles, see System Profiles. You can find the GUID
constants for previous versions in the header file WMSysPrf.h. For more information about this and other
header files included with the Windows Media Format SDK, see SDK Library Files and Compiler Settings.

The following example code demonstrates how to load a system profile using the system profile identifier. For
this code to work, you must include WMSysPrf.h and stdio.h. For more information about using this code, see
Using the Code Examples.

IWMProfileManager* pProfileMgr = NULL;
IWMProfile* pProfile = NULL;

HRESULT hr = S_OK;

// Initialize COM.
hr = CoInitialize(NULL);

// Create a profile manager.
hr = WMCreateProfileManager(&pProfileMgr);

// Retrieve the data for the general-purpose broadband video profile.
hr = pProfileMgr->GetProfileByID(WMProfile_V80_100Video, &pProfile);

// TODO: Perform whatever customizations are needed. For details about
// editing profiles, see Using Custom Profiles.

// Clean up.
pProfile->Release();
pProfile = NULL;
pProfileMgr->Release();
pProfileMgr = NULL;

If you do not know which profile you want to use, you can iterate through all of the system profiles of a
particular version using the GetSystemProfileCount and LoadSystemProfile methods of the
IWMProfileManager interface. These methods only deal with one version of the system profiles at a time. For
more information about changing the system profile version, see To Change System Profile Versions.

See Also

Using System Profiles

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Working with Localized System Profiles
The Windows Media Format SDK includes system profiles with names and descriptions in several languages.
The localized system profile .prx files are installed into the [SDKRoot]\WMSDK\WMFSDK9
\LocalizedProfiles folder. To access a particular file with the IWMProfileManagerLanguage methods, you
must move it into the system root directory along with the other system profile files. For a list of the localized
system profile files, see Localized System Profiles.

You can set or retrieve the system profile language using the methods of the IWMProfileManagerLanguage
interface. The language is specified as a LANGID value, which consists of a primary language identifier and a
secondary language identifier. The following code demonstrates how to retrieve the current language. The
default language is U.S. English (0x409). For more information about using this code, see Using the Code
Examples.

HRESULT GetCurrentSystemProfileLanguage(IMWProfilManager* pProfileMgr)
{
 HRESULT hr = S_OK;

 IWMProfileManagerLanguage* pProfileMgrLang = NULL;

 // Get the profile manager language interface.
 hr = pProfileMgr->QueryInterface(IID_IWMProfileManagerLanguage,
 (void **) &pProfileMgrLang);
 if(FAILED(hr))
 {
 printf("Couldn't get IWMProfileManagerLanguage.\n");
 SAFE_RELEASE(pProfileMgrLang);
 return hr;
 }

 // Retrieve the current language (as a LANGID value)
 WORD wLangID = 0;
 hr = pProfileMgrLang->GetUserLanguageID(&wLangID);
 if(FAILED(hr))
 {
 printf("Could not get the current language.\n");
 SAFE_RELEASE(pProfileMgrLang);
 return hr;
 }

 printf("The current language ID is 0x%X\n", wLangID);

 SAFE_RELEASE(pProfileMgrLang);
 return S_OK;
}

See Also

Using System Profiles

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Managing Packet Size
The writer is designed to manage the size of packets internally. However, you may have specific requirements
for your application that call for some manual control over the size of packets in the ASF files that you write.
The Windows Media Format SDK provides two interfaces, IWMPacketSize and IWMPacketSize2 that enable
you to control the maximum and minimum size of packets.

Both packet size interfaces are exposed in the profile object. They are also available to the reader object. As
with other profile-related interfaces, the reader can access only the reading methods.

The size of packets has some effect on performance. In general, the smaller the packet size, the more
fragmented the data is within a file. The more fragmented a file is, the less efficient it will be to reconstruct it.
In a streaming scenario, this may not be an important consideration, as the process of reading a file from an
Internet source is generally inefficient. When dealing with a file locally however, this might be a consideration.

See Also

IWMPacketSize Interface
IWMPacketSize2 Interface
Working with Profiles

© 2000-2003 Microsoft Corporation. All rights reserved.

Writing ASF Files
You can use the writer object of the Windows Media Format SDK to create ASF files from digital media data.
To create an instance of the writer object, call the WMCreateWriter function. The writer object coordinates
the functionality of a number of components, including codecs, which are external to the Windows Media
Format SDK.

Previous Next

Previous Next

Previous Next

Previous Next

The basic functionality of the writer object can be broken down into the following steps. In these steps, "the
application" refers to the program you write using the Windows Media Format SDK.

1. The application supplies the writer with a profile to use in creating the ASF file. When the writer loads
the profile data, it assigns an input number to each connection of the profile.

2. The application supplies the writer with an output file name for the file to be written. The writer creates a
writer file sink object to manage the file creation and input. For more information, see Writer File Sink
Object.

3. The writer creates a header for the new file based on information in the profile.
4. The application passes uncompressed samples to the writer. Samples are passed one at a time in buffers

wrapped in buffer objects. The application should pass samples for each stream concurrently so that the
writer receives all samples in presentation-time order.

5. The writer passes the samples to the appropriate codec for compression. When the writer receives the
compressed samples, it interleaves them with samples from the other streams so that samples go into the
file in presentation time order irrespective of stream. The sample data is then made into packets and
written to the data section of the file.

6. When all samples are processed, the writer can add an index to the file to enhance seeking performance.

These steps are illustrated in the WMStats sample application, among others. For more information, see Sample
Applications.

The writer also supports more advanced functionality, enabling you to do the following:

Edit metadata in the header of the file.
Write precompressed samples.
Write to network sinks for streaming live data.
Write to file sinks for advanced file control options.
Write to push sinks for distribution to servers that will deliver content to end users.
Deliver postview samples for verification of output.
Deliver writer-performance statistics.

The following sections describe the use of the writer object in detail.

Section Description

To Use Profiles with the Writer Describes how to specify a profile to use with the
writer.

Working with Inputs Describes how to identify and configure the input
settings in the writer.

To Edit Metadata with the Writer Describes how to use the writer to edit metadata for a
new file.

To Write Samples Describes how to pass samples to the writer.

Writing Compressed Samples Describes how to pass pre-compressed samples to the
writer.

Writing Image Streams Describes how to configure an input for an image
stream.

Writing Video Image Samples Describes how to configure Video Image samples.

Writing Variable Bit Rate Streams Describes how to write variable bit rate (VBR)

See Also

Programming Guide
Writer File Sink Object
Writer Network Sink Object
Writer Object

© 2000-2003 Microsoft Corporation. All rights reserved.

To Use Profiles with the Writer
The writer uses profile data to create ASF files. You must specify a profile for use before doing anything else
with the writer.

You can set a system profile for use with the writer by passing the profile ID to the
IWMWriter::SetProfileByID method.

To specify a custom profile for use with the writer, you must obtain an IWMProfile interface to an object
containing the desired profile data. You can use one of the loading methods of the IWMProfileManager
interface to accomplish this. After you have a valid IWMProfile interface, you can pass a pointer to it to the
IWMWriter::SetProfile method. For more information about profile settings, see Working with Profiles.

If you make changes to the profile object by using the IWMProfile interface after setting the profile in the
writer, you must call SetProfile again, or else the changes will not be reflected in the writer. However, calling

streams.

Using Two-Pass Encoding Describes how to have the codec perform a
preliminary pass before writing the file.

To Force Key-Frame Insertion Describes how to manually force the codec to encode
a sample as a key frame.

To Manage Writer Latency Describes how to minimize the time it takes the
writer to process samples into an output file or sink.

Working with Writer Sinks Describes how to use writer sinks to deliver your
content to files or network locations.

To Get Writer Statistics Describes how to get statistics for the writer.

To Use Writer Postview Describes how to get uncompressed samples as you
write a file for verification.

Previous Next

Previous Next

SetProfile will reset all header attributes, so be sure to set any required header attributes after calling this
method.

The following example function sets the profile to "Windows Media Video 8 for Dial-up Modems (56 Kbps)":

#include <wmsysprf.h>

HRESULT SetProfileExample()
{
 HRESULT hr;
 IWMWriter *pWriter = NULL;
 hr = WMCreateWriter(NULL, &pWriter);
 if (FAILED(hr)) return hr;
 hr = pWriter->SetProfileByID(WMProfile_V80_56Video);
 return hr;
}

Note There are no predefined system profiles that use the Windows Media Audio and Video 9 Series codecs.
For more information, see Reusing Stream Configurations.

See Also

IWMWriter::SetProfileByID
Working with Profiles
Writing ASF files

© 2000-2003 Microsoft Corporation. All rights reserved.

Working with Inputs
Just as the proper stream configuration in the profile is required to get the codec to compress a stream, you must
also ensure that the type of uncompressed media you pass to the writer is accurately described. Every Windows
Media codec has an associated default input type, but several input types are supported. You can examine the
supported inputs and select the one that matches your data. The process of working with inputs is summarized
in the following steps:

1. When you load a profile for the writer to use, the writer object assigns an input number for each
connection in the profile. For more information about loading profiles for the writer, see To Use Profiles
with the Writer. Unless you are using mutual exclusion by bit rate, there is one connection for each
stream. Streams that are mutually exclusive by bit rate share a single connection.

2. Your application should identify the input numbers for the file. For more information about identifying
input numbers, see To Identify Inputs By Number.

3. For each input, you should ensure that the input format matches your data. You can enumerate the input
formats supported by the SDK. For more information, see To Enumerate Input Formats. You cannot

Previous Next

Previous Next

enumerate the input formats of arbitrary streams or streams that are already compressed. For more
information about these special cases, see Arbitrary and Precompressed Stream Inputs.

4. Assign the correct input format for each connection. For more information, see Assigning Input Formats.
5. Some codec and writer features are configured at encoding time instead of in the profile. To configure

these features, you must use input settings. For more information, see To Set Input Settings.

See Also

Writing ASF Files

© 2000-2003 Microsoft Corporation. All rights reserved.

To Identify Inputs By Number
Every sample you pass to the writer must be associated with an input number. Each input number corresponds
to one or more streams in the profile that the writer is using to write the file. In a profile, media sources are
identified by a connection name. The writer associates an input number with each connection name when you
set the profile for the writer. Before you can pass samples to the writer, you must determine what data each
input is expecting. You cannot assume that the inputs will be in the same order as the streams in a profile, even
if this is often the case. Therefore, the only reliable way to match inputs with streams is to compare the
connection name of the input with the connection name of the stream.

To identify the connection names and corresponding input numbers for a loaded profile, perform the following
steps:

1. Create a writer object and set a profile to use. For more information about setting profiles in the writer,
see To Use Profiles with the Writer. You should know the connection names used for the streams in the
profile. You can get the connection name from within the profile by getting the stream configuration
object for each stream and calling IWMStreamConfig::GetConnectionName. For more information
about profiles and stream configuration objects, see Working with Profiles.

2. Retrieve the total number of inputs by calling IWMWriter::GetInputCount.
3. Loop through all of the inputs, performing the following steps for each.

Retrieve the IWMInputMediaProps interface for the input by calling
IWMWriter::GetInputProps.
Retrieve the connection name that corresponds to the input number by calling
IWMInputMediaProps::GetConnectionName. After you have the connection name, you know
the streams that are associated with the input numbers assigned by the writer.

The following example code displays the connection name for each input. For more information about using
this code, see Using the Code Examples.

HRESULT GetNamesForInputs(IWMWriter* pWriter)

Previous Next

Previous Next

{
 DWORD cInputs = 0;
 HRESULT hr = S_OK;
 WCHAR* pwszName = NULL;
 WORD cchName = 0;

 IWMInputMediaProps* pProps = NULL;

 // Get the total number of inputs for the file.
 hr = pWriter->GetInputCount(&cInputs);
 GOTO_EXIT_IF_FAILED(hr);

 // Loop through all supported inputs.
 for (DWORD inputIndex = 0; inputIndex < cInputs; inputIndex++)
 {
 // Get the input properties for the input.
 hr = pWriter->GetInputProps(inputIndex, &pProps);
 GOTO_EXIT_IF_FAILED(hr);

 // Get the size of the connection name.
 hr = pProps->GetConnectionName(0, &cchName);
 GOTO_EXIT_IF_FAILED(hr);

 if (cchName > 0)
 {
 // Allocate memory for the connection name.
 pwszName = new WCHAR[cchName];
 if (wszName == NULL)
 {
 hr = E_OUTOFMEMORY;
 goto Exit;
 }

 // Get the connection name.
 hr = pProps->GetConnectionName(pwszName, &cchName);
 GOTO_EXIT_IF_FAILED(hr);

 // Display the name.
 printf("Input # %d = %S\n", pwszName);
 } // end if

 // Clean up for next iteration.
 SAFE_ARRAY_DELETE(pwszName);
 SAFE_RELEASE(pProps);
 } // end for inputIndex

Exit:
 SAFE_ARRAY_DELETE(pwszName);
 SAFE_RELEASE(pProps);
 return hr;
}

See Also

IWMWriter Interface
Writing ASF files

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

To Enumerate Input Formats
Each of the Windows Media codecs accepts one or more types of input media for compression. The Windows
Media Format SDK enables you to input a wider variety of formats than those supported by the codecs. The
SDK does this by performing pre-processing transformations on the inputs when necessary, such as resizing
video frames or resampling audio. In any case, you must ensure that the input formats for the files you write
match the data you send to the writer. Each codec has a default input media format that is set in the writer when
the profile is loaded. You can examine the default input format by calling IWMWriter::GetInputProps.

The video codecs support the following formats: IYUV, I420, YV12, YUY2, UYVY, YVYU, YVU9, RGB 32,
RGB 24, RGB 565, RGB 555, and RGB 8. The audio codecs support PCM audio.

To enumerate the input formats supported by a codec, perform the following steps:

1. Create a writer object and set a profile to use. For more information about setting profiles in the writer,
see To Use Profiles with the Writer.

2. Identify the input number for which you want to check the formats. For more information about
identifying input numbers, see To Identify Inputs By Number.

3. Retrieve the total number of input formats supported by the desired input by calling
IWMWriter::GetInputFormatCount.

4. Loop through all of the supported input formats, performing the following steps for each.
Retrieve the IWMInputMediaProps interface for the input format by calling
IWMWriter::GetInputFormat.
Retrieve the WM_MEDIA_TYPE structure for the input format. Call
IWMMediaProps::GetMediaType, passing NULL for the pType parameter to get the size of the
structure. Then allocate memory to hold the structure and call GetMediaType again to get the
structure. IWMInputMediaProps inherits from IWMMediaProps, so you can make the calls to
GetMediaType from the instance of IWMInputMediaProps retrieved in the previous step.
The format described in the WM_MEDIA_TYPE structure contains all of the pertinent
information about the input format. The basic format of the media is identified by
WM_MEDIA_TYPE.subtype. For video streams, the pbFormat member points to a dynamically
allocated WMVIDEOINFOHEADER structure which contains further details about the stream,
including rectangle size. The size of the input frames is not required to match exactly a size
supported by the codec. If they do not match, the SDK run-time components, in many cases, will
automatically resize the input video frames to something the codec can accept.

The following example code finds the input format of the subtype passed as a parameter. For more information
about using this code, see Using the Code Examples.

HRESULT FindInputFormat(IWMWriter* pWriter,
 DWORD dwInput,
 GUID guidSubType,
 IWMInputMediaProps** ppProps)
{
 HRESULT hr = S_OK;
 DWORD cFormats = 0;

Previous Next

 DWORD cbSize = 0;

 WM_MEDIA_TYPE* pType = NULL;
 IWMInputMediaProps* pProps = NULL;

 // Set the ppProps parameter to point to NULL. This will
 // be used to check the results of the function later.
 *ppProps = NULL;

 // Find the number of formats supported by this input.
 hr = pWriter->GetInputFormatCount(dwInput, &cFormats);
 GOTO_EXIT_IF_FAILED(hr);

 // Loop through all of the supported formats.
 for (DWORD formatIndex = 0; formatIndex < cFormats; formatIndex++)
 {
 // Get the input media properties for the input format.
 hr = pWriter->GetInputFormat(dwInput, formatIndex, &pProps);
 GOTO_EXIT_IF_FAILED(hr);

 // Get the size of the media type structure.
 hr = pProps->GetMediaType(NULL, &cbSize);
 GOTO_EXIT_IF_FAILED(hr);

 // Allocate memory for the media type structure.
 pType = (WM_MEDIA_TYPE*) new BYTE[cbSize];
 if (pType == NULL)
 {
 hr = E_OUTOFMEMORY;
 goto Exit;
 }

 // Get the media type structure.
 hr = pProps->GetMediaType(pType, &cbSize);
 GOTO_EXIT_IF_FAILED(hr);

 if(pType->subtype == guidSubType)
 {
 ppProps = &pProps;
 *ppProps->AddRef();
 goto Exit;
 }

 // Clean up for next iteration.
 SAFE_ARRAY_DELETE(pType);
 SAFE_RELEASE(pProps);
 } // End for formatIndex.

 // If execution made it to this point, no matching format was found.
 hr = NS_E_INVALID_INPUT_FORMAT;

Exit:
 SAFE_ARRAY_DELETE(pType);
 SAFE_RELEASE(pProps);
 return hr;
}

See Also

IWMWriter Interface
Writing ASF files

© 2000-2003 Microsoft Corporation. All rights reserved.

Assigning Input Formats
When you have identified the input format that matches your data, you can set it for use by the writer by calling
IWMWriter::SetInputProps.

For video streams, you must set the size of the frames in the input samples. The following example code
demonstrates how to configure and set a video input. It uses the FindInputFormat function defined in the To
Enumerate Input Formats section to get the input format for 24-bit RGB video. For more information about
using this code, see Using the Code Examples.

HRESULT ConfigureVideoInput(IWMWriter* pWriter,
 DWORD dwInput,
 GUID guidSubType,
 LONG lFrameWidth,
 LONG lFrameHeight)
{
 HRESULT hr = S_OK;
 DWORD cbSize = 0;
 LONG lStride = 0;

 IWMInputMediaProps* pProps = NULL;
 WM_MEDIA_TYPE* pType = NULL;
 WMVIDEOINFOHEADER* pVidHdr = NULL;
 BITMAPINFOHEADER* pBMHdr = NULL;

 // Get the base input format for the required subtype.
 hr = FindInputFormat(pWriter, dwInput, guidSubType, &pProps);
 GOTO_EXIT_IF_FAILED(hr);

 // Get the size of the media type structure.
 hr = pProps->GetMediaType(NULL, &cbSize);
 GOTO_EXIT_IF_FAILED(hr);

 // Allocate memory for the media type structure.
 pType = (WM_MEDIA_TYPE*) new BYTE[cbSize];
 if (pType == NULL)
 {
 hr = E_OUTOFMEMORY;
 goto Exit;
 }

 // Get the media type structure.
 hr = pProps->GetMediaType(pType, &cbSize);
 GOTO_EXIT_IF_FAILED(hr);

 // Adjust the format to match your source images.

Previous Next

Previous Next

 // First set pointers to the video structures.
 pVidHdr = (WMVIDEOINFOHEADER*) pType->pbFormat);
 pBMHdr = &(pVidHdr->bmiHeader);

 pBMHdr->biWidth = lFrameWidth;
 pBMHdr->biHeight = lFrameHeight;

 // Stride = (width * bytes/pixel), rounded to the next DWORD boundary.
 lStride = (lFrameWidth * (pbmi->biBitCount / 8) + 3) & ~3;

 // Image size = stride * height.
 pBMHdr->biSizeImage = lFrameHeight * lStride;

 // Apply the adjusted type to the video input.
 hr = pProps->SetMediaType(pType);
 GOTO_EXIT_IF_FAILED(hr);

 hr = pWriter->SetInputProps(dwInput, pProps);

Exit:
 SAFE_ARRAY_DELETE(pType);
 SAFE_RELEASE(pProps);
 pVidHdr = NULL;
 pBMHdr = NULL;
 return hr;
}

See Also

Working with Inputs

© 2000-2003 Microsoft Corporation. All rights reserved.

Arbitrary and Precompressed Stream Inputs
Only inputs that are to be compressed by one of the Windows Media codecs have multiple possible inputs. The
other types of possible inputs are arbitrary inputs and precompressed inputs. The requirements for input formats
for these types are described in this section.

Arbitrary Stream Inputs

Inputs for arbitrary stream types are the same as the stream formats described in the profile. You should not
have to set input formats for these types.

Precompressed Stream Inputs

Previous Next

Previous Next

When copying a stream from one file to another, you pass samples that are already compressed. In this case,
you must set the input properties object to NULL to inform the writer that it does not need to validate the data
you are passing in. To set the input format to NULL, call IWMWriter::SetInputProps and pass NULL as the
second parameter. When calling this method with a NULL parameter, you must make the call before calling
BeginWriting.

When using precompressed streams, you must manually copy codec information to the file header before
writing. To obtain the codec information, call IWMHeaderInfo2::GetCodecInfoCount and
IWMHeaderInfo2::GetCodecInfo to enumerate the codecs associated with the file in the reader. Select the
codec information that matches the stream configuration of the precompressed stream. Then set the codec
information in the writer by calling IWMHeaderInfo3::AddCodecInfo, passing the information obtained from
the reader.

See Also

Working with Inputs

© 2000-2003 Microsoft Corporation. All rights reserved.

To Set Input Settings
The basic properties of input media and stream media are defined by the WM_MEDIA_TYPE structure. For
input formats, the media type information is set by your application. For stream formats, the media type
information is set in the profile you assign to the writer. Some properties are independent of media type and
must be set for an input before writing begins. These properties are codec and writer features that are
independent of stream type, and must be set after the profile is assigned in the writer but before writing begins.

Setting an input setting requires a call to IWMWriterAdvanced2::SetInputSetting. You can also check the
current value of a setting with a call to IWMWriterAdvanced2::GetInputSetting.

See Also

To Use Profiles with the Writer
Writing ASF Files
Writing Image Streams

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

To Edit Metadata with the Writer
You can access, directly from the writer, the metadata that will go into the header of the file. Call the
QueryInterface method of any interface in the writer object to obtain a pointer to the IWMHeaderInfo or
IWMHeaderInfo2 interface. After you have a pointer to the appropriate interface, you can manipulate the
metadata just as you would if you had loaded the file in the metadata editor object. For more information about
editing metadata, see Working with Metadata.

You must make all changes to the metadata before calling IWMWriter::BeginWriting.

Note If you set metadata for a file, write the file, and then prepare to write a new file without releasing the
writer, some metadata that was set for the first file will remain set and will be included with subsequent files.
When writing several files with the same instance of the writer object, you have two options: check all the
metadata before writing each file, or only write in the writer metadata that applies to all of the files you are
writing.

See Also

Writing ASF files

© 2000-2003 Microsoft Corporation. All rights reserved.

To Write Samples
When you have identified and configured the inputs for the file you are writing, you can begin passing samples
to the writer. You should pass samples in presentation-time order, if possible, to make the writing process more
efficient.

Before passing any samples, you must set the writer to accept them by calling IWMWriter::BeginWriting.

To pass a sample to the writer, perform the following steps:

1. Allocate a buffer and retrieve a pointer to the INSSBuffer interface by calling
IWMWriter::AllocateSample.

2. Retrieve the address of the buffer created in step 1 by calling INSSBuffer::GetBuffer.

Previous Next

Previous Next

Previous Next

3. Copy your sample data to the buffer location, making sure that the sample passed will fit in the allocated
buffer. You can use any memory copying function to copy your data. A common choice is memcpy,
which is included in the standard C run-time library.

4. Update the amount of data used in the buffer to reflect the actual size of the sample by calling
INSSBuffer::SetLength.

5. Pass the buffer interface to the writer along with the input number and sample time using the
IWMWriter::WriteSample method. All audio samples for an input represent the same duration of
content, so you can figure the sample time by adding the sample duration to a running total. For video,
you need to calculate the time based on the frame rate.

WriteSample works asynchronously and might not finish writing the data from the buffer before your
application is ready to call the method again. Therefore, it is important to call AllocateSample once for each
call to WriteSample. However, you can release the INSSBuffer interface immediately after calling
WriteSample.

When you have finished passing samples, call IWMWriter::EndWriting.

Note It is important that samples from all streams in the file are passed to the writer in synchronization with
one another. That is, whenever possible you should pass samples to the writer in presentation-time order within
the sync tolerance specified in IWMWriterAdvanced::SetSyncTolerance.

Streams should also end at approximately the same time. For example, you should not write a file with an audio
stream that is 45 seconds long and a video stream that is 50 seconds long. If you encode such a file with
unaltered inputs, some of the audio data at the end of the stream will be dropped (even though it is the shorter
stream). To make the file encoding work, you should add 5 seconds of silence to the audio input so that one
stream does not end several seconds before another. It is not necessary for stream types with intermittent
samples, like text or image streams, to be padded in this way.

See Also

INSSBuffer Interface
IWMWriter Interface
Writing ASF Files

© 2000-2003 Microsoft Corporation. All rights reserved.

Writing Compressed Samples
For some audio or video streams, you may want to pass samples that are already compressed instead of passing
raw data. This feature is used to copy an existing stream or to write samples compressed with a third-party
codec. The process of writing a compressed sample is identical to writing an uncompressed sample, except that
you use IWMWriterAdvanced::WriteStreamSample instead of IWMWriter::WriteSample. For more

Previous Next

Previous Next

information about writing uncompressed samples, see To Write Samples.

When you write compressed samples, for CBR profiles, the writer will drop some samples, if necessary, to keep
the content within the specified bit rate and buffer window values. For VBR, the writer will not drop samples,
but there is no way to be sure that the bit rate and buffer window values will be correct.

If you are copying a stream from one file to another, you should always copy the stream configuration object
from the profile of the original file to the profile of the new file. This ensures that you have the correct bit rate
and buffer window information. If you copy a compressed stream to a stream that has a lower buffer window
set, samples will be dropped during file writing.

See Also

Writing ASF Files

© 2000-2003 Microsoft Corporation. All rights reserved.

Writing Image Streams
The inputs for an image stream must be RGB-formatted bitmap images. The writer coordinates the compression
of input image samples using the JPEG format. Before you begin writing a file containing an image stream, you
must set an image quality for the input, using the g_wszJPEGCompressionQuality setting. Use
IWMWriterAdvanced2::SetInputSetting to set the quality to a DWORD value ranging from 1 to 100. Low
values represent a high compression ratio at the expense of quality, while high values produce high quality
images that require more space.

Image streams often require larger buffer windows than ordinary video streams. The exact size required
depends on the type of image and the image quality, among other factors. Use trial and error to determine the
appropriate size for the images you intend to process.

See Also

Image Streams
To Set Input Settings
Writing ASF Files

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Writing Video Image Samples
A Video Image stream is a video that contains a series of still images. The images can move within the frame,
and each image can blend into the next. Video Image streams are encoded using the Windows Media Video 9
Image codec. The output video is similar to that created by the Windows Media Video 9 codec.

To create a profile that contains a Video Image stream, start by enumerating the video codecs as described in
Getting Stream Configuration Information from Codecs. Search for the codec that supports the
WMMEDIASUBTYPE_WMVP subtype.

After you set the profile on the writer object, call IWMWriter::GetInputProps to get the media properties for
the Video Image input stream. Get the media type from the media properties object, by calling
IWMMediaProps::GetMediaType, and change the subtype to WMMEDIASUBTYPE_VIDEOIMAGE. Then
call IWMMediaProps::SetMediaType with the modified input type. Now you are ready to begin sending
samples to the writer object.

Each sample must begin with a WMT_VIDEOIMAGE_SAMPLE structure. Additionally, samples may
contain bitmap images. An image is only attached to a sample for the first frame in which it appears. All
additional frames using that image need only information in the structure. Input bitmaps must be formatted as
RGB, 24 bits per pixel. All of the deformations performed on the images are described in the structure.

The Windows Media Video 9 Image codec supports panning and zooming over images. The codec will
maintain only two images at any time, a current image and a previous image. The two images can be blended
together using blend ratios that you supply. When you pass a new image to the writer, the previous image is
released, the current image becomes the previous image, and the new image in the sample becomes the current
image.

The movement (zooming and panning) of each image is handled independently. The
WMT_VIDEOIMAGE_SAMPLE structure includes transformation members for both the current image and
the previous image. In this section, the current image members are mentioned as examples, but the same
transformations can be applied to the previous image using the corresponding members.

From the time that you include a second picture, you must control the blending of the two images. Before
multiplying by the integer denominator, the sum of the values of lCurBlendCoef1 and lPrevBlendCoef1 must
equal 1. Each of these values specifies the percentage of the blend. For example, you can slowly fade a new
image into the current one by starting a sequence of samples with lPrevBlendCoef1 set to 1 and
lCurBlendCoef1 set to zero. Then create 100 more samples, each one incrementing lCurBlendCoef1 by 0.01
and decrementing lPrevBlendCoef1 by the same amount. This results in a series of 101 video frames starting
with a clear image and ending with a different image.

To illustrate the procedure of applying transforms to an image to get a frame of video, consider the diagram
below. On the left side is the original image, which is a 640 x 480 bitmap. On the right side is the transformed
image as it appears in a frame of an encoded video image stream. The transformation scenario shown in the
diagram has the image scaled to twice normal size along both axes and offset 100 pixels along both axes. To
configure this transformation, the members of WMT_VIDEOIMAGE_SAMPLE are set as follows (where z =
the integer denominator WMT_VIDEOIMAGE_INTEGER_DENOMINATOR):

Previous Next

lCurMotionXtoX (the scaling along the X axis) is set to 2 * z
lCurMotionXoffset (the image offset along the X axis) is set to -100 * z
lCurMotionYtoY (the scaling along the Y axis) is set to 2 * z
lCurMotionYoffset (the image offset along the Y axis) is set to -100 * z

Of course, this example is only a single frame. You must include information for every frame in the stream.
Using the diagram again, assume that you want to start your Video Image stream using the original image and
move to the transformation shown over a period of 5 seconds. For this example assume that the frame rate for
your stream is set to 24 frames per second. Each sample needs to have values set in the structure equal to the
destination divided by the number of frames in the sequence. In this case there are 120 frames in the sequence
(24 frames per second * 5 seconds). The values in the WMT_VIDEOIMAGE_SAMPLE structure for the first
frame in the sequence are set as follows (where z = the integer denominator
WMT_VIDEOIMAGE_INTEGER_DENOMINATOR):

lCurMotionXtoX (the scaling along the X axis) is set to (2 / 120) * z
lCurMotionXoffset (the image offset along the X axis) is set to (-100 / 120) * z
lCurMotionYtoY (the scaling along the Y axis) is set to (2 / 120) * z
lCurMotionYoffset (the image offset along the Y axis) is set to (-100 / 120) * z

The values for subsequent frames are equal to the totals so far plus an increment equal to the values in the list
above for the first sample. The resulting video stream will begin with the full 640 x 480 image and, over the
course of 5 seconds, will zoom to 200% while sliding down and to the right.

You cannot pass two images in consecutive samples without one of the samples being marked as an output.

For more information about the values to set for deformations, see WMT_VIDEOIMAGE_SAMPLE.

Note If you want to include audio in a file with a Video Image stream, you must use uncompressed audio
input. To combine a Video Image stream with an existing compressed audio stream, you must decompress the
audio and pass the samples in uncompressed. If you pass compressed samples to the writer when writing a
Video Image stream, an error will occur resulting in samples being dropped from the video.

Also, compressed Video Image files with no audio streams can contain several very small, highly compressed
video frames in a single ASF packet, which can result in a poor playback experience on previous versions of
Windows Media Player. To avoid this problem, the best solution is to insert a silent audio stream into the file,
although this will also increase the file size.

See Also

Video Image
Writing ASF files

© 2000-2003 Microsoft Corporation. All rights reserved.

Writing Variable Bit Rate Streams
Variable bit rate (VBR) streams are written the same way as constant bit rate (CBR) streams. The only
difference is in the processing performed internally by the writer and the codecs. However, bit rate based VBR
(both constrained and unconstrained) requires a preprocessing pass in the writer.

You should check the return value for the first call you make to IWMWriter::WriteSample for each stream. If
the error code returned is NS_E_INVALID_NUM_PASSES, the stream requires a preprocessing pass.

See Also

Using Two-Pass Encoding
Writing ASF Files

© 2000-2003 Microsoft Corporation. All rights reserved.

Using Two-Pass Encoding
Some codecs support two-pass encoding for certain formats. In some cases, a codec requires that a specified
format be encoded using two passes. When two-pass encoding is used, you send the samples for the stream to
the codec before the encoding pass. The codec analyzes the samples and configures the encoding pass based on
the analysis. This results in a more efficiently encoded file.

To determine whether a codec supports one-pass encoding, or two-pass, or both, for a given format, call
IWMCodecInfo3::SetCodecEnumerationSetting with g_wszNumPasses and the appropriate value, and then
enumerate the formats to see if the one you want is returned. For more information about the Windows Media

Previous Next

Previous Next

Previous Next

Previous Next

codecs that support two-pass encoding, see Choosing an Encoding Method.

You can use two-pass encoding with the Windows Media Format SDK by calling methods of the
IWMWriterPreprocess interface.

In cases where two-pass encoding is required for a particular format, but the application fails to perform a
preprocessing pass, the first call to WriteSample will fail with NS_E_INVALID_NUM_PASSES.

The following example function demonstrates how to perform two-pass encoding. This function is called after
the writer has been set with a profile and started. For more information about using this code, see Using the
Code Examples.

HRESULT PreProcess(IWMWriter* pWriter, DWORD dwInputNum)
{
 HRESULT hr = S_OK;
 DWORD dwMaxPass = 0;

 IWMWriterPreprocessor* pPreProc = NULL;

 // Get the writer preprocessor interface.
 hr = pWriter->QueryInterface(IID_IWMWriterPreprocessor,
 (void**) &pPreProc);
 GOTO_EXIT_IF_FAILED(hr);

 // Check that the input can be preprocessed.
 hr = pPreProc->GetMaxPreprocessingPasses(dwInputNum,0, &dwMaxPass);
 GOTO_EXIT_IF_FAILED(hr);

 if(dwMaxPass == 0)
 {
 hr = NS_E_INVALID_REQUEST;
 goto Exit;
 }

 // Set the number of preprocessing passes to the maximum.
 hr = pPreProc->SetNumPreprocessingPasses(dwInputNum, 0, dwMaxPass);
 GOTO_EXIT_IF_FAILED(hr);

 // Call BeginWriting before calling BeginPreprocessingPass
 hr = pWriter->BeginWriting();

 // Start preprocessing the first pass.
 hr = pPreProc->BeginPreprocessingPass(dwInputNum, 0);
 GOTO_EXIT_IF_FAILED(hr);

 // TODO: Make repeated calls to pPreProc->PreprocessSample to
 // preprocess all the samples in the stream.

 // End preprocessing.
 hr = pPreProc->EndPreprocessingPass(dwInputNum, 0);
 GOTO_EXIT_IF_FAILED(hr);

 // TODO: If the maximum number of preprocessing passes is greater
 // than one, repeat the preprocessing steps for each pass.

Exit:
 SAFE_RELEASE(pPreProc);
 Return hr;
}

See Also

Writing ASF Files

© 2000-2003 Microsoft Corporation. All rights reserved.

To Force Key-Frame Insertion
The Windows Media Video 9 codec supports forced key-frame insertion. When you pass a sample to the writer,
you can specify that it must be encoded as a key frame.

To force key-frame insertion for a sample, perform the following steps.

1. Allocate a buffer to hold the sample, and retrieve a pointer to the INSSBuffer interface containing the
buffer by calling IWMWriter::AllocateSample.

2. Retrieve the location and size of the buffer created in step 1 by calling
INSSBuffer::GetBufferAndLength.

3. Copy your sample data to the buffer location, making sure that the sample passed will fit in the allocated
buffer. Depending upon the source of your samples, you can use a variety of functions to copy the data.
For example, if you are copying a stream from an AVI file, you can use the AVI function,
AVIStreamRead.

4. Update the amount of data used in the buffer to reflect the actual size of the sample by calling
INSSBuffer::SetLength.

5. Obtain a pointer to the INSSBuffer3 interface by calling INSSBuffer::QueryInterface.
6. Set the sample as a forced key frame by calling the INSSBuffer3::SetProperty method to set the

WM_SampleExtensionGUID_OutputCleanPoint property. This property is a Boolean value; set it to
TRUE.

7. Pass the buffer interface to the writer along with the input number and sample time by using the
IWMWriter::WriteSample method.

See Also

IWMWriter::WriteSample
To Write Samples
Variable Bit Rate (VBR) Encoding
Writing ASF files

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

To Manage Writer Latency
It takes time for the writer to process samples. The amount of time between passing an input sample and the
writing of an output sample is called the latency of the writer. A number of factors contribute to writer latency,
and you can reduce it in several ways.

The most obvious factor involved in writer latency is the time it takes to compress a sample. Under most
circumstances, you will have little or no control over this. If bandwidth is not a big concern, you can reduce
latency by using less compression. Of course, you can achieve the least latency by passing samples that are
already compressed.

The next factor, and one over which you usually do have control, is the order in which samples are passed to the
reader. You can achieve better latency by passing samples in order of presentation time, and by ensuring that
the input samples are well synchronized between all input streams. The greater the discrepancy in presentation
times between the samples for different streams, the more latency will result. You can set a maximum for the
discrepancy between input samples by calling IWMWriterAdvanced::SetSyncTolerance.

See Also

Writing ASF files

© 2000-2003 Microsoft Corporation. All rights reserved.

Working with Writer Sinks
The writer object of the Windows Media Format SDK processes input media data into a bit stream. However,
the writer object does not deliver the bit stream to its final destination (either to a file or a network location). To
write the ASF content to a usable format, you must use writer sinks.

The writer object supports three types of sinks: file sinks, network sinks, and push sinks. A file sink writes ASF
content to an ASF file on disk. A network sink broadcasts ASF content from a network address. A push sink
delivers data to a server running Windows Media Services so that the server can make the content available to
its intended audience. You can also create your own sinks to deliver ASF data in whatever way is required by
your application. For information about network sinks and push sinks, see Sending ASF Data Over a Network.

Previous Next

Previous Next

Previous Next

The remainder of this section discusses writer sinks.

You can configure one or more sinks for each instance of the writer you use. Each sink handles only a single
destination. For example, if you want to write three files at once, you must create and configure a separate file
sink for each.

The following sections describe the use of writer sinks.

See Also

IWMWriterAdvanced Interface
IWMWriterSink Interface
Writing ASF Files

© 2000-2003 Microsoft Corporation. All rights reserved.

Adding Sinks to the Writer
Writer sinks are separate objects from the writer and must be added to the writer to be used. If you are writing
to a file, you can simply call IWMWriter::SetOutputFilename, which will set up the file sink automatically.
Otherwise, to add a sink to the writer, call the IWMWriterAdvanced::AddSink method. AddSink requires a
pointer to the IWMWriterSink interface of the sink.

When you are finished using a sink, you should close it by calling the appropriate method, depending on the
type of sink, and then remove it from the writer by calling IWMWriterAdvanced::RemoveSink.

The following example code shows how to create a writer file sink and add it to the writer. For more

Section Description

Adding Sinks to the Writer Describes how to add sinks to the writer.

Enumerating Sinks Describes how to enumerate the sinks that have been
added to the writer.

Getting Error Messages from a Sink Describes how to configure sinks to deliver status
messages to your application.

Using File Sinks Describes how to use a writer file sink to create an
ASF file on disk.

Using Custom Sinks Describes how to create and use your own custom
sinks to deliver ASF data.

Previous Next

Previous Next

information about using this code, see Using the Code Examples.

HRESULT AddFileSink(IWMWriterFileSink** ppFileSink, IWMWriter* pWriter)
{
 HRESULT hr = S_OK;
 IWMWriterSink* pSinkBase = NULL;
 IWMWriterAdvanced* pWriterAdvanced = NULL;

 hr = CreateWriterFileSink(ppFileSink);
 GOTO_EXIT_IF_FAILED(hr);

 hr = *ppFileSink->QueryInterface(IID_IWMWriterSink,
 (viod**) &pSinkBase);
 GOTO_EXIT_IF_FAILED(hr);

 hr = pWriter->QueryInterface(IID_IWMWriterAdvanced,
 (void**) &pWriterAdvanced);
 GOTO_EXIT_IF_FAILED(hr);

 hr = pWriterAdvanced->AddSink(pSinkBase);
 GOTO_EXIT_IF_FAILED(hr);

Exit:
 SAFE_RELEASE(pSinkBase);
 SAFE_RELEASE(pWriterAdvanced);
 return hr;
}

See Also

Getting Error Messages from a Sink
IWMWriterAdvanced Interface
Working with Writer Sinks

© 2000-2003 Microsoft Corporation. All rights reserved.

Enumerating Sinks
The writer can have many sinks associated with it. You can enumerate the sinks that have been added to the
writer by using IWMWriterAdvanced::GetSinkCount and IWMWriterAdvanced::GetSink.

The example code in the Getting Error Messages from a Sink demonstrates sink enumeration.

Note When enumerating sinks, the default file sink created in response to a call to
IWMWriter::SetOutputFilename will be enumerated along with any other sinks you have added. If you are
using only the default file sink, you can access it by calling GetSink for sink index 0.

Previous Next

Previous Next

See Also

IWMWriterAdvanced Interface
Working with Writer Sinks

© 2000-2003 Microsoft Corporation. All rights reserved.

Getting Error Messages from a Sink
The writer object does not send messages to the IWMStatusCallback::OnStatus callback method. However,
you can set writer sinks to send messages to OnStatus. Each sink must be set to deliver status separately, but all
sinks can report to the same callback.

To set a sink to deliver status messages to OnStatus, call the IWMRegisterCallback::Advise method.

The following example code demonstrates how to set all of the sinks to deliver status messages to an OnStatus
callback. In this example, the index of each sink will be used as the context parameter so that the OnStatus
method can differentiate between messages from the different sinks. For more information about using this
code, see Using the Code Examples.

HRESULT SetSinksForStatus (IWMWriter* pWriter, IWMStatusCallback* pStatus)
{
 HRESULT hr = S_OK;
 DWORD cSinks = 0;
 DWORD dwSinkIndex = 0;

 IWMWriterAdvanced* pWriterAdvanced = NULL;
 IWMWriterSink* pSink = NULL;
 IWMRegisterCallback* pRegisterCallbk = NULL;

 // Get the advanced writer interface.
 hr = pWriter->QueryInterface(IID_IWMWriterAdvanced,
 (void**) &pWriterAdvanced);
 GOTO_EXIT_IF_FAILED(hr);

 // Get the number of sinks that are added to the writer object.
 hr = pWriterAdvanced->GetSinkCount(&cSinks);
 GOTO_EXIT_IF_FAILED(hr);

 // Loop through all of the sinks.
 for(dwSinkIndex = 0; dwSinkIndex < cSinks; dwSinkIndex++)
 {
 // Get the base interface for the next sink.
 hr = pWriterAdvanced->GetSink(dwSinkIndex, &pSink);
 GOTO_EXIT_IF_FAILED(hr);

Previous Next

Previous Next

 // Get the callback registration interface for the sink.
 hr = pSink->QueryInterface(IID_IWMRegisterCallback,
 (void**) pRegisterCallbk);
 GOTO_EXIT_IF_FAILED(hr);

 // Register the OnStatus callback.
 hr = pRegisterCallbk->Advise(pStatus, (void*) &dwSinkIndex);
 GOTO_EXIT_IF_FAILED(hr);

 // Release for the next iteration.
 SAFE_RELEASE(pSink);
 SAFE_RELEASE(pRegisterCallbk);
 } // end for dwSinkIndex

Exit:
 SAFE_RELEASE(pSink);
 SAFE_RELEASE(pRegisterCallbk);
 SAFE_RELEASE(pWriterAdvanced);
 return hr;
}

See Also

IWMRegisterCallback Interface
Working with Writer Sinks

© 2000-2003 Microsoft Corporation. All rights reserved.

Using File Sinks
Under normal circumstances, you can simply pass the writer an output file name using the
IWMWriter::SetOutputFilename method, and the writer object will write the file to disk automatically. In
this case, the writer is actually creating and controlling a writer file sink object that handles writing the file to
disk. A writer file sink object controls the flow of data from the writer object to a single file.

You can create your own file sinks to get more control over how the sink writes the file. You can also access the
default writer file sink created by the writer in response to a call to SetOutputFilename.

Creating File Sinks

To create a file sink and add it to the writer, perform the following steps.

1. Create a new sink by calling the WMCreateWriterFileSink function.
2. Supply a file name for the sink by calling IWMWriterFileSink::Open.
3. Add the file sink to the writer by calling IWMWriterAdvanced::AddSink.

Previous Next

Previous Next

4. Perform writing in the usual way.
5. After writing is completed, the sink will close the file automatically.

Stopping and Starting File Sinks

After writing operations begin, you can stop writing to a file sink by calling IWMWriterFileSink2::Stop.

There are many potential reasons why you would want to stop writing to a sink. For example, if you are
recording from a live source, you may only be interested in some of the content.

You can resume writing to a file sink by calling IWMWriterFileSink2::Start. Both Stop and Start use
presentation times to control approximately when the command is executed. You can use the
IWMWriterFileSink3 methods to gain more control over start and stop times.

Closing File Sinks

Normally, a file sink is closed automatically. If you are finished writing to a sink, but writing operations to
other sinks are continuing, you should explicitly close the sink to conserve resources. To close a file sink, call
IWMWriterFileSink2::Close.

Getting Sink Statistics

You can get the file size and duration for an open sink by calling IWMWriterFIleSink2::GetFileSize and
IWMWriterFileSink2::GetFileDuration respectively.

See Also

IWMWriterFileSink Interface
IWMWriterFIleSink2 Interface
IWMWriterFileSink3 Interface
Writer File Sink Object
Writing ASF files

© 2000-2003 Microsoft Corporation. All rights reserved.

Using Custom Sinks
If you have a special writing need, you can create your own writer sinks. The writer maintains one-way
communication with a sink by making calls to the methods of IWMWriterSink. To create your own sink,
implement the IWMWriterSink interface in a class in your application. This process is very similar to
implementing any other callback interface used by the objects of the Windows Media Format SDK. For more
information about callbacks, see Using the Callback Methods.

Previous Next

Previous Next

The buffer received in IWMWriterSink::OnHeader should be written to the beginning of the file, and all
buffers received in OnDataUnit should be written out sequentially. OnHeader will be called at the beginning
but might be called at other times, too, and if it is, you should, if possible, overwrite the original header. If your
application is not able to do this for some reason, then simply ignore the subsequent OnHeader calls.

Your custom sink should communicate its status to your writing application by making calls to the
IWMStatusCallback::OnStatus callback method. If you implement your sink as a COM object, you may want
to expose the IWMRegisterCallback interface. However, you can pass the address of the OnStatus callback to
your sink and set a context in any way you like.

See Also

Working with Writer Sinks

© 2000-2003 Microsoft Corporation. All rights reserved.

To Get Writer Statistics
The writer can provide statistical information about writing operations. There are two methods for gathering
writer statistics: IWMWriterAdvanced::GetStatistics and IWMWriterAdvanced3::GetStatisticsEx. The
information retrieved by GetStatisticsEx is more specific than the information retrieved by GetStatistics.

Both methods populate structures with statistical information. GetStatistics uses the
WM_WRITER_STATISTICS structure, and GetStatisticsEx uses the WM_WRITER_STATISTICS_EX
structure. GetStatisticsEx does not duplicate the data obtained by GetStatistics. For the most complete
information, you should call both methods.

See Also

IWMWriterAdvanced Interface
IWMWriterAdvanced3 Interface
Writing ASF files

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

To Use Writer Postview
The writer object provides postviewing capabilities so that you can verify written content without having to set
up the reader object. The writer object does not support postviewing for audio content.

The writer postviewer works in much the same way as the asynchronous reader object, only with fewer features.
For detailed information about reading digital media, see Reading ASF files.

To implement the postviewer, perform the following steps.

1. Implement the IWMWriterPostViewCallback::OnPostViewSample callback. This method is
essentially the same as IWMReaderCallback::OnSample except that it specifies stream numbers
instead of outputs.

2. Set up for writing as usual.
3. Obtain a pointer to the IWMWriterPostView interface of the writer object by calling

IWMWriter::QueryInterface.
4. Set the callback for the postviewer to use by calling IWMWriterPostView::SetPostViewCallback.
5. For each stream for which you want to receive postview samples, call

IWMWriterPostView::SetReceivePostViewSamples. You can check to see whether a stream is set to
receive postview samples by calling IWMWriterPostView::GetReceivePostViewSamples.

6. You can manipulate the sample formats, just like you would the output formats in the reader object or
synchronous reader object.

7. When you start writing the file, you will begin to receive samples in your implementation of the
OnPostViewSample callback method.

See Also

IWMWriterPostViewCallback Interface
Writing ASF files

© 2000-2003 Microsoft Corporation. All rights reserved.

Reading ASF Files
The Windows Media Format SDK can be used to deliver media samples from an ASF file. Two objects are used

Previous Next

Previous Next

Previous Next

to retrieve samples, the reader object and the synchronous reader object.

The reader object is the original reading object in the Windows Media Format SDK. The reader object uses an
asynchronous architecture to push samples to an application. Applications built using the reader object must
implement callback functions that respond to the various messages and events that result from this multi-
threaded model. For clarity, this section will refer to the reader object as the asynchronous reader.

The synchronous reader object is new for this version of the Windows Media Format SDK. The synchronous
reader does not use multiple threads in processing samples from ASF files. An application built using the
synchronous reader retrieves samples on demand, rather than waiting for the reader to send them.

When creating an application to read ASF files, you must choose which reader object to use. In general,
applications designed to deliver Windows Media-based content should be created using the asynchronous
reader, while applications designed to edit ASF files should be created with the synchronous reader.

The following table lists the major features of both reader objects. Use this table to help determine which object
to use for your application.

The following sections provide more information about working with the two reader objects.

Feature Async reader Sync reader

Read uncompressed samples by output number Yes Yes

Read compressed samples by stream number Yes Yes

Read uncompressed samples by stream number No Yes

Read from Internet site Yes No

Read metadata Yes Yes

Seek to presentation time Yes Yes

Seek to frame Yes Yes

Seek to marker Yes No

Switch between compressed and uncompressed sample delivery
during playback

No Yes

Open files using IStream interface Yes Yes

Section Description

Working with Outputs Describes how to use and manipulate outputs.
Applies to both reader objects.

Allocating Buffers for File Reading Describes how to use your own pool of buffers to
hold samples delivered by the reader or synchronous
reader.

Reading Metadata at Playback Describes how to take advantage of metadata support
at playback. Applies to both reader objects.

Getting Profile Information at Playback Describes how to access profile information for

See Also

Programming Guide
Reader Object
Synchronous Reader Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Working with Outputs
As a default, every sample you receive from either reader object is associated with an output number. Each
output number corresponds to a stream in the ASF file. The reader assigns output numbers to the streams in the
file when the file is opened. Normally there is one output for each stream in a file. If the file uses mutual
exclusion, however, each group of mutually exclusive streams is assigned a single output number. The stream
that corresponds to the output number of the mutually exclusive streams is determined either by the reader, in
the case of multiple bit rate (MBR) files, or by your application, if you are using manual stream selection.

Because the connection name set in the profile is not persisted in the file, the reader creates a default connection
name for each output that is simply a string representation of the output number, for example "1", "2", "3" and
so on. The connection names enable applications, and the reader itself, to correlate outputs to streams. In a
multiple bit rate file, several streams share a connection name. This does not matter to the reader, because the

opened files. Applies to both reader objects.

Reading Multichannel Audio Describes how to configure the writer to properly
decode multichannel audio.

Rendering Content Discusses the issues related to rendering
uncompressed samples. Applies to both reader
objects.

Getting the Best Video Seeking Performance Describes ways to improve video seeking
performance.

Reading Files with the Asynchronous Reader Describes how to read ASF files using the
asynchronous reader object.

Reading Files with the Synchronous Reader Describes how to read ASF files using the
synchronous reader object.

Enabling DirectX Video Acceleration Describes how to implement DirectX Video
Acceleration to use the hardware acceleration features
of some video cards for decoding video.

Previous Next

Previous Next

output properties for each MBR stream are identical.

Each output has one or more supported output formats. An output format is the format that the uncompressed
samples delivered by the reader use. When the reader opens a file, it sets the format of each output to the default
for the media subtype. The number and type of output formats supported is determined by the codec that
decompresses the media data.

The following topics explain how to work with outputs:

To Identify Output Numbers
Assigning Output Formats

See Also

IWMReader Interface
IWMSyncReader Interface
Reading ASF files

© 2000-2003 Microsoft Corporation. All rights reserved.

To Identify Output Numbers
To identify the output numbers for a loaded file, perform the following steps. These procedures are identical for
both the asynchronous reader and the synchronous reader. Where interface names vary, the synchronous reader
methods are listed in parentheses after the methods of the asynchronous reader.

1. Create a reader object and load a file for reading. For more information, see To Create a Reader and Open
a File (or To Create a Synchronous Reader and Open a File).

2. Retrieve the total number of outputs for the file by calling IWMReader::GetOutputCount (or
IWMSyncReader::GetOutputCount).

3. Loop through the outputs one at a time, performing the following steps for each:
Retrieve the IWMOutputMediaProps interface for the current output with a call to
IWMReader::GetOutputProps (or IWMSyncReader::GetOutputProps).
Retrieve the WM_MEDIA_TYPE structure for the output by making two calls to
IWMMediaProps::GetMediaType. Make the first call to get the size of the structure, then
allocate memory for it and pass a pointer to the allocated memory on the second call. Alternatively,
you can call IWMMediaProps::GetType, which delivers the major type without requiring you to
allocate memory for the WM_MEDIA_TYPE structure. You can skip outputs of the wrong major
type.
Retrieve the major media type and media subtype from the WM_MEDIA_TYPE structure. These
values are stored in data members majortype and subtype respectively.
Check the value of WM_MEDIA_TYPE.formattype. This specifies the type of structure

Previous Next

Previous Next

contained in the buffer at WM_MEDIA_TYPE.pbFormat. For more information about format
types, see Media Types.
Allocate memory to hold the structure of the type identified in the previous step. Copy the structure
to your allocated memory. For audio and video, this structure gives you essential information about
how the data should be rendered.

The synchronous reader also provides methods to retrieve associations between output numbers and stream
numbers. For more information, see To Find Stream Numbers and Output Numbers.

See Also

Inputs, Streams and Outputs
IWMMediaProps Interface
IWMOutputMediaProps Interface
IWMReader Interface
IWMSyncReader Interface
Working with Outputs

© 2000-2003 Microsoft Corporation. All rights reserved.

Assigning Output Formats
Some codecs can decompress digital media data into several uncompressed formats. You can find all of the
supported formats for a specific output using either the asynchronous reader or the synchronous reader.

To examine all of the available formats for an output, perform the following steps. These procedures are
identical for both the asynchronous reader and the synchronous reader. Where interface names vary, the
synchronous reader methods are listed in parentheses after the methods of the asynchronous reader.

1. Create a reader object and load a file for reading. For more information, see To Create a Reader and Open
a File (or To Create a Synchronous Reader and Open a File).

2. Determine the output for which you want to find the available formats. If you don't already know which
output you want to use, you can identify the outputs in the file using the procedures in To Identify Output
Numbers.

3. Retrieve the total number of available formats for the desired output by calling
IWMReader::GetOutputFormatCount (or IWMSyncReader::GetOutputFormatCount).

4. Loop through the available formats one at a time, performing the following steps for each:
Retrieve the IWMOutputMediaProps interface for the current output format by calling
IWMReader::GetOutputFormat (or IWMSyncReader::GetOutputFormat).
Retrieve the WM_MEDIA_TYPE structure for the output format by making two calls to
IWMMediaProps::GetMediaType. Make the first call to get the size of the structure, then
allocate memory for it and pass a pointer to the allocated memory on the second call.

Previous Next

Previous Next

Find the media subtype of the output format in WM_MEDIA_TYPE.subtype.
For video, if the current subtype is the format you want to use for output, break out of the loop.
Otherwise go to the next iteration.

For audio, you must check the values in the WAVEFORMATEX structure against your
requirements. WM_MEDIA_TYPE.pbFormat points to the WAVEFORMATEX structure for
audio outputs.

5. When you have found the output desired, set it for use with the reader by calling
IWMReader::SetOutputProps (or IWMSyncReader::SetOutputProps). You must pass a pointer to
the IWMOutputMediaProps interface obtained in the first step of the loop.

See Also

IWMMediaProps Interface
IWMOutputMediaProps Interface
IWMReader Interface
IWMSyncReader Interface
Working with Outputs

© 2000-2003 Microsoft Corporation. All rights reserved.

Allocating Buffers for File Reading
In the most basic file-reading scenario, the buffers used to deliver samples are allocated by the reading object
(the reader object or the synchronous reader object). You can, however, allocate buffers yourself. For more
information about the benefits of allocating your own buffers, see User Allocated Sample Support.

To use your own buffers for file reading, perform the following steps.

1. Implement a callback or callbacks for the reader to call when it needs a buffer. If you are reading output
samples, use IWMReaderAllocatorEx::AllocateForOutputEx. If you are reading stream samples, use
IWMReaderAllocatorEx::AllocateForStreamEx. Include whatever logic for managing buffers that
suits your application.

2. Allocate a pool of buffers that you will use for file reading.
Find the size required for your buffers by calling
IWMReaderAdvanced::GetMaxOutputSampleSize or
IWMReaderAdvanced::GetMaxStreamSampleSize for each output and/or stream for which the
buffer is used. If using the synchronous reader, use
IWMSyncReader::GetMaxOutputSampleSize or
IWMSyncReader::GetMaxStreamSampleSize instead.
Create each buffer for the pool.

Previous Next

Previous Next

3. Set up the reader or synchronous reader for reading. For more information see Reading Files with the
Asynchronous Reader or Reading Files with the Synchronous Reader.

4. Before beginning writing, call IWMReaderAdvanced::SetAllocateForOutput or
IWMReaderAdvanced::SetAllocateForStream for each output and stream for which you are allocating
buffers using the reader object. For the synchronous reader, call
IWMSyncReader2::SetAllocateForOutput or IWMSyncReader2::SetAllocateForStream instead.

5. Begin reading the file.

The reading object will make calls to the appropriate allocator callback and get samples from your application.
Your buffer management logic must include a way to signal that a buffer is free to be used again. Typically, a
buffer is put back into the pool when its contents are rendered. Depending upon your application, you may need
just a few buffers in the pool or many.

See Also

Reading ASF Files

© 2000-2003 Microsoft Corporation. All rights reserved.

Reading Metadata at Playback
Both the asynchronous reader object and the synchronous reader object can read the metadata from the header
of a loaded ASF file. When reading files, the metadata attributes are all read-only. Both reader objects can be
queried for the IWMHeaderInfo and IWMHeaderInfo2 interfaces.

For more information about accessing metadata, see Working with Metadata.

See Also

Reading ASF files

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Previous Next

Getting Profile Information at Playback
Information from the profile used to create a file is stored in the header section of the file. Both reader objects
can access the profile information from the file header. There are several reasons why you might want to access
profile data from the reader. Most commonly, you will need to retrieve information about streams, mutual
exclusion objects, and bandwidth sharing objects.

Both the asynchronous reader object and the synchronous reader object can be queried for the IWMProfile
interface. No changes made to the profile information can have any affect on the file in the reader. For more
information about accessing profile information, see Working with Profiles.

Stream Information

It is sometimes important to know how a stream is configured. When you retrieve media properties from the
either of the reader objects, you get the properties of the outputs. Output properties describe how the
uncompressed data from a stream is going to be delivered by the reader, not how the stream is configured within
the ASF file.

When receiving uncompressed stream samples from either reader object, you must use the profile information
to identify the format of the compressed data. This is particularly important if you are going to write the
compressed stream to another ASF file.

You also need to access stream information when using smart recompression to transcode an audio stream to a
lower bit rate.

You may want to determine whether a stream was written using variable bit rate (VBR) encoding. You cannot
access any VBR information from the IWMProfile interface of either reader object. This is because the VBR
information is not stored in the file after encoding. You can determine whether a stream was created using VBR
encoding by obtaining a pointer to the IWMHeaderInfo interface of the reader object and calling
IWMHeaderInfo::GetAttributeByName. You must specify the stream number and pass g_wszIsVBR as the
attribute name.

Mutual Exclusion Information

If you want to create a reading application that uses mutual exclusion, you will want to access the information
about any mutual exclusion objects included in the profile. For all mutual exclusion types except bit rate, the
reading application is responsible for any stream switching that is required. To switch streams, you need to
know which streams are which.

Bandwidth Sharing Information

Bandwidth sharing objects that are included in a profile are included only for informational purposes. Neither
the writer object nor either of the reader objects takes any action as a result of bandwidth sharing data. If you
want to use bandwidth sharing in your reading application, you must access the bandwidth sharing information
from the profile data.

See Also

IWMProfile Interface
Reading ASF files

© 2000-2003 Microsoft Corporation. All rights reserved.

Reading Multichannel Audio
The Windows Media Audio 9 Professional codec can encode multichannel audio (more than two channels).
When reading a file with multichannel audio, you must configure the output properly or the audio will be
delivered at a lower quality and in stereo.

To set an output for multichannel audio delivery, you must set two output settings: g_wszEnableDiscreteOutput
and g_wszSpeakerConfig.

Setting g_wszEnableDiscreteOutput to TRUE sets the codec to deliver high-definition audio output. High-
definition audio is encoded by the Windows Media Audio 9 codec with 24-bit samples in stereo or multiple
channels. If this setting is FALSE, only 16-bit stereo output will be delivered.

The number of speakers on the playing computer is set with g_wszSpeakerConfig. This setting is a DWORD
value set to the total number of speakers. For example, 6 is the value to set for two front speakers , two rear
speakers, a center channel speaker, and a subwoofer.

To set these settings, use IWMReaderAdvanced2::SetOutputSetting.

Note You can decode multichannel audio only if your application is running on Microsoft Windows XP or a
later version of Microsoft Windows.

See Also

Inputs, Streams and Outputs
Reading ASF Files
Output Settings

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Previous Next

Rendering Content
The Windows Media Format SDK does not provide any routines for rendering content delivered by the reader
object. If you write applications to play back the content in ASF files, you must implement your own rendering
routines.

You must be careful when rendering content to ensure that samples are rendered in order of presentation time
and that samples from different streams are synchronized when rendering. The method you employ to ensure
stream synchronization will depend upon the rendering technique you use for your application. In general, if
you have audio and video streams, you should synchronize to the audio stream, because inconsistency in the
audio stream is more noticeable than a few dropped frames in a video stream.

See Also

Reading ASF files
To Retrieve Media Samples with the Asynchronous Reader
To Retrieve Media Samples with the Synchronous Reader

© 2000-2003 Microsoft Corporation. All rights reserved.

Getting the Best Video Seeking Performance
Seeking to content in a file is a very common operation that is potentially a performance issue. Video encoded
with the Windows Media Video 9 codec is made up primarily of delta frames, which only record the changes in
relation to the previous frame. Reconstructing delta frames takes time, particularly if the key frames are far
apart. For more information about configuring key frames for efficient seeking, see Configuring Video streams
for Seeking Performance.

In addition to proper configuration, you can improve seeking performance by using frame indexing for the
video stream. Seeking to a frame number is typically faster than seeking to a presentation time.

If seeking in a file with multiple streams, you should select only the streams that are needed. Each stream
configured for reading will affect the performance of seeking, because all selected streams are synchronized
when you seek to a point in a file.

See Also

Reading ASF Files
To Seek By Frame Number Using the Asynchronous Reader
To Seek By Frame Number Using the Synchronous Reader
To Seek By Time Using the Asynchronous Reader

Previous Next

Previous Next

To Seek By Time Using the Synchronous Reader

© 2000-2003 Microsoft Corporation. All rights reserved.

Reading Files with the Asynchronous Reader
The asynchronous reader reads the content from ASF files using multiple threads and asynchronous calls. The
features supported by the asynchronous reader make it well suited for applications that render content to end
users.

The most basic functionality of the reader object can be broken down into the following steps. In these steps
"the application" refers to the program you write using the Windows Media Format SDK.

1. The application implements the IWMReaderCallback interface to handle messages from the reader.
This includes two callback methods: OnStatus, which receives messages relating to the status of various
aspects of the reader and OnSample, which receives uncompressed samples from the reader.

2. The application passes to the reader the name of a file to read. When the reader opens the file, it assigns
an output number to each stream. If the file uses mutual exclusion, the reader assigns a single output for
all of the mutually exclusive streams.

3. The application gets information about the configuration of the various outputs from the reader. The
information gathered will enable the application to properly render media samples.

4. The application instructs the reader to begin reading data from the file. The reader begins delivering
uncompressed samples to the OnSample callback one at a time in buffers wrapped in buffer objects. The
samples delivered by the reader are in presentation-time order. The reader will continue delivering
samples until stopped by the application or until the end of the file is reached.

5. The application is responsible for rendering data after it is delivered by the reader. The Windows Media
Format SDK does not provide any rendering routines. Typically, applications will use other SDKs to
render data, such as the Microsoft DirectX® SDK, or the multimedia functions of the Microsoft Windows
Platform SDK.

6. When reading is complete, the application instructs the reader to close the file.

These steps are illustrated in the AudioPlayer sample application, among others. For more information, see
Sample Applications.

The reader also supports more advanced functionality. The reader enables you to do the following:

Pause playback of a file.
Retrieve reader performance statistics.
Control stream selection for mutually exclusive streams.
Manually allocate buffers for output.
Provide your own clock.
Retrieve the status of file operations (buffering, download, or save).

Previous Next

Previous Next

Open a file using the standard COM interface, IStream.
Seek to specific points in an ASF file.
Read profile data from the header of the file.

The following sections describe the use of the reader object in detail.

To Implement Reader Messages in the OnStatus Callback
To Implement the OnSample Callback
To Create a Reader and Open a File
To Retrieve Media Samples with the Asynchronous Reader
To Seek By Time Using the Asynchronous Reader
To Seek By Frame Number Using the Asynchronous Reader
To Seek By SMPTE Time Code Using the Asynchronous Reader
To Seek to Markers
To Pause or Stop Playback
To Get Reader Performance Statistics
To Use Manual Stream Selection
To Deliver Compressed Samples with the Asynchronous Reader

See Also

Reading ASF files
Reader Object

© 2000-2003 Microsoft Corporation. All rights reserved.

To Implement Reader Messages in the OnStatus
Callback
To use the asynchronous reader to deliver content from an ASF file, you must implement a minimum of two
callback methods, IWMStatusCallback::OnStatus and IWMReaderCallback::OnSample. This section
describes how to implement IWMStatusCallback::OnStatus to receive and respond to status messages sent by
the reader. OnStatus is used by other objects in the Windows Media Format SDK. For general information
about OnStatus, see Using the OnStatus Callback.

When using the asynchronous reader, you must trap the following messages in
IWMStatusCallback::OnStatus.

Previous Next

Previous Next

Status message Description

You should use the status messages listed above to control execution of your reading application. For example,
you must wait until receiving the WMT_OPENED message to start the reader or call other methods that
require the reader to have a file ready. Frequently, applications built with the asynchronous reader use an event
to signal the completion of asynchronous calls and proceed with processing. For more information about using
events for signaling completion of operations, see Using Events with Asynchronous Calls.

Many other messages are sent to OnStatus by the reader object to enable the application to respond to the status
of reading operations. The possible status message values are defined in the WMT_STATUS enumeration
type.

See Also

IWMStatusCallback::OnStatus
Reading Files with the Asynchronous Reader
Using the OnStatus Callback

© 2000-2003 Microsoft Corporation. All rights reserved.

To Implement the OnSample Callback
The asynchronous reader delivers samples to the controlling application in presentation-time order by making
calls to the IWMReaderCallback::OnSample callback method. When you create an application using the
asynchronous reader, you must implement OnSample to deal with uncompressed samples. Typically, functions
or methods created to render content will be called from within OnSample.

Typical implementation of the OnSample callback includes the following steps.

1. Retrieve the location and size of the buffer containing the sample by calling
INSSBuffer::GetBufferAndLength on the buffer passed as pSample.

2. Branch your logic depending upon the output number. The output number is passed to OnSample as
dwOutputNumber.

3. Include rendering logic for each output number you want to support. If you are rendering samples from
multiple outputs, you may need to synchronize your rendering.

Applications that deliver compressed samples from ASF files need to implement the
IWMReaderCallbackAdvanced::OnStreamSample callback method. OnStreamSample functions almost
identically to OnSample, except that it receives compressed samples by stream number instead of

WMT_OPENED Sent when file opening operations are complete.

WMT_CLOSED Sent when file closing operations are complete.

Previous Next

Previous Next

uncompressed samples by output number.

See Also

IWMReaderCallback Interface
IWMReaderCallbackAdvanced Interface
Reading Files with the Asynchronous Reader
Using the Callback Methods

© 2000-2003 Microsoft Corporation. All rights reserved.

To Create a Reader and Open a File
Before you can do any work with the reader, you will need to create a reader object and load a file for reading.
To initialize the reader and open a file, perform the following steps.

1. Create a reader object by calling the WMCreateReader function. You must specify the desired level of
rights management for the new reader object. The available modes are listed in the WMT_RIGHTS
enumeration type.

2. Specify a file to read by calling IWMReader::Open. You must specify a reader callback interface for the
reader to use. For more information about the reader callback, see To Implement Reader Messages in the
OnStatus Callback.

3. Wait for the reader to open the file. When you call Open to load a file, it returns almost immediately and
continues processing on another thread. You should wait for operations to complete, by signaling an
event when the OnStatus callback receives the WMT_OPENED status message.

The reader also supports the use of the IStream COM interface for opening files. You can implement the
IStream interface any way you choose. After the desired file is opened in IStream, you can follow the steps
listed above, except that you must call IWMReaderAdvanced2::OpenStream instead of IWMReader::Open
in step 2.

See Also

IWMReader Interface
IWMReaderAdvanced2 Interface
IWMStatusCallback Interface
Reading Files with the Asynchronous Reader
Using the Callback Methods

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

To Retrieve Media Samples with the Asynchronous
Reader
After you have received the WMT_OPENED status message in your implementation of
IWMStatusCallback::OnStatus, you can begin receiving samples by calling IWMReader::Start. The
asynchronous reader delivers samples to your implementation of IWMReaderCallback::OnSample. Samples
are delivered in presentation-time order.

Start is an asynchronous call. It will return almost immediately and continue to run on separate threads. The
asynchronous reader uses multiple threads when decoding content and delivering samples. When the end of the
file is reached, the reader sends a WMT_EOF status message to your implementation of the OnStatus callback.
When WMT_EOF is sent, the reader stops its own processing; you do not need to respond to WMT_EOF with a
call to IWMReader::Stop.

See Also

IWMReader Interface
To Implement Reader Messages in the OnStatus Callback
To Implement the OnSample Callback

© 2000-2003 Microsoft Corporation. All rights reserved.

To Seek By Time Using the Asynchronous Reader
If you want to seek to a specific presentation time in an ASF file, the file must be properly configured. You can
seek in audio only files by default, but video files need to be indexed before seeking. If you are not sure about
how a file has been created, you can check the g_wszWMSeekable attribute in the header of the file by calling
IWMHeaderInfo::GetAttributeByName.

To seek to data in an ASF file by presentation time using the asynchronous reader, call IWMReader::Start,
passing the desired time and duration of the part of the file you want to read as cnsStart and cnsDuration

Previous Next

Previous Next

Previous Next

respectively.

See Also

IWMReader Interface
Reading Files with the Asynchronous Reader
Reading Metadata at Playback
Working with Indexes

© 2000-2003 Microsoft Corporation. All rights reserved.

To Seek By Frame Number Using the Asynchronous
Reader
The asynchronous reader object can be used to seek to the frame numbers of video streams in an ASF file. To
use frame-based seeking, the file loaded in the reader must be indexed by frame. Each individual video stream
can be indexed. To determine whether a stream has been indexed by frame, you can check the
g_wszWMNumberOfFrames attribute in the header of the file by calling
IWMHeaderInfo::GetAttributeByName.

To seek data in an ASF file by frame number using the asynchronous reader, perform the following steps.

1. Obtain a pointer to the IWMReaderAdvanced3 interface of the reader object by calling
IWMReader::QueryInterface.

2. Set the starting frame number and duration by calling IWMReaderAdvanced3::StartAtPosition. You
must specify the stream number of a frame-indexed video stream. The reader will synchronize the rest of
the outputs to the presentation time of the specified frame of the specified stream and begin delivering
output samples.

3. Handle the samples as you normally would in your implementation of the
IWMReaderCallback::OnSample method.

See Also

Reading Files with the Asynchronous Reader
Reading Metadata at Playback
Working with Indexes

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

To Seek By SMPTE Time Code Using the
Asynchronous Reader
The reader object can seek to a point in a file based on the SMPTE time code associated with a video stream.
Time code data is encapsulated in WMT_TIMECODE_EXTENSION_DATA structures that are attached to
video samples as data unit extensions.

SMPTE time codes are defined by a range and a time code within that range. A range is a continuous series of
time codes. Each time code is defined by hours, minutes, seconds, and frames.

To seek data in an ASF file by SMPTE time code using the asynchronous reader, perform the following steps.

1. Obtain a pointer to the IWMReaderAdvanced3 interface of the reader object by calling
IWMReader::QueryInterface.

2. Set the starting time code and duration by calling IWMReaderAdvanced3::StartAtPosition. You must
specify the stream number of a video stream that is indexed by time code. The reader will synchronize the
rest of the outputs to the presentation time of the specified frame of the specified stream and begin
delivering output samples.

3. Handle the samples as you normally would in your implementation of the
IWMReaderCallback::OnSample method.

See Also

Reading Files with the Asynchronous Reader
Working with Indexes
SMPTE Time Code Support

© 2000-2003 Microsoft Corporation. All rights reserved.

To Seek to Markers
A marker is a named location in an ASF file. You can only start playback from the location of a marker by
using the asynchronous reader. You can begin playback at a marker by following these steps.

Previous Next

Previous Next

Previous Next

1. Call IWMReader::QueryInterface to obtain a pointer to the IWMHeaderInfo interface.
2. Retrieve the total number of markers in the file by calling IWMHeaderInfo::GetMarkerCount.
3. Loop through the markers, using the marker count retrieved in step 2. Retrieve the name and time of each

marker by calling IWMHeaderInfo::GetMarker for each. Save the index of the desired marker.
4. Call IWMReader::QueryInterface to obtain a pointer to the IWMReaderAdvanced2 interface.
5. Specify the marker at which to start playback by calling IWMReaderAdvanced2::StartAtMarker. You

must pass the index of the desired marker, which you saved in step 3.
6. Handle the samples as you normally would in your implementation of the

IWMReaderCallback::OnSample method.

See Also

Markers
Reading Files with the Asynchronous Reader
Working with Indexes

© 2000-2003 Microsoft Corporation. All rights reserved.

To Pause or Stop Playback
When you call IWMReader::Start to begin playing a file, the asynchronous reader will continue processing in
its own separate threads until the end of the file is reached. You can pause or stop the delivery of samples using
the IWMReader::Pause or IWMReader::Stop methods respectively.

Pausing

When you call IWMReader::Pause to pause playback of a file, the reader keeps track of the current position in
the file. To resume playing after pausing, call IWMReader::Resume. Playback will resume from the point at
which it paused.

Stopping

When you call IWMReader::Stop to halt playback of a file, the reader does not keep track of any information
about the progress of playback. To use Stop and later return to the stopping point you must save the
presentation time of the last sample delivered and use it in your call to IWMReader::Start.

See Also

IWMReader Interface
Reading Files with the Asynchronous Reader

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

To Get Reader Performance Statistics
When reading files locally with the asynchronous reader, it is not necessary to check the performance of reading
operations. If your application is reading from a streaming source however, performance statistics can be very
important. Your application can respond to changes in playback performance to ensure the best possible end-
user experience.

The performance information you can retrieve from the reader includes the following statistics:

The current bandwidth of the connection.
The number of packets received from the server.
The number of lost packets that were recovered.
The number of lost packets that were not recovered.
The percentage of the total number of packets sent that have been received.

To get reader performance statistics, perform the following steps.

1. Before starting playback, create a WM_READER_STATISTICS structure. You must set the cbSize
member to sizeof(WM_READER_STATISTICS).

2. Obtain a pointer to the IWMReaderAdvanced interface of the reader object by calling
IWMReader::QueryInterface.

3. During playback, make calls to IWMReaderAdvanced::GetStatistics frequently to monitor
performance. Pass your WM_READER_STATISTICS structure with each call and examine the
appropriate members.

See Also

Reading Files with the Asynchronous Reader

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Previous Next

To Use Manual Stream Selection
When delivering uncompressed samples with the reader object, you can deliver them only by output number. In
the case of mutually exclusive streams, this means that you can receive samples only from one stream in the
mutual exclusion at a time. The process of choosing which mutually exclusive stream to deliver is called stream
selection.

For bit-rate mutual exclusion, the reader makes stream selections automatically based on the conditions on the
host machine at playback. For other types of mutual exclusion, the reader will deliver samples from the default
stream unless you manually select a different stream yourself. There may also be instances when you want to
select a stream manually from a bit-rate mutual exclusion.

Manual stream selection is either on or off for the entire file. If a file contains bit-rate mutual exclusion and
some other mutual exclusion type, you must select the bit rate based streams manually.

To select a mutually exclusive stream manually, you must perform the following steps.

1. Retrieve a pointer to the IWMReaderAdvanced interface of the reader object by calling
IWMReader::QueryInterface.

2. Enable manual stream selection by calling IWMReaderAdvanced::SetManualStreamSelection.
3. To find out if a particular stream is selected, call IWMReaderAdvanced::GetStreamSelected. You

must pass a pointer to a variable of the WMT_STREAM_SELECTION enumeration type. When the
call returns, the value in the variable will describe the current selection type of the stream.

4. To select a stream, call IWMReaderAdvanced::SetStreamsSelected. This method enables you to
specify multiple streams at the same time for synchronized stream switching.

See Also

Reading Files with the Asynchronous Reader

© 2000-2003 Microsoft Corporation. All rights reserved.

To Deliver Compressed Samples with the
Asynchronous Reader
The asynchronous reader can deliver compressed samples from streams in ASF files. Applications usually
deliver compressed samples when copying a stream from one file to another. It is not advisable to recompress
data that has been reconstructed from a compressed stream, because data is lost in the encoding process. Digital

Previous Next

Previous Next

media that has been compressed more than once will have a noticeable decrease in quality.

The Windows Media Format SDK does not provide any methods for decoding data after it has been extracted
from an ASF file. If you receive compressed samples and later want to decompress them, you will have to
provide your own code to do so. One way to get around this limitation is to write the compressed samples to a
new ASF file and then re-read them into normal, uncompressed samples.

To receive compressed samples with the asynchronous reader, perform the following steps.

1. Implement the IWMReaderCallbackAdvanced::OnStreamSample callback. This callback is basically
identical in function to IWMReaderCallback::OnSample except that it delivers samples by stream
number and the samples are still compressed.

2. Before starting playback, obtain a pointer to the IWMReaderAdvanced interface of the reader object by
calling IWMReader::QueryInterface.

3. Configure the reader to deliver compressed samples for the desired stream by calling
IWMReaderAdvanced::SetReceiveStreamSamples.

4. Repeat step 3 for each stream for which compressed sample delivery is desired.

Note Image streams are not valid for compressed stream delivery. If you copy an image stream from one file
to another, it will not work in the new file. To copy an image stream from file to file, retrieve the image stream
samples by output number and include them in the new file as if including a new image stream.

See Also

IWMReaderCallbackAdvanced Interface
Reading Files with the Asynchronous Reader

© 2000-2003 Microsoft Corporation. All rights reserved.

Reading Files with the Synchronous Reader
You can use the synchronous reader to read an ASF file using synchronous calls instead of the asynchronous
methods in the reader object. Using synchronous calls reduces the number of threads required to read a file. The
asynchronous reader uses multiple threads for processing streams. For files with multiple streams, the number
of threads used can become very large. The synchronous reader uses only one thread.

The synchronous reader was designed to meet the needs of content creation and file editing applications. You
can use the synchronous reader for other applications, but its functionality is limited.

The synchronous reader can open files that are local, or files on a network using the UNC path name (such as
"\\someshare\somedirectory\somefile.wmv"). You cannot stream files to the synchronous reader, or open files
from an Internet location. The synchronous reader also provides support for using the IStream COM interface

Previous Next

Previous Next

as a source.

The synchronous reader provides more versatility for retrieving samples from an ASF file than the
asynchronous reader. The synchronous reader can deliver samples by stream number as well as by output.
Samples delivered by stream number can be compressed or uncompressed. The synchronous reader can also
switch between compressed and uncompressed delivery during playback; this feature is known as "fast editing."
This feature enables an editing application to read Windows Media-based content and pass it directly through to
the writer until a desired frame is reached. At that point the application can tell the reader to start delivering
uncompressed content, which the application can then modify and pass to the writer for recompression. When
the application has finished modifying the specified frames, it can tell the reader to start delivering compressed
frames again.

The most basic functionality of the synchronous reader object can be broken down into the following steps. In
these steps "the application" refers to the program you write using the Windows Media Format SDK.

1. The application passes to the synchronous reader the name of a file to read. When the synchronous reader
opens the file, it assigns an output number to each stream. If the file uses mutual exclusion, the reader
assigns a single output for all of the mutually exclusive streams.

2. The application gets information about the configuration of the various outputs from the reader. The
information gathered will enable the application to properly render media samples.

3. The application begins requesting samples, one at a time, from the synchronous reader. The synchronous
reader delivers each sample in a buffer object for which it delivers the INSSBuffer interface.

4. The application is responsible for rendering data after it is delivered by the reader. The Windows Media
Format SDK does not provide any rendering routines. Typically, applications will use other SDKs to
render data, such as the Microsoft Direct X SDK, or the multimedia functions of the Microsoft Windows
Platform SDK.

These steps are illustrated in the WMSyncReader sample application. For more information, see Sample
Applications.

The synchronous reader also supports more advanced functionality. The synchronous reader enables you to do
the following:

Specify a range of samples to retrieve by time or by frame number.
Control stream selection for mutually exclusive streams.
Open a file using the standard COM interface, IStream.
Read profile data from the file header.
Read metadata from the file header.
Switch between stream and output samples during playback.
Switch between compressed and uncompressed stream samples during playback.

The following sections describe the use of the synchronous reader object in detail.

To Create a Synchronous Reader and Open a File
To Find Stream Numbers and Output Numbers
To Retrieve Media Samples with the Synchronous Reader
To Seek By Time Using the Synchronous Reader
To Seek By Frame Number Using the Synchronous Reader
To Seek By SMPTE Time Code Using the Synchronous Reader
To Retrieve Stream Samples with the Synchronous Reader
To Retrieve Compressed Samples with the Synchronous Reader

Example Code

The following example code shows how to read samples from an ASF file using the synchronous reader. It
specifies by frame number a range of samples to deliver.

IWMSyncReader* pSyncReader = NULL;
INSSBuffer* pMyBuffer = NULL;

QWORD cnsSampleTime = 0;
QWORD cnsSampleDuration = 0;
DWORD dwFlags = 0;
DWORD dwOutputNumber;
HRESULT hr = S_OK;

// Initialize COM.
hr = CoInitialize(NULL);

// Create a synchronous reader.
hr = WMCreateSyncReader(NULL, WMT_RIGHT_PLAYBACK, &pSyncReader);

// Open an ASF file.
hr = pSyncReader->Open(L"c:\\somefile.wmv");

// TODO: Identify the properties for each output. This works
// exactly as it does with the asynchronous reader.

// Specify a playback range from frame number 100 of the video
// stream to the end of the file. Assume that the video stream
// is stream number 2.
hr = pSyncReader->SetRangeByFrame(2, 100, 0);

// Loop through all the samples in the specified range.
do
{
 // Get the next sample, regardless of its stream number.
 hr = pSyncReader->GetNextSample(0,
 &pMyBuffer,
 &cnsSampleTime,
 &cnsSampleDuration,
 &dwFlags,
 &dwOutputNumber,
 NULL);

 if(SUCCEEDED(hr))
 {
 // TODO: Process the sample in whatever way is appropriate
 // to your application. When finished, clean up.
 pMyBuffer->Release();
 pMyBuffer = NULL;
 cnsSampleTime = 0;
 cnsSampleDuration = 0;
 dwFlags = 0;
 dwOutputNumber = 0;
 }
}
while (SUCCEEDED(hr));

pSyncReader->Release();
pSyncReader = NULL;

See Also

IWMSyncReader Interface

Reading ASF files
Synchronous Reader Object

© 2000-2003 Microsoft Corporation. All rights reserved.

To Create a Synchronous Reader and Open a File
Before you can do any work with the synchronous reader, you will need to create a synchronous reader object
and load a file for reading. To initialize the synchronous reader and open a file, perform the following steps.

1. Create a synchronous reader object by calling the WMCreateSyncReader function. You must specify
the desired level of rights management for the new reader object. The available modes are listed in the
WMT_RIGHTS enumeration type.

2. Specify a file to read by calling IWMSyncReader::Open.

The synchronous reader also supports the use of the IStream COM interface for opening files. You can
implement the IStream interface any way you choose. After the desired file is opened in IStream, you can
follow the steps listed above, except that you must call IWMSyncReader::OpenStream instead of
IWMSyncReader::Open in step 2.

See Also

IWMSyncReader Interface
Reading Files with the Synchronous Reader

© 2000-2003 Microsoft Corporation. All rights reserved.

To Find Stream Numbers and Output Numbers
The synchronous reader supports more simplified switching between stream and output numbers for playback
than the asynchronous reader. It is therefore more important to be able to find which stream numbers equate to

Previous Next

Previous Next

Previous Next

Previous Next

which output numbers, or the other way around.

To find the output number that corresponds to a stream number, call
IWMSyncReader::GetOutputNumberForStream.

To find the stream number that corresponds to an output number, call
IWMSyncReader::GetStreamNumberForOutput

See Also

IWMSyncReader Interface
Inputs, Streams and Outputs
Reading Files with the Synchronous Reader

© 2000-2003 Microsoft Corporation. All rights reserved.

To Retrieve Media Samples with the Synchronous
Reader
You must request each sample one at a time from the synchronous reader. This gives you more control over the
samples you receive and when you receive them.

Use the IWMSyncReader::GetNextSample method to retrieve a sample. You need to pass mostly pointers to
variables that will be filled with information about the sample retrieved as parameters. The only input parameter
is wStreamNum. If you pass a stream number, GetNextSample will retrieve the next sample with the specified
stream number. If you pass zero for wStreamNum, the next sample that occurs chronologically in the file is
retrieved.

By default, the synchronous reader retrieves all of the samples from the outputs in a file in chronological order.
If you call GetNextSample and there are no more samples to get, it will return NS_E_NO_MORE_SAMPLES,
which is a failed error code. When coding therefore, you can simply loop through samples until the method
fails.

Example Code

The following example code shows how to use GetNextSample to retrieve all samples in a file.

// Loop through all the samples in the file.
do
{
 // Get the next sample.

Previous Next

Previous Next

 hr = pSyncReader->GetNextSample(0,
 &pMyBuffer,
 &cnsSampleTime,
 &cnsSampleDuration,
 &dwFlags,
 &dwOutputNumber,
 NULL);

 if(SUCCEEDED(hr))
 {
 // TODO: Process the sample in whatever way is appropriate
 // to your application. When finished, clean up.
 pMyBuffer->Release();
 pMyBuffer = NULL;
 cnsSampleTime = 0;
 cnsSampleDuration = 0;
 dwFlags = 0;
 dwOutputNumber = 0;
 }
}
while (SUCCEEDED(hr));

See Also

IWMSyncReader Interface
Reading Files with the Synchronous Reader

© 2000-2003 Microsoft Corporation. All rights reserved.

To Seek By Time Using the Synchronous Reader
To seek for data using the synchronous reader, you specify a range for playback. A range is defined by a
starting presentation time and a duration, both in 100-nanosecond units.

To seek data in an ASF file by presentation time using the synchronous reader, perform the following steps.

1. Specify a starting time and duration for sample delivery by calling IWMSyncReader::SetRange. This
method does not require you to specify a stream number because the presentation times of each stream
should already be synchronized.

2. Begin retrieving samples with calls to IWMSyncReader::GetNextSample. Proceed as you normally
would with the synchronous reader.

See Also

IWMSyncReader Interface

Previous Next

Previous Next

Reading Files with the Synchronous Reader

© 2000-2003 Microsoft Corporation. All rights reserved.

To Seek By Frame Number Using the Synchronous
Reader
To seek for data by frame number using the synchronous reader, you specify a range for playback. A range is
defined by a starting frame number in a specific video stream and a number of frames to play.

To seek data in an ASF file by frame number using the synchronous reader, perform the following steps.

1. Set the starting frame number and number of frames to read for sample delivery by calling
IWMSyncReader::SetRangeByFrame. You must specify the stream number of a frame-indexed video
stream. The reader will synchronize the rest of the outputs to the presentation time of the specified frame
of the specified stream and begin delivering output samples.

2. Begin retrieving samples with calls to IWMSyncReader::GetNextSample. Proceed as you normally
would with the synchronous reader.

See Also

IWMSyncReader Interface
Reading Files with the Synchronous Reader

© 2000-2003 Microsoft Corporation. All rights reserved.

To Seek By SMPTE Time Code Using the
Synchronous Reader

Previous Next

Previous Next

Previous Next

Previous Next

The synchronous reader object can seek to a point in a file based on the SMPTE time code associated with a
video stream. Time code data is encapsulated in WMT_TIMECODE_EXTENSION_DATA structures that
are attached to video samples as data unit extensions.

SMPTE time codes are defined by a range and a time code within that range. A range is a continuous series of
time codes. Each time code is defined by hours, minutes, seconds, and frames.

To seek data in an ASF file by SMPTE time code using the synchronous reader, perform the following steps.

1. Set the starting time code and ending time code for sample delivery by calling
IWMSyncReader::SetRangeByFrame. You must specify the stream number of a video stream indexed
by time code. The synchronous reader will synchronize the rest of the outputs to the presentation time of
the specified frame of the specified stream.

2. Begin retrieving samples with calls to IWMSyncReader::GetNextSample. Proceed as you normally
would with the synchronous reader.

See Also

Reading Files with the Synchronous Reader
SMPTE Time Code Support
Working with Indexes

© 2000-2003 Microsoft Corporation. All rights reserved.

To Retrieve Stream Samples with the Synchronous
Reader
Like the asynchronous reader, the synchronous reader can retrieve samples by stream number. Unlike the
asynchronous reader, the synchronous reader can deliver stream samples either compressed or uncompressed.

To receive stream samples, perform the following steps.

1. Any time before or during playback, call IWMSyncReader::SetReadStreamSamples passing the
desired stream number.

2. Retrieve samples with continued calls to IWMSyncReader::GetNextSample.

You can check whether a stream is selected for sample delivery by calling
IWMSyncReader::GetReadStreamSamples.

See Also

Previous Next

Previous Next

IWMSyncReader Interface
Reading Files with the Synchronous Reader

© 2000-2003 Microsoft Corporation. All rights reserved.

To Retrieve Compressed Samples with the
Synchronous Reader
Like the asynchronous reader, the synchronous reader can also retrieve compressed samples. Compressed
samples should be used when copying streams from one file to another.

The Windows Media Format SDK does not provide any methods for decoding data after it has been extracted
from an ASF file. If you receive compressed samples and later want to decompress them, you will have to
provide your own code to do so. One way to get around this limitation is to write the compressed samples to a
new ASF file and then re-read them into normal, uncompressed samples.

To receive compressed samples with the synchronous reader, call IWMSyncReader::SetReadStreamSamples
before or during playback. Pass true for fCompressed.

Note Image streams are not valid for compressed stream delivery. If you copy an image stream from one file
to another, it will not work in the new file. To copy an image stream from file to file, retrieve the image stream
samples by output number and include them in the new file as if including a new image stream.

See Also

Reading Files with the Synchronous Reader

© 2000-2003 Microsoft Corporation. All rights reserved.

Enabling DirectX Video Acceleration

Previous Next

Previous Next

Previous Next

Previous Next

This section describes how to enable Microsoft® DirectX® Video Acceleration when playing streamed content
in a custom player.

Background

DirectX Video Acceleration (DirectX VA) is an API specification for hardware acceleration of 2-D decoding
operations. It enables software decoders to offload certain CPU-intensive operations to the graphics card for
processing. For end users, this makes possible high-bit-rate video such as full-screen DVD playback on older
computers equipped with DirectX VA-compatible graphics cards.

Beginning with the Windows Media Format 9 Series SDK, the DMO Wrapper filter supports DirectX VA. This
means that, for local playback, applications can use the WM ASF Reader filter to play Windows Media-based
content and DirectX VA hardware acceleration will be invoked automatically if the graphics card supports it.
However, the WM ASF Reader filter does not support playback of streamed content. Therefore, if you want to
support DirectX VA when playing streamed content in a custom player, you must use an alternate mechanism,
which is the one used by Windows Media Player beginning with the Windows Media 9 Series.

Because Windows Media Player was designed before the QASF filters had been developed, Windows Media
Player has its own source filter, based on the Windows Media Format SDK, for playing Windows Media-based
content. The WMP Windows Media Source Filter delivers decompressed data downstream directly to the audio
and video renderers. By contrast, the WM ASF Reader delivers compressed content downstream to the
Windows Media Decoder DirectX Media Objects (DMOs), which are hosted inside the DMO Wrapper. The
following diagrams illustrate the differences between the WM ASF Reader and the WMP Windows Media
Source Filter.

To enable DirectX VA for streamed content, you must create a custom source filter like the one in the top
diagram. Basically, this filter will use the Windows Media Format SDK to instantiate a WM Reader object,
decompress the samples, and send them downstream on its output pins. This discussion assumes that you have
created the source filter already and are now ready to implement the DirectX VA support.

To enable DirectX VA, the basic task of the source filter is to provide the Video Renderer and the WMV
Decoder DMO with the interfaces they will need to negotiate the DirectX VA connection. The source filter does
not participate in those negotiations. After streaming starts, the only DirectX VA-related task that the source
filter can perform is to modify the time stamps on the video samples before the WMV decoder delivers them to
the Video Renderer. The primary reason for doing this is to provide custom timeline control beyond what the
standard DirectShow® interfaces enable.

Three interfaces are defined to enable the necessary communications between the Windows Media Format
SDK, the player's source filter, the Windows Media Video decoder DMO, and the Overlay Mixer or Video
Mixing Renderer. These interfaces are described in the following table.

Order of Operations in DirectX VA–enabled Playback

This section describes the general order of operations at run time for a DirectX VA-enabled player and its
source filter. The components referred to in this section are:

A third-party media player, referred to as the player.
A custom source filter, instantiated by the player, that uses the Windows Media Format SDK to
decompress Windows Media-based content.
The video output pin of the player's source filter, referred to as the output pin.
The DirectShow video playback filter graph, referred to as the graph.
The Video Mixing Renderer, referred to as the VMR.
The Windows Media Format SDK Asynchronous Reader object, referred to as the reader.
The Windows Media Video Decoder DirectX Media Object, referred to as the decoder DMO.

The order of operations is as follows:

1. The player instantiates its source filter and a reader object. The reader creates a video decoder DMO and
sets the (compressed) input type on it. This must happen before the player attempts to configure its video
playback graph because the SDK and the decoder DMO must be involved in the negotiation process with
the graph, and the DMO must know the input format during step 9.

2. The player calls IGraphBuilder::Render, providing it the video source filter's output pin. At this point,
the DirectShow filter graph manager tries to connect the VMR to the player's video source filter.

3. The filter graph manager calls IPin::Connect on the output pin of the player's video source filter.

Steps 4 through 10 occur inside of IPin::Connect.

4. The source filter obtains the IWMCodecAMVideoAccelerator interface from the reader's

Interface Description

IWMCodecAMVideoAccelerator Exposed by the Windows Media Decoder DMO and
called by a media player's source filter to set up the
various connections required to enable DirectX VA
for decoding of Windows Media Video content.

IWMPlayerTimestampHook Implemented on the player's source filter. It enables
the filter to modify the time stamps on the video
samples before delivering them downstream.

IWMReaderAccelerator Implemented on the WM Reader object. It is called
by a player source filter to obtain interfaces from the
decoder DMO.

IWMReaderAccelerator::GetCodecInterface method. If the codec does not support DirectX VA, the
call to GetCodecInterface may fail. In this case, negotiation proceeds as usual, without DirectX VA
support.

5. The source filter passes the IAMVideoAccelerator pointer from the pin passed into Connect to the
decoder DMO through IWMCodecAMVideoAccelerator::SetAcceleratorInterface.

6. The source filter then delegates the remainder of the IPin::Connect operation to the
CBaseOutputPin::Connect method. The format enumeration with the SDK proceeds as it does today. If
the codec supports DirectX VA for the content being connected, the codec DMO presents those DirectX
VA subtypes first, prior to the YUV and RGB types supported. If DirectX VA support is available, steps
7 through 11 are attempted in the context of a DirectX VA subtype. The following code snippet shows
how to identify a DirectX VA media subtype.

bool IsDXVASubtype(AM_MEDIA_TYPE * pmt)
{
 // All DXVA types have the same last 3 DWORDs.
 // guidDXVA is the base GUID for all DXVA subtypes.

 GUID guidDXVA = { 0x00000000, 0xa0c7, 0x11d3, { 0xb9,0x84,0x00,0xc0,0x4f,0x2e,0x7

 unsigned long const * plguid;
 unsigned long const * plguidDXVA;
 plguid = (unsigned long const *)&pmt->subtype;
 plguidDXVA = (unsigned long *)&guidDXVA;

 if((plguid[1] == plguidDXVA[1]) &&
 (plguid[2] == plguidDXVA[2]) &&
 (plguid[3] == plguidDXVA[3]))
 {
 return true;
 }

 return false;
}

7. The CBaseOutputPin::Connect implementation calls IPin::CompleteConnect during step 3. If a
DirectX VA subtype is being considered, the DirectX VA negotiation is attempted. The output pin calls
IWMCodecAMVideoAccelerator::NegotiateConnection, passing it the current output media type.

8. The decoder DMO performs the required negotiation with the VMR through the IAMVideoAccelerator
interface, and returns the video subtype GUID that the two have agreed on. The output pin delegates all
IAMVideoAcceleratorNotify calls received during this process to the decoder DMO's
IAMVideoAcceleratorNotify interface, which can also be obtained through the
IWMReaderAccelerator::GetCodecInterface method.

9. If NegotiateConnection succeeds, the output pin calls
IWMCodecAMVideoAccelerator::SetPlayerNotify with an IWMPlayerTimestampHook interface.
This hook allows the source filter to update the time stamps on the samples before they are handed to the
renderer.

10. The source filter calls IWMReaderAccelerator::Notify with the negotiated media type. This allows the
reader to update its internal variables and commit to DirectX VA. This is the last place the codec or
reader can fail. If any of the above steps fail, the source filter should return to step 3 and try the next type
enumerated by the reader.

11. Playback starts. The reader ignores output buffers from the decoder DMO if the connection output type is
DirectX VA.

12. When IPin::Disconnect occurs, the source filter calls
IWMCodecAMVideoAccelerator::SetAcceleratorInterface with a NULL. This breaks the DirectX VA
connection between the codec and the renderer.

See Also

Reading ASF Files

© 2000-2003 Microsoft Corporation. All rights reserved.

Working with Metadata
Metadata support is provided by the writer object, the reader and synchronous reader objects, and the metadata
editor object. For general information about metadata, see Metadata. For information about the features
supporting metadata in the Windows Media Format SDK, see Metadata Features.

The interface for metadata editing is IWMHeaderInfo3, which you can obtain by calling the QueryInterface
method of any interface in one of the objects listed above. IWMHeaderInfo3 inherits the methods of
IWMHeaderInfo and IWMHeaderInfo2. The methods of IWMHeaderInfo3 that deal with metadata
attributes represent a different approach to accessing metadata than that used by the methods of
IWMHeaderInfo. You should always use the newer methods.

Metadata in an ASF file is identified by an index and a stream number. File-level attributes are assigned a
stream number of 0. In previous versions of the Windows Media Format SDK, attributes could be identified by
name. However, because you can now duplicate attribute names within a stream, this is no longer possible.
Instead, you can retrieve all the indexes matching a name. For more information, see Retrieving Metadata
Attributes.

To aid in finding attributes quickly, you can use a special stream number, 0xFFFF. Use this stream number to
identify the file as a whole, rather than a specific stream or the file-level attributes. The objects of the Windows
Media Format SDK maintain separate indexes for each stream and for the file-level attributes. When using
stream 0xFFFF, the indexes are different from those you use when specifying a specific stream. For example,
the attribute that is index 0 for stream 0 will not be the same as the attribute that is index 0 for stream 0xFFFF.

The following sections describe the use of metadata in greater detail.

Several of the sample applications show how to retrieve and edit metadata. In particular, see the MetadataEdit

Previous Next

Previous Next

Section Description

Retrieving Metadata Attributes Describes how to read metadata attributes from a file header.

Setting Metadata Attributes Describes how to add new metadata attributes to a file header.

Editing Metadata Attributes Describes how to edit existing metadata attributes.

Using Complex Metadata Attributes Describes how to work with attributes whose values are
represented by structures.

sample, which comes in both C++ and C# versions.

See Also

Attributes
Programming Guide
Sample Applications

© 2000-2003 Microsoft Corporation. All rights reserved.

Retrieving Metadata Attributes
To retrieve an attribute from a file header, you must know the stream number and index of the attribute. You
can use the IWMHeaderInfo3::GetAttributeIndices method to get the indexes for all attributes with the same
name or all indexes in the same language. Like the other methods of IWMHeaderInfo3, GetAttributeIndices
deals with a single stream, or with all file-level attributes using stream 0. You can use 0xFFFF for the stream
number to get global indexes matching your criteria throughout the entire file, regardless of stream number.

When you know the index of the attribute you want to retrieve, call
IWMHeaderInfo3::GetAttributeByIndexEx to get the attribute. You need to make two calls to
GetAttributeByIndexEx for each attribute retrieved. On the first call, pass NULL for the name and data buffer
pointers to get the size needed. Then allocate buffers of the size indicated and make the second call to retrieve
the name and data.

For example code showing how to retrieve metadata attributes, see To Retrieve All Metadata in a File.

See Also

Working with Metadata

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Previous Next

To Retrieve All Metadata in a File

The following code example is a function that displays all the metadata in a file. In order to use the function,
you must pass it a pointer to the IWMHeaderInfo3 interface of a metadata editor object, reader object,
synchronous reader object, or writer object. You must also include the Stdio.h header file somewhere in your
project. For more information about how to use this example, see Using the Code Examples.

For clarity, this example does not display the values of binary and GUID attributes. For binary attributes, you
should check to see if the attribute name matches any of the known complex metadata attributes. If it does, you
should format your output according to the structure used for that attribute. Similarly, GUID attribute values
can be displayed in a number of ways. You can choose to display each member of the structure one at a time or
convert the structure to a string and display it as one value.

HRESULT ShowAllAttributes(IWMHeaderInfo3* pHeaderInfo)
{
 HRESULT hr = S_OK;

 WORD cAttributes = 0;
 WCHAR* pwszName = NULL;
 WORD cchName = 0;
 BYTE* pbValue = NULL;
 DWORD cbValue = 0;
 WORD langIndex = 0;
 WORD attIndex = 0;

 WMT_ATTR_DATATYPE attType;

 // Get the total number of attributes in the file.

 hr = pHeaderInfo->GetAttributeCountEx(0xFFFF, &cAttributes);
 GOTO_EXIT_IF_FAILED(hr);

 // Loop through all the attributes, retrieving and displaying each.

 for(attIndex = 0; attIndex < cAttributes; attIndex++)
 {
 // Get the required buffer lengths for the name and value.

 hr = pHeaderInfo->GetAttributeByIndexEx(0xFFFF,
 attIndex,
 NULL,
 &cchName,
 NULL,
 NULL,
 NULL,
 &cbValue);
 GOTO_EXIT_IF_FAILED(hr);

 // Allocate the buffers.

 pwszName = new WCHAR[cchName];
 if(pwszName == NULL)
 {
 hr = E_OUTOFMEMORY;
 goto Exit;
 }

 pbValue = new BYTE[cbValue];
 if(pbValue == NULL)
 {

 hr = E_OUTOFMEMORY;
 goto Exit;
 }

 // Get the attribute.

 hr = pHeaderInfo->GetAttributeByIndexEx(0xFFFF,
 attIndex,
 pwszName,
 &cchName,
 &attType,
 &langIndex,
 pbValue,
 &cbValue);
 GOTO_EXIT_IF_FAILED(hr);

 // Display the attribute global index and name.

 printf("%3d - %S (Language %d):\n\t ", attIndex, pwszName, langIndex);

 // Display the attribute depending upon type.

 switch(attType)
 {
 case WMT_TYPE_DWORD:
 case WMT_TYPE_QWORD:
 case WMT_TYPE_WORD:
 printf("%d\n\n", (DWORD) *pbValue);
 break;
 case WMT_TYPE_STRING:
 printf("%S\n\n", (WCHAR*) pbValue);
 break;
 case WMT_TYPE_BINARY:
 printf("<binary value>\n\n");
 break;
 case WMT_TYPE_BOOL:
 printf("%s\n\n", ((BOOL) *pbValue == TRUE) ? "True" : "False");
 break;
 case WMT_TYPE_GUID:
 printf("<GUID value>\n\n", (DWORD) *pbValue);
 break;
 }

 // Release allocated memory for the next pass.

 SAFE_ARRAY_DELETE(pwszName);
 SAFE_ARRAY_DELETE(pbValue);
 cchName = 0;
 cbValue = 0;
 } // End for attIndex.

Exit:
 SAFE_ARRAY_DELETE(pwszName);
 SAFE_ARRAY_DELETE(pbValue);
 return hr;
}

See Also

Retrieving Metadata Attributes

© 2000-2003 Microsoft Corporation. All rights reserved.

Setting Metadata Attributes
Metadata attributes are set by using the IWMHeaderInfo3::AddAttribute method.

All attributes are assigned a language from the language list for the file. You can access the language list by
using the IWMLanguageList interface. To get a pointer to an IWMLanguageList interface, call
QueryInterface on any interface of the object from which you have obtained IWMHeaderInfo3.

You can add attributes with any name you like. However, using attribute names that are not standard names
supported by the Windows Media Format SDK can make your metadata difficult for users to discover. Most
media-playing applications will check for standard values. For more information, see Custom Metadata.

You cannot use stream number 0xFFFF to add an attribute globally. You must assign each attribute to a specific
stream number, or stream 0 for file-level attributes.

See Also

Working with Metadata

© 2000-2003 Microsoft Corporation. All rights reserved.

Editing Metadata Attributes
Editing metadata attributes is very similar to setting new ones. Instead of using
IWMHeaderInfo3::AddAttribute, use IWMHeaderInfo3::ModifyAttribute. ModifyAttribute is identical
to AddAttribute except that you do not specify an attribute name, and the index number is an input parameter
instead of an output.

You can use stream number 0xFFFF to specify an attribute to modify using its global index.

Previous Next

Previous Next

Previous Next

Previous Next

See Also

Working with Metadata

© 2000-2003 Microsoft Corporation. All rights reserved.

Using Complex Metadata Attributes
The Windows Media Format SDK supports complex metadata attributes, which are attributes that have values
represented by a structure. Because all attributes must have a data type defined in the
WMT_ATTR_DATATYPE enumeration, all complex metadata attributes are treated as
WMT_TYPE_BINARY. When writing a complex attribute, cast the pointer to the structure as a byte pointer.
When you retrieve a complex attribute, cast the array of bytes set by
IWMHeaderInfo3::GetAttributeByIndexEx as the appropriate structure.

The following code examples show how to set and retrieve a complex metadata attribute. The first function adds
a user text attribute, the second function retrieves one. For more information about how to use these examples,
see Using the Code Examples.

HRESULT AddText(IWMHeaderInfo3* pHeaderInfo,
 WCHAR* pwszDesc,
 WCHAR* pwszText,
 WORD* pwIndex)
{
 HRESULT hr = S_OK;
 WORD wIndex = 0;

 WM_USER_TEXT textStruct;

 // Populate the text structure.
 textStruct.pwszDescription = pwszDesc;
 textStruct.pwszText = pwszText;

 // Add the attribute.
 hr = pHeaderInfo->AddAttribute(0,
 g_wszWMText,
 &wIndex,
 WMT_TYPE_BINARY,
 0,
 (BYTE*)&textStruct,
 sizeof(WM_USER_TEXT));

 // Pass the index of the text attribute back to the caller.
 if(SUCCEEDED(hr))
 {
 *pwIndex = wIndex;

Previous Next

Previous Next

 }

 return hr;
}

HRESULT DisplayText(IWMHeaderInfo3* pHeaderInfo, WORD wIndex)
{
 HRESULT hr = S_OK;

 WCHAR* pwszName = NULL;
 WORD cchName = 0;
 WORD Language = 0;
 BYTE* pbValue = NULL;
 DWORD cbValue = 0;

 WM_USER_TEXT* pText = NULL;
 WMT_ATTR_DATATYPE AttType;

 // Find the lengths of the attribute name and value.
 hr = pHeaderInfo->GetAttributeByIndexEx(0,
 wIndex,
 NULL,
 &cchName,
 NULL,
 NULL,
 NULL,
 &cbValue);
 GOTO_EXIT_IF_FAILED(hr);

 // Allocate memory for the name and value.
 pwszName = new WCHAR[cchName];
 pbValue = new BYTE[cbValue];

 if(pwszName == NULL || pbValue == NULL)
 {
 hr = E_OUTOFMEMORY;
 goto Exit;
 }

 // Get the attribute.
 hr = pHeaderInfo->GetAttributeByIndexEx(0,
 wIndex,
 pwszName,
 &cchName,
 &AttType,
 &Language,
 pbValue,
 &cbValue);
 GOTO_EXIT_IF_FAILED(hr);

 // Make sure the attribute is WM/Text, as expected.
 if(wcscmp(pwszName, g_wszWMText))
 {
 // Somehow we got the wrong attribute.
 hr = E_UNEXPECTED;
 goto Exit;
 }

 // Set the structure pointer to the retrieved value.
 pText = (WM_USER_TEXT*) pbValue;

 // Print the strings from the structure.
 printf("Description : %S\n", pText->pwszDescription);
 printf("Text : %S\n", pText->pwszText);

Exit:
 SAFE_ARRAY_DELETE(pwszName);
 SAFE_ARRAY_DELETE(pbValue);
 return hr;
}

See Also

Working with Metadata

© 2000-2003 Microsoft Corporation. All rights reserved.

Using Markers
A marker is a named point within an ASF file. Each marker consists of a name and an associated time,
measured as an offset from the start of the file. An application can use markers to assign names to various
points within the content, display those names to the user, and then seek to the marker positions. An application
can add or remove markers from an existing ASF file.

The IWMHeaderInfo interface contains methods for working with markers. The metadata editor object
supports adding and removing markers. The writer and reader objects can retrieve markers but cannot add or
remove markers.

Adding Markers

To add a marker, query the metadata editor for the IWMHeaderInfo interface. Then call the
IWMHeaderInfo::AddMarker method, specifying the marker name as a wide-character string and the time in
100-nanosecond units. The time must not exceed the file duration. Two markers can have the same time.

The following example adds several markers to a file:

IWMMetadataEditor *pEdit = 0;
IWMHeaderInfo *pInfo = 0;

// Create the metadata editor object.

WMCreateEditor(&pEdit);
pEdit->Open(L"C:\\example.wmv");
pEdit->QueryInterface(IID_IWMHeaderInfo, reinterpret_cast<void**>(pInfo));

// Add the markers. Note that we add the last ones first. Do this when possible

Previous Next

Previous Next

// for improved performance when writing the markers to the file.
hr = pInfo->AddMarker(L"End", 520000000); // 52 sec.
hr = pInfo->AddMarker(L"Segue", 350000000); // 35 sec.
hr = pInfo->AddMarker(L"Intro", 15000000); // 1.5 sec.

// Commit changes and clean up.

pEdit->Flush();
pEdit->Close();
pInfo->Release();
pEdit->Release();

Removing Markers

To remove a marker, call IWMHeaderInfo::RemoveMarker, specifying the index of the marker to remove.
Markers are automatically sorted in increasing time order, so index 0 is always the first marker. Note that
calling RemoveMarker changes the index numbers of any markers that follow. The following code, where
pInfo is a pointer to an IWMHeaderInfo interface, removes all the markers from a file:

WORD count = 0;
pInfo->GetMarkerCount(&count);
while (count--)
{
 pInfo->RemoveMarker(0);
}

Retrieving Markers

To retrieve the name and time of a marker, perform the following steps:

1. Call the IWMHeaderInfo::GetMarkerCount method to determine how many markers the file contains.
2. Retrieve the size of the string needed to contain the marker name. To do so, call the

IWMHeaderInfo::GetMarker method. Specify the index of the marker to retrieve, and NULL for the
string buffer (the pwszMarkerName parameter). The method returns the length of the string, including the
terminating '\0' character, in the pcchMarkerNameLen parameter.

3. Allocate a wide-character string to receive the name.
4. Call GetMarker again, but this time pass the address of the string in the pwszMarkerName parameter.

The method writes the marker name into the string, and returns the marker time in the pcnsMarkerTime
parameter.

The following code loops through every marker in order and retrieves the name and time:

WORD cMarkers = 0;
HRESULT hr = pInfo->GetMarkerCount(&cMarkers);

WCHAR *wszName = 0;
WORD len = 0;
for (WORD iMarker = 0; iMarker < cMarkers; ++iMarker)
{
 QWORD rtTime = 0;
 WORD req_len = 0;
 hr = pInfo->GetMarker(iMarker, 0, &req_len, &rtTime);

 // Reallocate if necessary.
 if (len < req_len)
 {
 delete[] wszName;
 wszName = new WCHAR[req_len];

 len = req_len;
 }
 hr = pInfo->GetMarker(iMarker, wszName, &req_len, &rtTime);
 // Display the name...
}
delete[] wszName;

Seeking to a Marker

To start playback from a marker location, call the reader object's IWMReaderAdvanced2::StartAtMarker
method, specifying the index of the marker. The remaining parameters are identical to those for the
IWMReader::Start method. The following example queries the reader for the IWMReaderAdvanced2
interface and seeks to the first marker.

IWMReaderAdvanced2 *pReader2 = 0
WORD iMarkerIndex = 0;
hr = pReader->QueryInterface(IID_IWMReaderAdvanced2, reinterpret_cast<void**>(&pReader2));
if (SUCCEEDED(hr))
{
 hr = pPlayer2->StartAtMarker(iMarkerIndex, 0, 1.0, 0);
 pPlayer2->Release();
}

See Also

IWMHeaderInfo Interface
IWMReaderAdvanced2::StartAtMarker
Working with Metadata

© 2000-2003 Microsoft Corporation. All rights reserved.

Working with Indexes
The Windows Media Format SDK supports seeking and striding through content. Seeking enables you to
specify a place on the file's timeline to begin playback. Striding enables you to fast-forward and rewind the
output of a file. Files must be indexed to take advantage of these features. An index is a series of values
representing positions in the file (either presentation times, frame numbers, or SMTPE time codes) with
corresponding offsets into the data section of the file for each. Indexing is most important for video streams, as
audio stream presentation time can be easily estimated. However, some audio streams may require indexes as
well. By default, the writer will index every new ASF file. If changes are made to the content of a file, you must
refresh the index yourself using the indexer object.

The indexer supports both temporal and frame-based indexing as well as indexing based on SMPTE time codes
(if present). The writer will create a temporal index by default for every new video stream encoded to a file.

Previous Next

Previous Next

You must explicitly configure and call the indexer to create a frame-based or SMPTE time code index.

When changes are made to the content of an ASF file, it must be indexed again.

The following sections present example code for performing common indexing tasks.

To Disable Automatic Indexing
To Configure the Indexer
To Index an ASF file
To Stop Indexing in Progress

In addition, the DSCopy sample application illustrates the use of the indexer. For more information, see Sample
Applications.

© 2000-2003 Microsoft Corporation. All rights reserved.

To Disable Automatic Indexing
You may not always want an index to be generated by default when writing an ASF file. You can disable
automatic indexing by using the IWMWriterFileSink3::SetAutoIndexing method.

The following example code demonstrates how to disable automatic indexing by the writer.

IWMWriterFileSink* pBaseFileSink = NULL;
IWMWriterFileSink3* pMySink = NULL;

BOOL fAutoIndex;
HRESULT hr = S_OK;

// Initialize COM.
hr = CoInitialize(NULL);

// Create a writer file sink.
hr = WMCreateWriterFileSink(&pBaseFileSink);

// Retrieve an IWMWriterFileSink3 interface pointer for the new sink.
hr = pBaseFileSink->QueryInterface(IID_IWMWriterFileSink3, &pMySink);

// Release the base file sink.
pBaseFileSink->Release();
pBaseFileSink = NULL;

// Check the state of automatic indexing.
hr = pMySink->GetAutoIndexing(&fAutoIndex);

Previous Next

Previous Next

// If auto indexing is enabled, turn it off.
if(fAutoIndex)
 pMySink->SetAutoIndexing(FALSE);

// You can now write to this sink and the file will not have an index.

// Release the remaining interface.
pMySink->Release();
pMySink = NULL;

See Also

IWMWriterFileSink3::GetAutoIndexing
WMCreateWriterFileSink
Working with Indexes

© 2000-2003 Microsoft Corporation. All rights reserved.

To Configure the Indexer
You can configure the indexer before using it to index an ASF file. Each stream in the file can be configured
separately, or you can set the same configuration for all streams.

If you are configuring multiple steams for indexing in a file, you must configure them all and then begin
indexing. If you configure and index a stream and then configure another stream in the same file, starting the
indexer again will delete the first index. This is to comply with the ASF file format.

The following code shows how to configure the indexer. The code assumes that the file to be indexed has two
streams: the first is an audio stream which does not need to be indexed, and the second is a video stream. This
code shows only how to configure the indexer. To index a file, you must follow the steps presented in To Index
an ASF file.

IWMIndexer* pBaseIndexer = NULL;
IWMIndexer2* pMyIndexer = NULL;

DWORD dwInterval;
HRESULT hr = S_OK;

// Initialize COM.
hr = CoInitialize(NULL);

// Create an indexer.
hr = WMCreateIndexer(&pBaseIndexer);

// Retrieve an IWMIndexer2 interface pointer for the indexer just created.

Previous Next

Previous Next

hr = pBaseIndexer->QueryInterface(IID_IWMIndexer2, &pMyIndexer);

// Release the base indexer.
pBaseIndexer->Release();
pBaseIndexer = NULL;

// Set the index interval to 5 frames.
dwInterval = 5;

// Configure the indexer to create a frame-based index.
hr = pMyIndexer->Configure(2, // Stream Number.
 WMT_IT_FRAME_NUMBERS, // Indexer type.
 (void *)&dwInterval, // Index interval.
 NULL; // Index type, use default.

// TODO: Index the file. See To Index an ASF file.

// Release the remaining interface.
pMyIndexer->Release();
pMyIndexer = NULL;

Note The default index type is WMT_IT_NEAREST_CLEAN_POINT. Although you can set the index type
to other values, doing so will degrade seeking performance.

See Also

IWMIndexer2::Configure
To Index an ASF file
WMCreateIndexer
Working with Indexes

© 2000-2003 Microsoft Corporation. All rights reserved.

To Index an ASF File
The process of indexing an ASF file is very simple. Make a call to IWMIndexer::StartIndexing and pass the
file name. The indexer does the rest. The call to StartIndexing is asynchronous, so status must be monitored
using the OnStatus callback.

The following code shows how to index an ASF file. If you want to configure the indexer prior to indexing the
file, you will need to include code from the example included in To Configure the Indexer.

For this example, the handle that points to the event must be created as a global variable so it will be accessible
by the callback. The following declaration should appear in a global scope.

Previous Next

Previous Next

HANDLE g_hEvent = NULL;

In a more realistic scenario, the event handle should be a data member of the class that contains both the
callback and the logic for starting the indexer.

The indexer sends several events to the OnStatus callback after the call to IWMIndexer::StartIndexing. You
can trap them as needed for your application. At a minimum, you need to trap WMT_CLOSED, which is sent
when indexing is complete. Use the following logic within the message switch in your implementation of the
OnStatus callback.

// Inside the status switch statement.
case WMT_CLOSED:
 // You may want to deal with the HRESULT value passed with the status.
 // If you do, you should do it here.

 // Signal the event.
 SetEvent(g_hEvent);
 break;

For this example it is assumed that your implementation of the OnStatus callback is accessed through an object
called MyCallback. For more information about using events and callbacks with this SDK, see Using the
Callback Methods.

IWMIndexer* pMyIndexer = NULL;
HRESULT hr = S_OK;
WCHAR pwszFileName[] = L"C:\SomeFile.wmv";

// Initialize COM.
hr = CoInitialize(NULL);

// Create an event for asynchronous calls.
g_hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);

// Create an indexer.
hr = WMCreateIndexer(&pMyIndexer);

// TODO: Configure the indexer if needed. See To Configure the Indexer.

// Start the indexer.
hr = pMyIndexer->StartIndexing(pwszFileName, &MyCallback, NULL);

// Wait for the indexer to finish.
WaitForSingleObject(g_hEvent, INFINITE);

// Clean up.
pMyIndexer->Release();
pMyIndexer = NULL

CloseHandle(g_hEvent);
g_hEvent = NULL;

See Also

IWMIndexer Interface
To Configure the Indexer
WMCreateIndexer
Working with Indexes

© 2000-2003 Microsoft Corporation. All rights reserved.

To Stop Indexing in Progress
After you begin indexing with a call to IWMIndexer::StartIndexing, the indexer will normally continue until
the file is indexed. You can stop indexing operations by calling the IWMIndexer::Cancel method. After you
have canceled indexing, you can call StartIndexing again, but the indexer will start from the beginning of the
file rather than resuming from the point of cancellation.

Because StartIndexing is an asynchronous call, you will normally need to call Cancel from some other thread
or event handler in your application. Typically Cancel will be called from an event procedure associated with a
button control of a Windows application.

When indexing is canceled, the indexer will pass a status message of WMT_CLOSED, just as if the file had
been indexed properly.

See Also

IWMIndexer Interface
Working with Indexes

© 2000-2003 Microsoft Corporation. All rights reserved.

Using Script Commands
The Windows Media Format SDK supports the use of script commands to communicate application actions in
ASF files. Each script command is made up of two strings, the first string is the type of command, the second is
the command data. For example, you can use the script type "URL" and pass a valid Internet URL as the
command data. When a reading application that supports script commands of type "URL" receives this
command, it will open the specified address in a browser window.

Previous Next

Previous Next

Previous Next

Previous Next

The Windows Media Format SDK provides two options for delivering script in ASF files. You can create a
script stream or you can include script commands in the header of the file. Script streams are useful because the
script commands are delivered in presentation time order. If you use script commands in the file header, your
application will need to retrieve all of the script commands before starting playback. You must keep track of the
presentation times of script commands and respond to them at the right time.

The following sections describe how to include script commands in an ASF file.

Note In previous versions of the Windows Media Format SDK, script streams were used to open Web
addresses corresponding to the content of an ASF file. You can now use Web streams to work with
synchronized Web pages. For more information. see Web Streams.

See Also

Script Commands
Programming Guide

© 2000-2003 Microsoft Corporation. All rights reserved.

To Use a Script Stream
This section describes how to send script data to the writer for inclusion in a file. For information about
including script streams in profiles, see Configuring Arbitrary Stream Types.

Each script consists of two strings, a type string and an argument string.

The script data must be formatted before it is sent to the writer. The strings should be concatenated, separated
by a NULL character, and terminated with a NULL character. The following example shows a legitimate script:

Each pair of script commands should be written as a sample to the writer. For more information about writing

Section Description

To Use a Script Stream Describes how to include script commands in a script
stream.

To Add Script Data to the Header Describes how to include script commands in the file
header.

Using Script Commands Supported by Windows
Media Player

Describes the script commands used by Windows
Media Player.

Previous Next

Previous Next

U R L \0 h t t p : / / w w w . a d a t u m . c o m \0

samples, see To Write Samples.

When the ASF file is played, the script commands will be delivered by the reader (or synchronous reader) in
presentation time order. It is the responsibility of the application to parse the two strings and respond to the
script command.

Note When using DRM to encrypt a file, no script command can have a presentation time of 0.

See Also

Using Script Commands

© 2000-2003 Microsoft Corporation. All rights reserved.

To Add Script Data to the Header
You can include script commands in the header of an ASF file. To write script commands to the header at the
time of encoding, perform the following steps. Perform these steps prior to calling
IWMWriter::BeginWriting.

1. Obtain a pointer to the IWMHeaderInfo interface by calling IWMWriter::QueryInterface.
2. Add each desired script command by calling IWMHeaderInfo::AddScript. Each call takes the two

strings separately and the presentation time to be used for the command as parameters.

When an application reads the file, it will need to retrieve all of the script commands. To find all script
commands in the header of a file, perform the following steps. This should be done before starting playback.

1. Obtain a pointer to the IWMHeaderInfo interface of the reader object (or synchronous reader object) by
calling the QueryInterface method of another interface in the object.

2. Get the total number of scripts in the header by calling IWMHeaderInfo::GetScriptCount.
3. Loop through all of the scripts in the header one at a time using calls to IWMHeaderInfo::GetScript.
4. Create a list of the presentation times so that your application can react to the commands at the

appropriate time.

Note When using DRM to encrypt a file, no script command can have a presentation time of 0.

See Also

IWMHeaderInfo Interface
IWMWriter Interface
Using Script Commands

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Using Script Commands Supported by Windows
Media Player
The Windows Media Format SDK does not provide native support for parsing and responding to script
commands. You must include any logic related to script commands in your application. The script types that
you use must also be defined in your application.

You can include code to handle the same script commands that are supported by Windows Media Player.
Maintaining compatibility with Windows Media Player makes your files more universal than if you embed
custom script commands.

The following table lists script types that are supported by Windows Media Player.

See Also

Using Script Commands

Previous Next

Previous Next

Script type Description

URL The player sends the specified URL to the browser for display to the user. If an
embedded player control is being used, you can add a specific frame reference to
the URL by using the &&framename syntax.

FILENAME A URL to another media file to be played.

CAPTION A text string that is displayed in the captions area of Windows Media Player. This
type supports standard HTML formatting, so the text can be formatted as you
wish. An example of use is closed captioning.

EVENT The name of an event that is to occur. The EVENT type supports customization
for your own uses. The code for the specified event must be defined in the
Windows Media metafile for the stream in order for the player to perform the
specified event. An example of use is ad insertion.

OPENEVENT This script precedes the actual EVENT. The OPENEVENT allows the player to
pre-buffer the content so that when the EVENT occurs, the switch between
streams appears to be seamless.

TEXT A TEXT string that is displayed in the captions area of Windows Media Player.
Can be plain text, SAMI, or HTML formatted text.

© 2000-2003 Microsoft Corporation. All rights reserved.

Copying Data from One File to Another
At the most basic level, copying a stream from one ASF file to another is fairly straightforward. However, there
are issues to consider when working with streams from multiple input files or when copying streams that you
first decompress and re-encode.

The following sections describe copying streams.

See Also

Profile Manager Object
Stream Configuration Object
Synchronous Reader Object
Writer Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Copying Streams Without Decompressing the Data
The simplest and most common way to copy a stream from one file to another is to retrieve the samples in their
compressed state and then write them to the new file without decompressing and recompressing them. Samples

Previous Next

Previous Next

Section Descripiton

Copying Streams Without Decompressing the Data Describes how to copy streams using compressed
samples to preserve the quality of the content.

Copying Streams Using Decompressed Samples Describes the difficulties in copying streams using
decompressed samples.

Previous Next

Previous Next

obtained from a file in their compressed state are called stream samples, because they are unaltered from their
representation in the stream. It is recommended that you always use stream samples to copy streams, because
decompressing and recompressing digital media data degrades quality. If you must copy a stream from
decompressed data, see Copying Streams Using Decompressed Samples.

It is possible to concatenate two or more streams into a single stream using compressed samples, but only if the
bit rates are identical. The process is essentially the same as the steps described below, except that you must
read multiple original files to get all of the content you need. However, you can only write compressed samples
from multiple files to a single stream if the WM_MEDIA_TYPE structures (including all the pbFormat
structure members) of all the compressed streams are identical. To combine data from multiple streams that are
not of the same format, you must decompress the content and recompress it into the destination stream.
Additionally, when you combine data from two or more streams into a single stream, you must add the buffer
window values for all of the streams together to get the buffer window for the new stream. This is because it is
impossible to determine how much of the buffer is taken up at the end of one stream and at the beginning of
another.

You can retrieve stream samples with the asynchronous reader using
IWMReaderAdvanced::SetReceiveStreamSamples. Stream samples are delivered to
IWMReaderCallbackAdvanced::OnStreamSample, not to IWMReaderCallback::OnSample. If you are
reading a file and retrieving some streams compressed and some decompressed, you must implement both
callback methods.

The synchronous reader provides more flexibility for retrieving samples. You can switch between compressed
and decompressed samples freely during playback using IWMSyncReader::SetReadStreamSamples.

To copy an entire stream from one ASF file to a new ASF file, perform the following steps. These steps use the
synchronous reader because it is much simpler to use for this kind of operation.

1. Create a synchronous reader object by calling the WMCreateSyncReader function.
2. Open a file in the reader with a call to IWMSyncReader::Open.
3. Get a pointer to the IWMProfile interface of the synchronous reader object by calling

IWMSyncReader::QueryInterface.
4. Retrieve the properties of the desired stream by calling IWMProfile::GetStreamByNumber. This will

retrieve a pointer to the IWMStreamConfig interface of the stream configuration object for the stream
you want.

5. Get a copy of the WM_MEDIA_TYPE structure for the stream. Make two calls to
IWMMediaProps::GetMediaType: the first to get the size of the structure, the second to get the
structure itself.

6. Create a profile manager object by calling the WMCreateProfileManager function.
7. Call IWMProfileManager::CreateEmptyProfile to create a new profile (or open an existing profile to

which you want to add the stream). Call IWMProfile::AddStream on the new profile to add the stream
from the existing file. When adding the stream, use the IWMStreamConfig pointer obtained in step 4.

8. Create a writer object with a call to the WMCreateWriter function. Set the newly created profile as the
active profile in the writer by calling IWMWriter::SetProfile. Create a file for output by calling
IWMWriter::SetOutputFilename.

9. For each input associated with the stream or streams you are copying, call IWMWriter::SetInputProps,
passing NULL for the IWMInputMediaProps interface. This informs the writer object that it does not
need to validate the data you are passing. You must make this call before calling BeginWriting (step 14),
otherwise a reading object may not be able to decode the content.

10. Set the synchronous reader to deliver compressed stream samples for the selected stream by calling
IWMSyncReader::SetReadStreamSamples with the fCompressed parameter set to True.

11. Obtain codec information for every stream being copied and add the codec information to the header
before writing. To obtain the codec information, call IWMHeaderInfo2::GetCodecInfoCount and

IWMHeaderInfo2::GetCodecInfo to enumerate the codecs associated with the file in the reader. Select
the codec information that matches the stream configuration. Then set the codec information in the writer
by calling IWMHeaderInfo3::AddCodecInfo, passing the information obtained from the reader.

12. Obtain a pointer to the IWMWriterAdvanced interface by calling IWMWriter::QueryInterface.
13. Set the writer to writing mode by calling IWMWriter::BeginWriting.
14. Make repeated calls to IWMSyncReader::GetNextSample, specifying the desired stream number.

When samples are received, pass them to the writer with calls to
IWMWriterAdvanced::WriteStreamSample. For video streams, you should check the flags (if any) set
by the writer on each call to GetNextSample. If WM_SF_CLEANPOINT is set, you must also set it on
your call to WriteStreamSample.

15. When reading is complete, call IWMWriter::EndWriting. The stream should be transferred.

Note Image streams cannot be copied from one file to another using stream samples. To copy image stream
data, retrieve the samples uncompressed and then process them through the writer as you normally would.

See Also

Copying Data from One File to Another
Copying Streams using Decompressed Samples

© 2000-2003 Microsoft Corporation. All rights reserved.

Copying Streams Using Decompressed Samples
It is strongly recommended that you not copy streams from one file to another using decompressed samples.
The process of decompressing and recompressing samples will degrade the quality of the output. If you do need
to decompress your samples and then copy them to another stream, you may encounter some difficulty with
quality-based variable bit rate (VBR) encoded streams.

When the codec finishes compressing a quality-based VBR stream, it records the bit rate and buffer window of
the resulting content. When you read a file containing a stream encoded with quality-based VBR, the profile
obtained from the reader will note the bit rate and buffer window as well as the maximum bit rate and maximum
buffer window. This configuration in the profile normally signifies a bit-rate constrained variable bit rate
stream. As a result, when you set the profile on the writer, it will expect a preprocessing pass for the stream,
because bit-rate constrained VBR streams require two-pass encoding. You should treat the stream as if it were a
bit-rate constrained VBR stream and deliver the samples for preprocessing. Because you are using the values
returned after encoding the content at a particular quality level, those values represent the desired quality level.
Of course, the quality of the re-encoded output will be somewhat degraded anyway, as a result of the re-
encoding.

See Also

Previous Next

Previous Next

Copying Data from One File to Another
Copying Streams Without Decompressing the Data

© 2000-2003 Microsoft Corporation. All rights reserved.

Enabling DRM Support
You can use the Microsoft Windows Media Format 9 Series Software Development Kit (SDK) to build
applications that can apply DRM protection as well as play back "Live DRM" streams or DRM-protected files.
Support is provided for DRM version 1 and DRM version 7. Support is also provided for backing up and
restoring a player application's DRM licenses, and for individualizing player applications.

This documentation assumes that you have a basic familiarity with Microsoft's Digital Rights Management
technology. For more information on DRM, see the Windows Media section of the Microsoft Web site.

The following sections describe how to enable DRM support.

Previous Next

Previous Next

Section Description

Obtaining the Required DRM Library Describes the steps involved in obtaining the static
library that is required to create DRM-enabled
applications.

DRM Protection and Content License Distribution Compares the DRM capabilities of the Windows
Media Format SDK with the Windows Media Rights
Manager SDK.

Creating Protected Files Describes how to create DRM-protected files.

Reading Protected Files Describes different ways to acquire licenses for
content and the benefits of implementing silent license
acquisition.

Viewing Attributes of Protected Files Describes how to use the IWMDRMEditor interface
on the metadata editor object to view attributes of
protected files without having the required static
library for DRM.

Working with Revocation Lists Describes revocation lists and how they are
implemented.

Backing Up and Restoring Licenses Describes how users can manage their content licenses
by backing up and restoring them to their current
computer or to other computers.

The SDK includes several sample applications that demonstrate how to read protected files; the fullest example
is DRMShow. For more information, see Sample Applications.

See Also

Features

© 2000-2003 Microsoft Corporation. All rights reserved.

Obtaining the Required DRM library
To perform DRM file creation or playback, you must link to a static library that is provided in binary form by
Microsoft. This library is sometimes called a stub library or "stublib" and it uniquely identifies your application.
In this documentation, the DRM library is referred to as "WMStubDRM.lib" although the name of the library
you receive may be different. To obtain this library, you must sign a license agreement with Microsoft. The
terms of the agreement may differ depending on whether you request an evaluation license or a production
license. For more information on the DRM licensing process, see the Windows Media Licensing Form at the
Microsoft Web site.

The library that you receive has a DRM security level that depends on the type of license agreement you enter
into. A DRM license can restrict applications with DRM components below a specified security level from
accessing the file contents. This security level is not the same as the DRM individualization level. The
following table shows examples of DRM security levels for different players and portable devices.

Individualizing DRM Applications Describes how the individualization feature increases
security in a DRM system.

Previous Next

Previous Next

Security level Players and portable devices Example

150 Players and portable devices that
produce clear content.

Microsoft Windows Media Player
for Pocket PC

450 The first level of security intended
to meet the needs of the SDMI
specification; portable media must
have a hardware serial number.

SDMI-compliant players and
portable devices

1,000 Audio players.

Desktop computers with software
obfuscation (software code with

Windows Media Player 6.4,
Windows Media Player 7

Build and Debugging Information

When you link to WMStubDRM.lib, do NOT link to wmvcore.lib. The DRM component will not work properly
if the application links to both libraries.

A user breakpoint in the DRM component will prevent both debug and release versions of applications from
accessing protected content when running inside the debugger. To troubleshoot DRM-related functions in your
application, you must write your own trace routines that save information such as HRESULT values to some
location such as a log file.

If you attempt to run a release version of an application on a system with a debug version of the SDK bits
installed (or the other way around), you will encounter heap errors during playback of DRM version 7 content.
Be sure to run debug applications over debug SDK bits, and release applications over release bits. The same
problem will occur if you run a debug version of the SDK with an individualized DRM component (which is
always a release build).

© 2000-2003 Microsoft Corporation. All rights reserved.

DRM Protection and Content License Distribution
On the creation side, Digital Rights Management technology involves two main processes: (1) protecting the
content and (2) providing licenses for the content. Protecting a file basically involves encrypting the content,
and including a URL in the file header that specifies where a license for the content may be obtained. If you
want to protect files with DRM version 1 or version 7 and then distribute the files to other computers or devices,
you can use either the Windows Media Format SDK or the Windows Media Rights Manager to protect the file.
For "Live DRM" scenarios based either on DRM version 1 or version 7, you must use the Windows Media
Format 9 Series SDK to protect the content as it is being encoded.

To create and issue licenses for protected content, you can do any of the following:

Use a license service such as Microsoft's "Rights Box."

hidden information).

Portable devices.

2,000 Applications that are based on
Windows Media Format 7.1 SDK
or later, and that follow a stricter
set of content protection guidelines
than applications at level 1000.

Windows Media Player 7.1 and
later

Previous Next

Previous Next

Use a service run by a third party.
Set up your own Windows Media License Service using the Windows Media Rights Manager SDK.
Implement your own custom solution.

Whichever method you use, the protected files that you create will contain, in the DRM header object, a URL
that tells client applications where to obtain a license for the content.

Note The Windows Media Format SDK does not provide support for creating or issuing licenses.

On the playback side, a DRM-enabled application must be able to obtain licenses for protected content, to
decrypt that content using the key contained in the license, and to enforce the license restrictions, such as the
number of times a file may be played, or whether the file can be copied to another device. The Windows Media
Format 9 Series SDK provides all the support required to create a fully enabled DRM playback application.

See Also

Digital Rights Management Features

© 2000-2003 Microsoft Corporation. All rights reserved.

Creating Protected Files
To create protected digital media files using either DRM version 1 or DRM version 7, link to the
WMStubDRM.lib file that you obtained from Microsoft, and create the writer object. For version 1 protection,
use the IWMHeaderInfo interface to set the DRM attributes you want to apply. For version 7, use the
IWMDRMWriter interface methods.

The following topics describe in detail how to protect files using version 1 and version 7.

Protecting Files with DRM Version 1
Protecting Files with DRM Version 7

See Also

DRM Attribute List
DRM Properties
DRM Version 1 and Version 7
Enabling DRM Support
Obtaining the Required DRM Library
Reading Protected Files

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Protecting Files with DRM Version 1
When this kind of protection is applied, a DRM version 1 license is generated that is valid only on the machine
from which the license request was made. Because no key or key seed is set, there is no way to generate
portable licenses for content protected using this technique. However, when using the Windows Media Format
SDK 7.1 or later, the licenses are recoverable at the Microsoft License Migration service.

To protect ASF files using DRM version 1, perform the following steps:

1. Link the WMStubDRM.lib file to your project and, if necessary, unlink wmvcore.lib.
2. Call the WMCreateWriter function to create the writer. The first argument is reserved and must be set to

NULL.
3. Set a profile for the writer to use by calling IWMWriter::SetProfile or IWMWriter::SetProfileByID.

You must set a profile in the writer before setting any DRM attributes. DRM is supported only for
profiles that use the Windows Media Audio or Windows Media Video codecs.

4. Using the IWMHeaderInfo::SetAttribute method, set the following DRM properties. The Use_DRM
property instructs the DRM components to protect the content using DRM version 1. The DRM_Flags
property specifies the rights to be included in the local license that will be created for the content. The
DRM_LEVEL value is also stored in the license; it specifies the minimum level required to access the
content. 150 is the recommended level for DRM version 1 content.

The following example code shows how to create a DRM-enabled writer for DRM version 1 and set the DRM
properties. Error checking has been omitted for the sake of clarify.

BOOL fUseDRM = TRUE;
// These are the rights we will apply to the file. See WMT_RIGHTS for
// the full set of possible rights.

DWORD dwDRMFlags = WMT_RIGHT_PLAYBACK |
 WMT_RIGHT_COPY_TO_NON_SDMI_DEVICE |
 WMT_RIGHT_COPY_TO_CD;

// Set the minimum required DRM level low enough

Previous Next

Previous Next

Attribute Value

Use_DRM TRUE

DRM_Flags WMT_RIGHT_PLAYBACK |
WMT_RIGHT_COPY_TO_NON_SDMI_DEVICE |
WMT_RIGHT_COPY_TO_CD

DRM_LEVEL 150

// to allow older players to access the content.
DWORD dwDRMLevel = 150;

IWMDRMWriter* pWMDRMWriter = NULL;
HRESULT hr = S_OK;

// Initialize COM.
hr = CoInitialize(NULL);

// Create a writer object.
hr = WMCreateWriter(NULL, &pWMDRMWriter);

// Obtain the IWMHeaderInfo interface.
hr = pWMDRMWriter -> QueryInterface(IID_IWMHeaderInfo,
 (void**) &pWMHeaderInfo);

// Tell the SDK runtime to protect the file using DRM version 1.
hr= pWMHeaderInfo-> SetAttribute(0,
 g_wszWMUse_DRM,
 WMT_TYPE_BOOL,
 (BYTE*)&fUseDRM,
 sizeof(BOOL));

// Specify the rights that will be stored in the local license that is
// created automatically for the content.
hr= pWMHeaderInfo->SetAttribute(0,
 g_wszWMDRM_Flags,
 WMT_TYPE_DWORD,
 (BYTE *)&dwDRMFlags,
 sizeof(DWORD));

// Set the DRM_Level attribute in the file's DRM header.
hr= pWMHeaderInfo->SetAttribute(0,
 g_wszWMDRM_Level,
 WMT_TYPE_DWORD,
 (BYTE *)&dwDRMLevel,
 sizeof(DWORD));

© 2000-2003 Microsoft Corporation. All rights reserved.

Protecting Files with DRM Version 7
To protect DRM version 7 files, use the writer object's IWMDRMWriter::SetDRMAttribute method to set
DRM attributes. Because DRM version 7 enables unique licenses for each protected file or set of files, the
IWMDRMWriter interface also has methods for creating keys. These methods are provided for convenience
only.

To protect ASF files using DRM version 7, perform the following steps:

Previous Next

Previous Next

1. Link to WMStubDRM.lib and, if necessary, unlink wmvcore.lib.
2. Call the WMCreateWriter function to create the DRM writer. The first argument is reserved and must

be set to NULL.
3. Set a profile for the writer to use by calling IWMWriter::SetProfile or IWMWriter::SetProfileByID.

You must set a profile in the writer before setting any DRM attributes. DRM is supported only for
profiles that use the Windows Media Audio or Windows Media Video codecs

4. Obtain the writer object's IWMDRMWriter interface.
5. Call IWMDRMWriter::SetDRMAttribute and set Use_Advanced_DRM to TRUE.
6. If you need to generate a new key seed, call IWMDRMWriter::GenerateKeySeed. In most cases, you

will be reusing a key seed that was generated previously. This value must remain secret; it is not written
into the file.

7. Call IWMDRMWriter::GenerateKeyID to create a key ID, which is the second value used to create the
actual key. Unlike the key seed, the key ID is public and is written to the file in the DRM header in the
clear. Create a new key ID for each new file you create.

8. Call IWMDRMWriter::GenerateSigningKeyPair if necessary to generate a public and private key that
will be used to sign the Version 7 ASF Header object. For more information about these keys, see
IWMDRMWriter::GenerateSigningKeyPair.

9. If necessary, obtain the values to populate the DRM header's digital signature object. If you do not have a
working version of Windows Media Rights Manager installed on your system, you must configure the
ASF file header's digital signature object by specifying the following four attributes, which all must be
obtained from Microsoft:

DRM_LASignatureRootCert
DRM_LASignatureCert
DRM_LASignatureLicSrvCert
DRM_LASignaturePrivKey

If you do have Windows Media Rights Manager installed, there is no need to set these attributes in your
application. The DRM component will retrieve these attributes and use them to sign the header
automatically. If you have an activated version of Windows Media Rights Manager on another machine,
and wish to reuse those digital signature object values, you can find them in the registry. The license
server certificate is stored under HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WM Rights
Manager\License Server\Certs:cert1, and the root certificate is stored under
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WM Rights Manager\License Server\Certs:cert2.
When protecting files with DRM version 7, you must use the values from these registry keys. For the
DRM_LASignaturePrivKey property, use either GenerateSigningKeysEx (through the Windows
Media Rights Manager SDK) or else reuse the value installed by Windows Media Rights Manager under
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WM Rights Manager\License Server:Info_Cert0.
For the DRM_LASignatureCert property, use either GenerateSigningKeysEx (through the Windows
Media Rights Manager SDK) or else the value installed by Windows Media Rights Manager under
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WM Rights Manager\License Server\Certs:cert0.

10. Call IWMDRMWriter::SetDRMAttribute as many times as necessary to set the required DRM header
attributes and run-time properties. These properties persist for the lifetime of the writer object or until
they are reset with a new value. They do not need to be reset for each new file you create.

The following properties are required:

DRM_HeaderSignPrivKey
DRM_KeySeed
DRM_V1LicenseAcqURL
DRM_DRMHeader_KeyID
DRM_DRMHeader_LicenseAcqURL

The following properties are optional:

DRM_DRMHeader_ContentID
DRM_DRMHeader_IndividualizedVersion
DRM_DRMHeader_ContentDistributor
DRM_DRMHeader_SubscriptionContentID

The DRMHeader property set is extensible. You can add any additional property you wish, such as
"DRMHeader.RequireSAP" for example, as a way of communicating additional information that will be
used by the license server in creating the license. The license server must be aware in advance of any
additional properties you add. There is no way to discover unknown properties programmatically.

11. Write the file using the IWMWriter interface methods as described elsewhere in this documentation. To
create a "live DRM" stream, simply write to a network sink. You can also write to a push sink.

12. If necessary, create a license for the file using Windows Media Rights Manager. This task can also be
performed by a third-party license server. For "live DRM" scenarios, end users will need to obtain a
license either before the stream begins, or else at the time they first attempt to connect to it.

See Also

Attributes
DRM Attribute List
DRM Properties
IWMDRMWriter Interface
IWMHeaderInfo::SetAttribute
IWMWriter Interface
Reading Protected Files
WMCreateWriter

© 2000-2003 Microsoft Corporation. All rights reserved.

Reading Protected Files
Reading a DRM-protected file or network stream basically involves attempting to open the file (or connect to
the stream) and then handling any events that might be sent from the DRM components.

If a player is not DRM-enabled (does not link to a valid wmstubdrm.lib library) the IWMReader::Open call
fails when it tries to open a protected file and returns NS_E_PROTECTED_CONTENT or some related error.

When a DRM-enabled application attempts to open a DRM-protected file, the DRM component automatically
searches the local system for a valid license. If one is found, the DRM component automatically decrypts the
file in a way that is completely transparent to the application. The action that an application may perform on the

Previous Next

Previous Next

decrypted file depends on the rights specified in the license. For a full description of possible rights, see the
Windows Media Rights Manager SDK documentation.

If the application does not have a valid license for a file, the player receives a status notification from the DRM
component. The player application can then initiate the license acquisition process. After a valid license has
been received, the file can be accessed. The following sections describe the basic tasks that an application must
perform in implementing the license acquisition process:

Specifying the Actions To Be Performed
Handling License Acquisition Events
Individualizing DRM Applications
Handling Individualization Events

See Also

Digital Rights Management Features
DRM Attribute List
DRM Properties
Enabling DRM Support

© 2000-2003 Microsoft Corporation. All rights reserved.

Specifying the Actions To Be Performed
When you first call WMCreateReader to create the reader object, the second parameter is a bitwise OR of
WMT_RIGHTS values. Use this parameter to specify which action(s) the application will take on the first file
to be opened. These actions correspond directly to the five possible rights that can be specified in the license:
Playback, CopyToCD, CopyToSMDIDevice, CopyToNonSMDIDevice, and Backup. On subsequent calls to
IWMReader::Open, you can modify the rights that you are requesting by calling
IWMDRMReader::SetDRMProperty , specifying the defined constant for the DRM_Rights property, and
using string literals (of type WCHAR) separated by semicolons to identify the rights. The following code
snippet requests four rights: play the file, copy it to a CD, copy it to a Secure Digital Music Initiative (SDMI)
device, and copy it to a non-SDMI device.

WCHAR wszRights[] = L"Play;Print.redbook;Transfer.SDMI;Transfer.NONSDMI;Backup";
p_WMDRMReader->SetDRMProperty(g_wszWMDRM_Rights, WMT_TYPE_STRING,
 (BYTE*)wszRights, sizeof(wszRights));

Note Do not confuse the DRM_Rights property with the DRM_Flags property, which is a DWORD used to
specify which rights to apply to a local DRM version 1 license when copying content from a CD.

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Handling License Acquisition Events
A DRM-enabled reader application, in its IWMStatusCallback::OnStatus callback method, handles the
following four events related to the license acquisition process:

WMT_LICENSEURL_SIGNATURE_STATE
WMT_NO_RIGHTS
WMT_NO_RIGHTS_EX
WMT_ACQUIRE_LICENSE

WMT_LICENSEURL_SIGNATURE_STATE

When the DRM component detects content protected by DRM version 7, it first looks for a valid license on the
local system. If none exists, it then evaluates the license acquisition URL in the file's DRM header and sends a
WMT_LICENSEURL_SIGNATURE_STATE event with pValue set to one of the WMT_DRMLA_TRUST
values, indicating whether the URL is trusted, untrusted, or has been tampered with. If the URL is not trusted,
then the application should warn the user. If the URL has been tampered with, then the file should be
considered corrupted, and the application should not navigate to the URL without issuing a strong warning the
user.

WMT_NO_RIGHTS

The WMT_NO_RIGHTS event is sent only for DRM version 1 content, which means that the license must be
acquired non-silently. In other words, the user must navigate to a Web page to acquire a license. The URL for
the page is retrieved as a wide-character null-terminated string from the pValue parameter in the OnStatus
method.

If appropriate, an application can make it easier for the user to navigate to the Web page, either by opening up
Internet Explorer in a separate process or else by hosting the Web Browser control. This is not required,
however. At the very least, an application could simply display the URL to the user in a message box and
prompt them to paste it into the address bar of Internet Explorer. The Audioplayer sample demonstrates proper
handling of the WMT_NO_RIGHTS event, including how to format the URL string, and how to use the
CreateProcess method to open Internet Explorer and navigate to the specified URL.

Because the application has no way of knowing when a DRM version 1 license has been acquired, it is up to the
user to attempt to open the file again after acquiring the license.

This same non-silent license acquisition process can also be used for version 7 licenses, but in this case the
application can first call IWMDRMReader::MonitorLicenseAcquisition. This method will cause the local
license store to be checked repeatedly until the license for the new file is found. At that point, the application
will receive a WMT_ACQUIRE_LICENSE event. For all version 7 licenses, it is recommended that

Previous Next

applications give users the option to obtain licenses silently or non-silently.

WMT_NO_RIGHTS_EX

The WMT_NO_RIGHTS_EX event indicates that the content is protected by DRM version 7, and therefore
the license acquisition process can proceed either silently or non-silently. In general, silent license acquisition is
more convenient for end users, although some people prefer to acquire all licenses non-silently. When license
acquisition requires the user to submit payment or personal information, the process should always be
performed non-silently. Non-silent license acquisition is described above under the WMT_NO_RIGHTS
heading. Silent acquisition proceeds as follows:

1. Cast the pValue parameter to a WM_GET_LICENSE_DATA structure and store the structure in case it
is needed later for non-silent license acquisition.

2. Call QueryInterface on the reader object to obtain the IWMDRMReader interface.
3. Call IWMDRMReader::AcquireLicense and specify 0x1 in the dwFlags parameter to indicate silent

language acquisition. This is an asynchronous call that returns immediately.
4. Wait for the WMT_ACQUIRE_LICENSE event.

WMT_ACQUIRE_LICENSE

The WMT_ACQUIRE_LICENSE event is sent after the license acquisition process is completed for a DRM
version 7 license. IWMDRMReader::AcquireLicense causes this event to be sent for silent acquisition, and
MonitorLicenseAcquisition causes it to be sent for non-silent acquisition. In your event handler, cast pValue to
a pointer to a WM_GET_LICENSE_DATA structure and examine the hr member to determine whether the
license was successfully acquired. If hr equals NS_E_DRM_NO_RIGHTS, it indicates that the license must be
acquired non-silently. Applications should enable users to cancel the license acquisition process at any time.
This is done by calling IWMDRMReader::CancelLicenseAcquisition. Calling this method will send a
WMT_ACQUIRE_LICENSE event with an HRESULT value of NS_S_DRM_ACQUIRE_CANCELLED.

If hr equals NS_S_DRM_LICENSE_ACQUIRED, then the license has been acquired and the application can
attempt to play the file, or copy it to a device or perform whatever action it had requested rights for.

On Windows XP, a new error code was introduced: NS_E_DRM_LICENSE_NOTACQUIRED. This error code
is generated whenever the Windows Media Format run-time components on Windows XP fail to acquire a
license during silent or non-silent license acquisition. On other platforms,
NS_E_DRM_LICENSE_STORE_ERROR is usually returned when license acquisition fails. The new error
code is intended to distinguish license acquisition failure from other failure conditions where
NS_E_DRM_LICENSE_STORE_ERROR is generated.

The recommended way to handle these errors when they are returned after a silent license acquisition attempt is
shown in the following code snippet:

if(hrStatus == NS_E_DRM_LICENSE_NOTACQUIRED ||
 hrStatus == NS_E_DRM_LICENSE_STORE_ERROR)
{
 // Attempt non-silent license acquisition.
}
else if(hrStatus == NS_E_DRM_NEEDS_INDIVIDUALIZATION)
{
 // Individualize and then retry.
}
else if(FAILED(hrStatus))
{
 // Display a helpful error message.
}

else
{
 // Success. Play content.
}

© 2000-2003 Microsoft Corporation. All rights reserved.

Viewing Attributes of Protected Files
In some scenarios, you may need to retrieve certain DRM attributes in a file without actually accessing the
contents of the file. This capability is useful, for example, in applications that process batches of files in
different ways based on information in the file header. In previous versions of the Windows Media Format
SDK, applications were required to link to the DRM static library in order to open any protected file. In
Windows Media 9 Series, applications that don't have the DRM library can use the convenient
IWMDRMEditor::GetDRMProperty interface on the metadata editor object to examine certain DRM
attributes.

See Also

DRM Attribute List
Enabling DRM Support
IWMDRMEditor Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Individualizing DRM Applications
To increase security, the DRM component of applications can be individualized. An individualized application
is one that has received an upgrade to its DRM components that differentiates it from all other copies of the
same application. Content owners can require that their protected files be played only on an application that has
been individualized.

Previous Next

Previous Next

Previous Next

Previous Next

The individualization process starts when the application contacts the Microsoft Individualization Service,
which then installs a security upgrade on the user's computer. Because the Individualization Service handles
information from the user, you must display the Microsoft privacy policy or provide a link to that page at the
Microsoft Web site: http://go.microsoft.com/fwlink/?LinkId=10240.

Individualization can be accomplished in different ways. For example, individualization can take place when a
user plays a protected file. The license request is sent to the Windows Media License Service, which inspects
the certificate of the application requesting the license. If the DRM component of the application has not been
individualized, Windows Media License Service refuses to issue the license, because it is the policy of
Windows Media License Service to issue licenses only to individualized players. The application can then
notify the user that the application must be upgraded. If the user agrees, a security upgrade is provided to
individualize the DRM component of the application.

For a better user experience, you can initiate the individualization process as a security upgrade step during
setup; then the user is not interrupted to get a security upgrade while trying to play a protected file. You can
also actively encourage individualization by adding a Security Upgrade menu command or button to the
application.

See Also

Digital Rights Management Features
Enabling DRM Support

© 2000-2003 Microsoft Corporation. All rights reserved.

Handling Individualization Events
When a DRM-enabled application attempts to open a protected file, the DRM component examines the
DRM_DRMHeader_IndividualizedVersion attribute in the file, which specifies the minimum version level
required to access the content. Versions 7.0, 7.1, and 8.0 of Windows Media Player and the Windows Media
Format SDK all shipped with level 2.1.0.0 of the DRM component, and could be individualized to level 2.1.0.1
or 2.2.0.1. A level 2.3.0.1 DRM component is currently expected to be made available in the near future. All
levels of the DRM component work with all 7.0 and later versions of Windows Media Player and the Windows
Media Format SDK. If the DRM component's individualized version level is lower than the required version,
the DRM component will send a WMT_NEEDS_INDIVIDUALIZATION event to the application's
IWMStatusCallback::OnStatus method. The application must then display a message or dialog box
prompting users to either start or cancel the security upgrade. This prompt is necessary because, for privacy
reasons, users must give their permission before a security upgrade is installed on their computer.

Note The header of the content specifies only the first two digits for
DRM_DRMVersion_IndividualizedVersion. In other words, to require a level 2.2.0.1 DRM component, the
header would contain "2.2".

Previous Next

Previous Next

To start the security upgrade and/or trigger individualization, call the IWMDRMReader::Individualize
method with the dwFlags parameter set to 1.

You must handle the WMT_INDIVIDUALIZE event in your application. This event will be fired multiple
times by the DRM component with the status of the individualization process indicated in the pValue parameter,
which is cast to a pointer to a WM_INDIVIDUALIZE_STATUS structure.

After the DRM component is successfully individualized, the application will receive a
WMT_NO_RIGHTS_EX event, indicating that the application can now proceed to acquire a license for the
content.

See Also

Handling License Acquisition Events
Individualizing DRM Applications
IWMDRMReader Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Working with Revocation Lists
To respond to security breaches and to ensure that player applications known to be broken or compromised
cannot play or use protected files, each license that is issued contains a revocation list. A revocation list contains
the application certificates of all those player applications known to be broken or corrupted. When a new license
is received, the DRM component of the player application checks for a revocation list. If one is found that is
newer than the one currently on the computer, the newer list is stored. The next time the consumer plays a
protected ASF file, the DRM component compares the player application to the revocation list. If the player
application is revoked, the DRM component sends an error message to the application.

Player applications can receive a revocation error message in the following scenarios:

The error message is received after the application calls the IWMDRMReader::AcquireLicense method
for a protected file. The call fails with the HRESULT code NS_E_DRM_APPCERT_REVOKED, which
is supplied to the OnStatus callback function with WMT_ACQUIRE_LICENSE status. If this
HRESULT code is ignored, errors will continue to occur.
The error message is received when the application creates the DRM-enabled reader and calls the
IWMReader::Open method for a protected file. The call fails with the HRESULT code
NS_E_DRM_APPCERT_REVOKED, which is supplied to the IWMStatusCallback::OnStatus
callback method with WMT_OPENED status. When a player application receives this error message, the
application should notify end users and provide a way for them to restore functionality to their player. For
example, the application can open a URL where end users can download an upgrade for the compromised
application.

Previous Next

Previous Next

See Also

Digital Rights Management Features
Handling License Acquisition Events

© 2000-2003 Microsoft Corporation. All rights reserved.

Backing Up and Restoring Licenses
The backup and restore processes are asynchronous. They are triggered when the user selects a menu command
or option in the application to back up or restore licenses. You should allow the user to specify the locations
where licenses must be backed up to and restored from.

To back up licenses:

1. Use the WMCreateBackupRestorer function to create the backup restorer object.
2. Call the IWMBackupRestoreProps::SetProp method to set the backup path (the location where you

will write the files, such as A:\ or D:\Licenses).
3. Call the IWMLicenseBackup::BackupLicenses method to back up the licenses to the specified path.

The following events are sent to the IWMStatusCallback::OnStatus method:

WMT_BACKUPRESTORE_BEGIN indicates the backup process has started.
WMT_BACKUPRESTORE_END indicates the backup process has been completed.
WMT_RESTRICTED_LICENSE indicates that one or more licenses cannot be backed up because the
right has been disallowed by the content owner.

The key ID is also included in this message. If you have implemented a database for protected files that includes
the key ID and metadata, you can display a message to the user with the specific title (such as a song title) for
which the license cannot be backed up. Otherwise, the message must be generic and inform the user that some
licenses cannot be backed up.

To restore licenses:

1. Use the WMCreateBackupRestorer function to create the backup restorer object.
2. Call the IWMBackupRestoreProps::SetProp method to set the restore path to the location where

licenses are backed up.
3. Call the IWMLicenseRestore::RestoreLicenses method to restore licenses from that location.

The following events are sent to the IWMStatusCallback::OnStatus method:

WMT_BACKUPRESTORE_CONNECTING indicates that the application is connecting to the

Previous Next

Previous Next

License Management Service.
WMT_BACKUPRESTORE_DISCONNECTING indicates that the application is disconnecting from
the License Management Service.
WMT_BACKUPRESTORE_BEGIN indicates the restore process has started.
WMT_BACKUPRESTORE_END indicates the restore process has been completed.

See Also

Digital Rights Management Features
IWMBackupRestoreProps Interface
IWMLicenseBackup Interface
IWMLicenseRestore Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Implementing Network Functionality
This section describes how to use the networking features available through the Windows Media Format SDK.
An application can use these features to read ASF streams from a network, broadcast ASF streams to a network,
or push ASF streams to a publishing point on a server running Windows Media Services.

The following sections describe the networking features of this SDK.

See Also

Programming Guide

Previous Next

Previous Next

Section Description

Overview of Networking Interfaces Names and describes each interface that supports networking
methods.

Reading ASF Data Over a Network Describes how to play files from a network source and how to
configure the network settings on the reader object.

Sending ASF Data Over a Network Describes how to broadcast ASF data over a network or send
ASF data to a publishing point on a Windows Media server.

Default Networking Settings Provides a quick reference for the default settings used by the
SDK.

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Overview of Networking Interfaces
The networking features of this SDK are supported through methods of the following interfaces.

See Also

Implementing Network Functionality

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Interface Description

IWMClientConnections Gets information about the clients connected to a network sink.

IWMClientConnections2 Provides a method to get information about a client attached to
a writer network sink. This interface extends the
IWMClientConnections interface.

IWMCredentialCallback Provides a callback method to acquire user credentials when
accessing a remote site.

IWMReaderAdvanced2 Provides advanced methods on the reader object.

IWMReaderAdvanced3 Extends the IWMReaderAdvanced2 interface.

IWMReaderAdvanced4 Extends the IWMReaderAdvanced3 interface.

IWMReaderNetworkConfig Configures the network settings on the reader object.

IWMReaderNetworkConfig2 Configures additional network settings on the reader object.
This interface extends the IWMReaderNetworkConfig
interface.

IWMWriterNetworkSink Configures the network sink object, which is used to write
digital media to a network.

IWMWriterPushSink Configures the push sink object, which is used to distribute
digital media to publishing points.

Previous Next

Reading ASF Data Over a Network
This section describes how to play files from a network source, as well as how to configure the network settings
on the reader object. It contains the following sections.

Playing Files from a Network Source
Protocol Rollover
Saving Content
Authentication
Enabling Fast Cache Streaming from the Client
Client Logging
Configuration Persistence

© 2000-2003 Microsoft Corporation. All rights reserved.

Playing Files from a Network Source
Reading from a network is not fundamentally different from reading a local file. The application passes the
URL to the reader object's IWMReader::Open method, and the reader object handles the details of the
network protocols. The reader object uses intelligent buffer management to provide the smoothest playback
possible. If the application needs more control over the reader object's network settings, these are available
through the IWMReaderNetworkConfig and IWMReaderNetworkConfig2 interfaces.

Content from a network source falls into one of the following two categories:

Streaming. The data is transmitted just in time to be played on the local machine. Servers running
Windows Media Services can provide streaming data. If multiple bit rate (MBR) content is streamed, the
client can request a different bit rate from the server as streaming progresses.
Downloaded. All the data is transmitted as quickly as possible so that it can be saved as a file on the local
machine. Web servers provide downloaded data. There is no communication from the client to the server
after the download begins.

When the reader object downloads a file from a Web server, it uses a technique called progressive streaming,
which allows a player to begin rendering the content before downloading is complete. Data is buffered to
provide an uninterrupted flow of data to the player. Information such as the transfer rate and duration of the

Previous Next

Previous Next

Previous Next

content is used to determine how long to buffer the data before giving it to the player.

To open a file or stream over a network, call the reader object's IWMReader::Open method with the
appropriate URL. Open is an asynchronous call, so it returns immediately. When the source is ready for
reading, the reader object sends a WMT_OPENED notification to the application's
IWMStatusCallback::OnStatus callback method. At this point, the application can query the reader for the
delivery mode by calling IWMReaderAdvanced2::GetPlayMode. For network content, this method will
return either WMT_PLAY_MODE_DOWNLOAD, indicating downloaded content, or
WMT_PLAY_MODE_STREAMING, indicating streamed content.

To begin reading the file or stream, call the IWMReader::Start method. The reader sends a
WMT_BUFFERING_START notification when it starts to buffer the content, and a
WMT_BUFFERING_STOP notification when buffering is complete. While the reader is buffering content (that
is, between these two notifications), you might want to display the buffering progress to the user. The
IWMReaderAdvanced2::GetBufferProgress method returns the percentage of data that has been buffered
and the estimated time that remains. For downloaded content, you can also call
IWMReaderAdvanced2::GetDownloadProgress to get the download progress. Call these methods repeatedly
to update your display, until buffering has completed. Buffering can occur again during playback, due to factors
such as network congestion. If this occurs, the application receives another WMT_BUFFERING_START
notification.

When the reader object begins to play the content, it sends a WMT_STARTED notification. As each sample is
decoded and becomes available for rendering, the reader passes it to the application through the
IWMReaderCallback::OnSample callback method. At this point, the process is the same as it is for local file
playback. When playback stops, the reader sends a WMT_END_OF_STREAMING notification.

See Also

Reading ASF Files

© 2000-2003 Microsoft Corporation. All rights reserved.

Protocol Rollover
Protocol rollover is a process whereby the reader object discovers the best streaming protocol available from a
server. The reader uses protocol rollover whenever it opens a URL that contains an "mms" scheme.

The reader supports several protocols:

Real Time Streaming Protocol (RTSP)
Hypertext Transfer Protocol (HTTP)
Microsoft Media Server (MMS)

Previous Next

Previous Next

The RTSP and MMS protocols both come in two flavors, one using UDP as the underlying delivery protocol,
and the other using TCP.

The reader object always uses TCP for playback control commands, but it can use either TCP or UDP for
delivery of the streamed content. UDP is preferred for content delivery, because it imposes less bandwidth
overhead than TCP. The TCP protocol ensures reliable transport through the use of "virtual circuits," but the
cost of doing so means that TCP is not as well suited for digital media streams, where efficient use of
bandwidth is more important that occasional lost packets.

When a URL specifies "mms://", the reader attempts to use the following protocols for data delivery, in the
following order:

1. RTSPU (RTSP using UDP)
2. RTSPT (RTSP using TCP)
3. MMSU (MMS using UDP)
4. MMST (MMS using TCP)
5. HTTP

HTTP is a one-way protocol based on TCP, and is the protocol used by Web servers. Streaming with HTTP is
less efficient that using RTSP. However, most firewalls are configured to accept HTTP requests, whereas they
typically reject other streaming protocols.

Windows Media Services 9 Series in Microsoft Windows .NET Server will reject any MMSU or MMST
requests from a Windows Media Format 9 Series reader, because RTSP is the preferred streaming protocol.
Windows Media Services version 4.1 and earlier do not support RTSP. In this case the reader object falls back
to MMSU or HTTP.

Protocol rollover does not apply if the URL scheme gives a specific protocol, such as "rtspu://" for RTSPU or
"http://" for HTTP. If the URL scheme is "rtsp://", the reader tries RTSPU and RTSPT, but no others.

After the reader opens a file, you can query which protocol it is using by calling the
IWMReaderAdvanced2::GetProtocolName method on the reader. While the content is being streamed or
downloaded, this method returns the name as soon as the content is completely cached, the GetProtocolName
method returns the string "Cache."

To get the names of all the Windows Media server protocols that the reader supports, call the
IWMReaderNetworkConfig::GetSupportedProtocolName method on the reader. You can disable one or
more of the protocols in the reader's protocol rollover list, using IWMReaderNetworkConfig interface. For
example, the IWMReaderNetworkConfig::SetEnableTCP method enables or disables the TCP-based
protocols, and IWMReaderNetworkConfig::SetEnableUDP enables or disables the UDP-based protocols.
These methods apply only to protocol rollover; the protocols are still available if the URL scheme contains a
specific protocol. There is usually no reason to disable any of the protocols used in protocol rollover; doing so
can degrade performance. However, it might be useful for testing.

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Saving Content
By using this SDK, an application can save downloaded or streamed content to the user's local computer, by
calling the IWMReaderAdvanced2::SaveFileAs method on the reader object. For streamed content, the server
must be using Fast Cache streaming, which is described in the section Enabling Fast Cache Streaming from the
Client. For streamed content, the SaveFileAs method creates an ASX file that points to an ASF file containing
the saved content. If the reader object is streaming a server-side playlist, each entry is saved as a separate ASF
file, and the ASX file points to each of the ASF files. For downloaded content, the SaveFileAs method simply
creates an ASF file.

To save content to a local file, do the following:

1. Call IWMReader::Open with the URL. Open is an asynchronous call, and returns immediately. Wait
for the operation to complete, as described in To Create a Reader and Open a File.

2. Query the reader object for the IWMReaderAdvanced4 interface.
3. Check whether the content can be saved by calling the IWMReaderAdvanced4::CanSaveFileAs

method. If the method returns False, the content cannot be saved locally. Otherwise, proceed to step 4.
4. Call the IWMReaderAdvanced4::IsUsingFastCache method to determine whether the server is using

Fast Cache streaming.
5. Call the IWMReaderAdvanced2::SaveFileAs with a file name for the local file. If the

IsUsingFastCache method returned True, give the file name an .asx extension. Otherwise, give the file
name an .asf, .wma, or .wmv extension.

The application can cancel the save operation while it is in progress, by calling the
IWMReaderAdvanced4::CancelSaveFileAs method.

The saved content might be protected with DRM, so it may not be possible to play the file on another computer.
For more information on content protection, see Digital Rights Management Features.

See Also

IWMReader Interface
IWMReaderAdvanced2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Authentication
The reader object can handle network authentication challenges, including digest authentication and NTLM
authentication. In some cases the application must provide the user's credentials through a callback interface:

Digest authentication: The application must implement the IWMCredentialCallback interface, as
described later in this topic.
NTLM authentication: The reader automatically responds with the user's logon credentials. If the current
user is authorized to log on to the server, the application does not have to do anything. If the user does not
have authorization, the application must implement the IWMCredentialCallback interface.

Note Windows Media Services version 4.1 does not support NTLM authentication through a proxy
server. NTLM authentication requires several client-server exchanges on the same connection, and
version 4.1 does not keep a persistent connection with the proxy. Windows Media Services 9 Series in
Microsoft Windows .NET Server supports NTLM authentication through a proxy server, as long as the
proxy supports keep-alive connections.

As noted, in some cases the application must provide the user's credentials. This occurs through the
IWMCredentialCallback interface, which has a single method, AcquireCredentials. To support
authentication, implement this interface in your application. The reader object queries for this interface by
calling QueryInterface on the IWMReaderCallback pointer that it received from the application in the
IWMReader::Open method. If the reader object needs to get the user's credentials, it calls the application's
AcquireCredentials method.

If the credentials will be sent over the network without encryption, the reader sets the
WMT_CREDENTIAL_CLEAR_TEXT flag in the pdwFlags parameter. This gives the application an
opportunity to warn the user that his or her credentials will be sent in plain text.

Otherwise, the reader object automatically encrypts the credentials before sending them over the network. The
application can return them to the reader object in plain text. In addition, if the reader object sets the
WMT_CREDENTIAL_ENCRYPT flag, it means the reader supports getting encrypted credentials from the
application. In that case, the application can either return the credentials in plain text, or else encrypt them itself
using the CryptProtectData function, which is described in the Platform SDK documentation. If the
application encrypts the credentials, it must set the WMT_CREDENTIAL_ENCRYPT flag in the pdwFlags
parameter before the method returns.

Generally, it is not necessary to encrypt the data, because the reader object encrypts the data if necessary.
However, encryption might be useful if the application keeps the user name and password in memory, because
it prevents an attacker from inspecting a memory dump of the process.

See Also

IWMCredentialCallback Interface
IWMReader Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Enabling Fast Cache Streaming from the Client
Fast Cache is a streaming technology in which the server opportunistically streams content at a higher bit rate
than what is needed for playback.

If the available bandwidth is higher than the bit rate of the content, Fast Cache streams at the higher rate and
buffers the content. This helps to reduce interruptions later if the network becomes congested. If network
bandwidth is lower than the bit rate of the content, Fast Cache buffers a portion of the data before playback
starts. Fast Cache is recommended for unreliable networks, such as wireless networks, or networks that
experience large fluctuations in network traffic, such as cable modems. It is also recommended for variable bit
rate (VBR) content. The bandwidth requirements for VBR content are not constant, and Fast Cache enables the
reader to buffer the stream during the lower-bit-rate portions.

Fast Cache streaming is supported only for on-demand content. In addition, the server must be configured to use
Fast Cache streaming.

To enable Fast Cache in the reader object, call the IWMReaderNetworkConfig2::SetEnableContentCaching
and IWMReaderNetworkConfig2::SetEnableFastCache methods with the value TRUE. The first method
enables the reader to cache streamed content. The second enables the use of Fast Cache in particular.

With these settings, the reader will activate Fast Cache by default if the network bandwidth is significantly
higher or lower than the bit rate of the content, and if the server supports it. The user can also control whether
the reader object uses Fast Cache by adding one or more of the following modifiers to the URL.

The modifier WMCache=1 forces the reader to use Fast Cache streaming, regardless of the network bandwith or
the bit rate of the content and regardless of any previous calls to SetEnableFastCache. However, it does not
override the SetEnableContentCaching setting on the reader; nor does it override the server configuration.

URL modifiers have the following form:

Previous Next

Modifier Description

WMCache If this modifier is present, the value '0' explicitly disables Fast Cache,
while the value '1' explicitly enables it.

WMBitrate This modifier specifies the maximum bit rate from the server. This
modifier can be used to restrict Fast Cache to a certain bandwidth limit.
This modifier is ignored if an explicit connection bandwidth is already
set with a call to
IWMReaderNetworkConfig::SetConnectionBandwidth.

WMContentBitrate This modifier specifies the bit rate for the content. The reader uses this
modifier, if present, when it selects streams from a multiple bit rate
(MBR) file. This can cause the reader to receive high bit rate content
over a slow connection, which results in very long buffering times and
delays.

url?modifier=value

For example:

mms://MyServer/MyVideo.wmv?WMCache=1

More than one modifier can specified; use an ampersand (&) to separate them:

mms://MyServer/MyVideo.wmv?WMCache=1&WMContentBitrate=56000

© 2000-2003 Microsoft Corporation. All rights reserved.

Client Logging
When the reader object reads data from a server, it sends logging information to the server. Content providers
typically use this information to measure quality of service, generate billing information, or track advertising.
The logging information contains no personal data.

The application can specify some of the information that is logged, by calling the
IWMReaderAdvanced::SetClientInfo method on the reader object. For example, you can specify the user-
agent string, the name of the player application, or the Web page that hosts the player.

The logging information includes a GUID that identifies the session. By default, the reader generates an
anonymous session ID. Optionally, the reader can instead send an ID that uniquely identifies the current user.
To enable this feature, call the IWMReaderAdvanced2::SetLogClientID method with the value TRUE.

You can configure the reader object to send the logging information to another server, in addition to the
originating server. To do so, call the IWMReaderNetworkConfig::AddLoggingUrl method with the URL of
the server. This URL should point to a script or executable that can handle HTTP GET and POST requests. You
can use the Multicast and Logging Advertisement Agent (wmsiislog.dll), or you can write a custom ASP or CGI
script to receive the log data.

Note You can get the same functionality by creating a server-side playlist with a logURL attribute.

When the reader object sends the log, it does the following:

1. Sends an empty GET request to the server.
2. Parses the server response for one of the following strings:

<body><h1>NetShow ISAPI Log Dll</h1>
<body><h1>WMS ISAPI Log Dll/0.0.0.0</h1> where "0.0.0.0" is any valid version number.

3. Sends a POST request with the log information.

Previous Next

Previous Next

The following code shows an example ASP script that receives the logging information and writes it to a file:

<html>
<body><h1>WMS ISAPI Log Dll/9.00.00.00.00</h1>
<%@ Language=VBScript %>
<%
 Dim temp, i, post, file, fso

 ' Convert the binary data to a string.
 For i = 1 To Request.TotalBytes
 temp = Request.BinaryRead(1)
 pose = pose & Chr(AscB(temp))
 Next

 Set fso = createobject("Scripting.FileSystemObject")
 Set file = fso.OpenTextFile("C:\log.txt", 8, TRUE)

 file.writeline Now
 file.writeline post
 file.writeBlankLines 2
%>
</body></html>

You can specify multiple servers to receive logging information; just call AddLoggingUrl once with each
URL. To clear the list of servers that receive logs, call the
IWMReaderNetworkConfig::ResetLoggingUrlList method.

See Also

Implementing Network Functionality
IWMReaderAdvanced Interface
IWMReaderAdvanced2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Configuration Persistence
None of the write-enabled properties described in this documentation are saved by the Windows Media SDK.
Each application that uses the SDK must provide its own persistence procedures as needed and invoke the
appropriate set method upon each instance of the SDK. In this way, configuration changes made by one
application do not affect another application. For example, changing the buffering time in one player does not
affect another player.

The one exception to this rule is for the credentials information. If the application indicates, in its return from
the AcquireCredentials call, that the user ID and password information must be persisted, the SDK saves this

Previous Next

Previous Next

information.

See Also

Implementing Network Functionality
IWMCredentialCallback Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Sending ASF Data Over a Network
The Windows Media Format SDK supports two different ways send ASF data over a network:

The application can broadcast the ASF data using HTTP protocol.
The application can push the ASF data to a publishing point on a Windows Media server. The server then
distributes the data.

The following topics describe these features:

Broadcasting ASF Data
Sending ASF Data to a Publishing Point

© 2000-2003 Microsoft Corporation. All rights reserved.

Broadcasting ASF Data
This topic describes how to send ASF data across a network using the HTTP protocol. Sending files over a
network requires the use of the writer object, so you should have a general understanding of this object before
reading this topic. For more information, see Writing ASF Files.

If you are starting with uncompressed data, do the following:

Previous Next

Previous Next

Previous Next

Previous Next

1. Create the writer object by calling the WMCreateWriter function. This function returns an IWMWriter
pointer.

IWMWriter *pWriter;
hr = WMCreateWriter(NULL, &pWriter);

2. Create the network sink object by calling the WMCreateWriterNetworkSink function, which returns an
IWMWriterNetworkSink pointer.

IWMWriterNetworkSink *pNetSink;
hr = WMCreateWriterNetworkSink(&pNetSink);

3. Call IWMWriterNetworkSink::Open on the network sink and specify the port number to open; for
example, 8080. Optionally, call IWMWriterNetworkSink::GetHostURL to get the URL of the host.
Clients will access the content from this URL. You can also call
IWMWriterNetworkSink::SetMaximumClients to restrict the number of clients.

DWORD dwPortNum = 8080;
hr = pNetSink->Open(&dwPortNum)

4. Attach the network sink to the writer by calling IWMWriterAdvanced::AddSink on the writer, with a
pointer to the network sink's IWMWriterNetworkSink interface.

IWMWriterAdvanced *pWriterAdvanced;
hr = pWriter->QueryInterface(IID_IWMWriterAdvanced, (void**) pWriterAdvanced);
if (SUCCEEDED(hr))
{
 pWriterAdvanced->AddSink(pNetSink);
}

5. Set the ASF profile by calling the IWMWriter::SetProfile method on the writer object, with an
IWMProfile pointer. For information about creating a profile, see Working with Profiles.

6. Optionally, specify metadata using the IWMHeaderInfo interface on the writer.
7. Call IWMWriter::BeginWriting on the writer.

hr = pWriter->BeginWriting();

8. For each sample, call the IWMWriter::WriteSample method. Specify the stream number, the
presentation time, the duration of the sample, and a pointer to the sample buffer. The WriteSample
method compresses the samples.

9. When you are done, call IWMWriter::EndWriting on the writer.

hr = pWriter->EndWriting();

10. Call IWMWriterAdvanced::RemoveSink on the writer to detach the network sink object.

hr = pWriterAdvanced->RemoveSink(pNetSink);

11. Call IWMWriterNetworkSink::Close on the network sink to release the port.

hr = pNetSink->Close();

Another way to stream ASF content over a network is to read it from an existing ASF file. The WMVNetWrite
sample provided in the SDK demonstrates this approach. In addition to the steps listed previously, do the
following:

1. Create a reader object and call the Open method with the name of the file.
2. Call IWMReaderAdvanced::SetManualStreamSelection on the reader object, with the value TRUE.

This enables the application to read every stream in the file, including streams with mutual exclusion.
3. Query the reader for the IWMProfile interface. Use this pointer when you call IWMWriter::SetProfile

on the writer object (step 5 in the previous procedure).
4. For every stream defined in the profile, call IWMProfile::GetStream to get the stream number. Pass this

stream number to the reader's IWMReaderAdvanced::SetReceiveStreamSamples method. This method
informs the reader to deliver compressed samples, rather than decoding them. The samples will be
delivered to the application through the application's
IWMReaderCallbackAdvanced::OnStreamSample callback method.

You must obtain codec information for every stream that you read uncompressed and add it to the header
before broadcast. To obtain the codec information, call IWMHeaderInfo2::GetCodecInfoCount and
IWMHeaderInfo2::GetCodecInfo to enumerate the codecs associated with the file in the reader. Select
the codec information that matches the stream configuration. Then set the codec information in the writer
by calling IWMHeaderInfo3::AddCodecInfo, passing the information obtained from the reader.

5. After you set the profile on the writer, call IWMWriter::GetInputCount on the writer to get the number
of inputs. For each input, call IWMWriter::SetInputProps with the value NULL. This indicates to the
writer object that the application will deliver compressed samples, so the writer does not have to use any
codecs to compress the data. Make sure to call SetInputProps before calling BeginWriting.

6. Optionally, copy the metadata attributes from the reader to the writer
7. Because the samples from the reader are already compressed, use the

IWMWriterAdvanced::WriteStreamSample method to write the samples, instead of the WriteSample
method. The WriteStreamSample method bypasses the writer object's usual compression procedures.

8. When the reader reaches the end of the file, it sends a WMT_EOF notification to the application.

In addition, the application should drive the clock on the reader object, so that the reader pulls data from the file
as quickly as possible. To do this, call the IWMReaderAdvanced::SetUserProvidedClock method on the
reader, with the value TRUE. After the reader sends the WMT_STARTED notification, call
IWMReaderAdvanced::DeliverTime and specify the time interval that the reader should deliver. After the
reader is done reading this time interval, it calls the application's IWMReaderCallbackAdvanced::OnTime
callback method. The application should call DeliverTime again to read the next time interval. For example, to
read from the file in one-second intervals:

// Initial call to DeliverTime.
QWORD m_qwTime = 10000000; // 1 second.
hr = m_pReaderAdvanced->DeliverTime(m_qwTime);

// In the callback:
HRESULT CNetWrite::OnTime(QWORD cnsCurrentTime, void *pvContext)
{
 HRESULT hr = S_OK;
 // Continue calling DeliverTime until the end of the file.
 if(!m_bEOF)
 {
 m_qwTime += 10000000; // 1 second.
 hr = m_pReaderAdvanced->DeliverTime(m_qwTime);
 }
 return S_OK;
}

See Also

Sending ASF Data Over a Network
Working with Writer Sinks

© 2000-2003 Microsoft Corporation. All rights reserved.

Sending ASF Data to a Publishing Point
You can use the Windows Media Format SDK to push ASF data to a publishing point on a Windows Media
server. The server then broadcasts the data from that publishing point. This scenario is useful if you are
capturing or re-encoding content on one computer, and wish to distribute the content from another computer (or
several computers). It is also useful if you need to move content from a computer inside a firewall to a
Windows Media server outside the firewall, because push distribution uses the HTTP protocol.

Note A publishing point acts essentially like a redirector. The client specifies the publishing point in the URL
(for example, mms://MyServer/MyPublishingPoint) and the server translates this into a request for content.

To push data to the publishing point, attach the push sink object to the writer object. The push sink is used to
open the connection to the server and manage the push session. The writer object handles all the other aspects of
creating the file.

Perform the following steps:

1. Create the writer object by calling the WMCreateWriter function, which returns an IWMWriter
pointer.

2. Create the push sink object by calling the WMCreateWriterPushSink function, which returns an
IWMWriterPushSink pointer.

3. Attach the network sink to the writer by calling IWMWriterAdvanced::AddSink on the writer, with a
pointer to the network sink's IWMWriterPushSink interface.

4. Connect to the server by calling IWMWriterPushSink::Connect.
5. Write the stream. This step involves setting the profile on the writer object, sending samples to the writer,

and possibly other tasks. For more information, see Writing ASF Files. Additional tasks might include
setting metadata attributes (as described in Working with Metadata) or setting "live DRM" (Digital Rights
Management) on the stream (as described in Enabling DRM Support). These tasks are performed exactly
as they are for ASF file writing.

6. After you are done writing, call IWMWriterAdvanced::RemoveSink on the writer to detach the push
sink object.

7. Call IWMWriterPushSink::EndSession on the push sink to end the session with the server.

These steps are illustrated in the WMVNetWrite sample application.

Note If you are sending a very-low-bit-rate video-only file, it might not start playing on the publishing point
for several seconds. This can happen in various cases, for example when a single packet contains many small
video frames and no audio, or when there is a long time gap between the first packet and the second packet in a
low-bit-rate video-only file. To avoid this problem, insert a silent audio stream into the file.

Previous Next

Previous Next

Authentication

Authentication to the server is automatically handled by the push sink object. However, the application may
need to supply credentials. This is done through the IWMCredentialCallback callback interface, as follows:

1. Implement the IWMStatusCallback and IWMCredentialCallback interface in your application.
2. Query the push sink object for the IWMRegisterCallback interface.
3. Call IWMRegisterCallback::Advise with a pointer to your application's IWMStatusCallback interface.
4. If the push sink needs to get credentials from the application, it queries the IWMStatusCallback pointer

for the IWMCredentialCallback interface and calls IWMCredentialCallback::AcquireCredentials.
For information about this method, see Authentication.

5. When you are done, call IWMRegisterCallback::Unadvise to stop getting event notifications from the
push sink.

See Also

Sending ASF Data Over a Network
Working with Writer Sinks
Writer Push Sink Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Default Networking Settings
The following tables describe the default settings of the networking parameters in the Windows Media Format
SDK, grouped by interface.

Previous Next

Previous Next

IWMReaderNetworkConfig Default setting

Buffering time 5 seconds

UseFixedUDPPort FALSE

FixedUDPPort 0 (not valid)

ProxySetting: HTTP WMT_PROXY_SETTING_BROWSER

ProxySetting: MMS WMT_PROXY_SETTING_NONE

ProxySetting: RTSP WMT_PROXY_SETTING_NONE

ProxyHostName (HTTP, MMS, RTSP) ""

ProxyPort: HTTP 80

See Also

Implementing Network Functionality

ProxyPort: MMS 1755

ProxtPort: RTSP 554

ProxyExceptionList (HTTP, MMS, RTSP) ""

ProxyBypassForLocal (HTTP, MMS, RTSP) FALSE

ForceRerunAutoDetection FALSE

EnableMulticast TRUE

EnableHTTP TRUE

EnableTCP TRUE

EnableUDP TRUE

Connection Bandwidth 0 (auto-detect)

IWMReaderNetworkConfig2 Default setting

Accelerated streaming duration 100000000 (10 seconds)

Enable content caching TRUE

Enable fast cache TRUE

Enable resends TRUE

Enable content thinning TRUE

Reconnect limit 25

IWMWriterNetworkSink Default setting

Maximum clients 5

Network protocol 0 (WMT_PROTOCOL_HTTP)

Host URL 0 (not valid)

IWMWriterAdvanced2 Default setting

Maximum packet size 1400

Log client ID FALSE

Play mode WMT_PLAY_MODE_AUTOSELECT

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Advanced Topics
This section contains advanced techniques and features. These procedures often require using multiple objects.

The following topics are included.

© 2000-2003 Microsoft Corporation. All rights reserved.

Getting Good Results with the Windows Media
Video 9 Screen Codec
The Windows Media Video 9 Screen codec is designed to produce highly compressed video for screen capture.

Previous Next

Topic Description

Getting Good Results with the Windows Media
Video 9 Screen Codec

Describes how to improve the quality of screen
capture streams.

To Support Multiple Languages Describes how to support multiple languages in
metadata.

To Transcode Content with Smart Recompression Describes how to use smart recompression to
efficiently transcode files from one bit rate to another.

To Read and Write Video Streams with Non-Square
Pixels

Describes how to read and write video streams with
pixels that are not square.

To Use Inverse Telecine Describes how to use inverse telecine to convert film
to digital video.

To Create ASF Files Using Third-Party Codecs Describes how to include content that is encoded with
third-party codecs.

Previous Next

Previous Next

Because most of the need for screen capture involves fairly simple and static images, the high levels of
compression attained do not usually mean a great sacrifice in image quality. However, each screen capture is
different, and the resulting image quality can vary considerably depending upon the circumstances.

The best way to determine the profile settings for a screen codec session is to encode a test file using a quality-
based variable bit rate stream. Set the quality to the value you desire, and encode a screen capture as if you were
recording the final file. When the file is written, play it using the asynchronous reader object, making regular
calls to IWMReaderAdvanced::GetStatistics. By monitoring the value of the dwBandwidth member of the
WM_READER_STATISTICS structure for each call, you can determine the approximate bit rate required to
achieve the quality you want. You can then use that bit rate for constant bit rate encoding.

If you discover that the quality you want requires a higher bit rate than you can use for your delivery scenario,
you can try the following techniques to get more efficiency from the codec.

Use a smaller resolution for the screen capture. Capturing a larger screen resolution than you need can
also create confusion for the viewer by presenting more information than is needed.
Use fewer graphics in the screen capture. The Windows Media Video 9 Screen codec is optimized to
encode Windows primitives and text with high quality. Usually problems occur because of bitmapped
graphics, which often contain thousands of individual colors. The fewer bitmaps that are on the screen
when you capture, the better your results will be. If you cannot eliminate graphics from your screen
capture, there are several ways to minimize the impact a bitmap has on image quality:

Reduce the size of the graphic.
Reduce the number of individual graphics that appear on the screen concurrently.
Reduce the amount of movement of the graphic. For example, if the graphic is in a window, keep
the window as stationary as possible.
Avoid moving the mouse pointer over the graphic, or dragging windows or other elements over the
graphic.

Use a slower frame rate. Screen captures can often be effective at very low frame rates (sometimes as low
as 4 or 5 frames per second).
Reduce the bit rate of the accompanying audio.

Also, the codec does not support resizing of the video rectangle. In other words, if you try to use the codec to
encode a 800 x 600 screen down into to a 640 x 480 video rectangle, the resulting video will have significant
artifacts that may make much of the text on the screen illegible.

See Also

Configuring Screen Capture Streams
Configuring Streams

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

To Support Multiple Languages
You can support multiple languages both in streams and in metadata. The core of multiple language support in
the Windows Media Format SDK is the IWMLanguageList interface, which maintains a list of the languages
supported. The language list gives each supported language an index, which is used in various objects in the
SDK when dealing with the multiple languages.

The IWMLanguageList::AddLanguageByRFC1766String method adds a language to the list. You can
identify the languages already in the list by obtaining the total number of languages with
IWMLanguageList::GetLanguageCount and then looping through the languages calling
IWMLanguageList::GetLanguageDetails for each. The language index is zero based.

To Configure Mutual Exclusion by Language

Configuring a simple mutual exclusion object by language is very simple. Each stream is now associated with a
language. The language associated with a stream can be set using IWMStreamConfig3::SetLanguage. After
all of the mutually exclusive streams are configured, simply create a mutual exclusion object as you would for
any other type. Then call IWMMutualExclusion::SetType passing CLSID_WMMUTEX_Language for the
type.

Streams that are mutually exclusive by language become more complicated when the exclusive streams are also
mutually exclusive by bit rate. In this case you must use mutually exclusive records, by performing the
following steps:

1. Create a mutual exclusion object for the streams of differing bit rates in each language. For more
information about creating a mutual exclusion object by bit rate, see Using Multiple Bit Rate Mutual
Exclusion.

2. Create a mutual exclusion object. Call IWMMutualExclusion::SetType and pass
CLSID_WMMUTEX_Language to specify exclusivity by language.

3. Obtain a pointer to the IWMMutualExclusion2 interface of the mutual exclusion object created in step 2
by calling the QueryInterface method of IWMMutualExclusion.

4. Call the IWMMutualExclusion2::AddRecord method once for each language, to create stream records
that will be mutually exclusive.

5. For each record created in step 4, add the streams of the appropriate language with calls to
IWMMutualExclusion2::AddStreamForRecord.

To Read Files with Multiple Languages

The reader object provides methods to identify the available languages of streams in a file. You can retrieve the
number of supported languages for an output by calling IWMReaderAdvanced4::GetLanguageCount. You
can then retrieve details about each language with calls to IWMReaderAdvanced4::GetLanguage.

You can specify the language to play by passing the index of that language to the reader with a call to
IWMReaderAdvanced2::SetOutputSetting. This will select the specified language while maintaining
automatic stream selection for any other mutual exclusion objects in the file.

See Also

Advanced Topics
IWMLanguageList Interface
IWMMutualExclusion Interface
IWMMutualExclusion2 Interface

IWMReaderAdvanced2 Interface
IWMReaderAdvanced4 Interface
IWMStreamConfig3 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

To Transcode Content with Smart Recompression
You can transcode content from one bit rate to another using the Windows Media Format SDK. Normally, this
involves simply decoding the content and encoding it again to the desired bit rate. The Windows Media Audio 9
codec supports smart recompression, which enables transcoding that achieves better quality than normal.

For smart recompression, the original audio stream must be encoded with the Windows Media Audio codec. All
versions of the codec are supported, but the specialized audio codecs (Windows Media Audio 9 Professional
and Windows Media Audio 9 Voice) are not. If the original audio was encoded with the Windows Media Audio
9 Lossless codec, there is no need to use smart recompression, because no information was lost in the original
encoding.

To use smart recompression, perform the following steps.

1. Set up a reader object with the source file for reading. For more information, see Reading ASF Files.
2. Set up a writer object to use for transcoding the file. Set the file name for the new file. Select a profile to

use for the new file. Set the selected profile in the writer object. For more information, see Writing ASF
Files.

3. Get a pointer to the IWMProfile interface of the reader object by calling IWMReader::QueryInterface.
4. Retrieve the IWMStreamconfig interface for the audio stream to be transcoded by calling

IWMProfile::GetStream.
5. Get the IWMMediaProps interface for the stream configuration object by calling

IWMStreamConfig::QueryInterface.
6. Retrieve the WM_MEDIA_TYPE structure for the stream by making two calls to

IWMMediaProps::GetMediaType. Get the size of the structure on the first call, and allocate memory
for a buffer to pass on the second call.

7. Get a pointer to the IWMInputMediaProps interface for the input in the writer by calling
IWMWriter::GetInputProps.

8. Get the IWMPropertyVault interface for the input media properties object by calling
IWMInputMediaProps::QueryInterface.

9. Use the IWMPropertyVault::SetProperty method to set the g_wszOriginalWaveFormat property. Use
the WAVEFORMATEX structure obtained in step 6 as the value of the property.

10. Include changes made to the input media properties by calling IWMWriter::SetInputProps and passing
it a pointer to the IWMInputMediaProps interface.

11. Begin reading samples from the original file and passing them to the writer with calls to
IWMWriter::WriteSample.

Previous Next

Previous Next

See Also

Advanced Topics
IWMInputMediaProps Interface
IWMMediaProps Interface
IWMProfile Interface
IWMPropertyVault Interface
IWMStreamConfig Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

To Read and Write Video Streams with Non-Square
Pixels
Computer monitors have square pixels, but other types of video screens, including NTSC televisions, have
rectangular or non-square pixels. Also, some input devices, such as Digital Video (DV) cameras, have charged
couple devices with non-square pixels. When you are writing files that are either based on non-square pixel
source data or else intended for display on devices with non-square pixels, the pixel aspect ratio information
must be included in the ASF file. Reader applications must examine that information and use it to adjust the
aspect ratio of the video rectangle as necessary.

See Also

Advanced Topics
Reading Streams with Non-Square Pixels
Writing Streams with Non-Square Pixels

© 2000-2003 Microsoft Corporation. All rights reserved.

Reading Streams with Non-Square Pixels

Previous Next

Previous Next

Previous Next

Previous Next

Reader applications that need to correctly handle non-square pixels should examine both the stream-level
attributes in the ASF header and the data unit extensions on each sample. There are two cases when the output
rectangle must be adjusted to compensate for non-square pixels.

When the source content has been captured from a device such as a DV (digital video) camera with non-square
pixels in its CCD, a reader application must adjust its video output rectangle so that the image displays correctly
on a computer monitor with square pixels.

When your reader application outputs video that will be played back on an NTSC television, for example
through an S-video out connection on the video card, you must adjust the video rectangle so that the image
displays correctly on the television's non-square pixels.

See Also

To Read and Write Video Streams with Non-Square Pixels

© 2000-2003 Microsoft Corporation. All rights reserved.

Writing Streams with Non-Square Pixels
There are two ways to create video streams with non-square pixels that will be displayed correctly in Windows
Media Player. The first technique involves setting stream-level attributes in the file header. The second
technique involves adding a data unit extension to a stream in the profile, and then setting a value for it in every
sample that is written.

To Use Stream-level Header Attributes to Set Pixel Aspect Ratio

1. Set up the writer object. For more information, see Writing ASF Files.
2. Create or load a profile with one or more video streams. For more information, see To Use Profiles with

the Writer.
3. Call IWMWriter::SetProfile. (Always call this method before setting any header attributes.)
4. Call QueryInterface to obtain the IWMHeaderInfo3 interface and call AddAttribute twice to add

AspectRatioX and AspectRatioY as stream-level attributes of the video stream. These attributes are
DWORD values.

5. Write the file.

To Use Data Unit Extensions to Set Pixel Aspect Ratio

Before writing:

1. Set up the writer object. For more information, see Writing ASF Files.
2. Create or load a profile with one or more video streams. For more information, see To Use Profiles with

Previous Next

Previous Next

the Writer.
3. For each stream (of any media type) in the profile, call IWMStreamConfig::SetStreamName to specify

a unique name of your choice. Do not give two streams the same name.
4. Use IWMStreamConfig2::AddDataUnitExtension on the video stream to add a data unit extension for

pixel aspect ratio.
5. Call IWMWriter::SetProfile.
6. Write the file.

While writing:

7. For each sample, call INSSBuffer3::SetProperty and specify the
WM_SampleExtensionGUID_PixelAspectRatio property along with the correct value. Aspect ratio
values are written as two concatenated two-digit values. For example, 16:9 is written as 1609 or 0x0649.
This is always a 2-byte value.

See Also

To Read and Write Video Streams with Non-Square Pixels

© 2000-2003 Microsoft Corporation. All rights reserved.

To Use Inverse Telecine
Telecine is the process of converting film, which has 24 frames per second, to video, which has 60 fields (half
frames) per second. This process puts images from each film frame in multiple video fields.

When you digitally encode a video that was created from film by using telecine, the compression process can
cause motion artifacts and other degradations in quality. To avoid affecting the quality of the digital output, the
Windows Media Video 9 codec supports inverse telecine. When using inverse telecine, the codec reconstructs
the original 24 film frames per second from the input video before encoding the content.

To use inverse telecine, you must:

Use a profile with a video stream set to 24 frames per second.
Know the field configuration of the input video.

To use inverse telecine for an input to the writer, perform the following steps.

1. Set up the writer as usual. For more information, see Writing ASF Files.
2. Before beginning to write samples, obtain a pointer to the IWMWriterAdvanced2 interface by calling

IWMWriter::QueryInterface.
3. Identify the stream to be reconstructed by calling IWMWriterAdvanced2::SetInputSetting for the

Previous Next

Previous Next

desired input number. Pass g_wszDeinterlaceMode as the setting and
WM_DM_DEINTERLACE_INVERSETELECINE as the value.

4. Call SetInputSetting again to set g_wszInitialPatternForInverseTelecine.
5. Write the file as usual.

See Also

Advanced Topics
IWMWriter Interface
IWMWriterAdvanced2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

To Create ASF Files Using Third-Party Codecs
You can use the Windows Media Format SDK to create ASF files that contain digital media encoded with any
codec you choose. When using a codec other than one included with this SDK, you must perform the following
steps.

1. Encode the content with the desired codec.
2. Find or create a GUID value to identify content encoded with the codec used in step 1.
3. Create a new profile, or modify an existing profile for use with the encoded content.

Create a stream for the encoded content with the appropriate major type. For more information
about major media types, see Media Types. Use the GUID identified in step 2 as the media subtype.
Set the bit rate and buffer window for the stream to values that will not result in buffer overflow.
You should be able to obtain these values from the codec at the time of encoding. The SDK
runtime components check the bitrate/buffer window values and drop samples if necessary to make
the given data fit in with these values. If you set the values incorrectly, the file will not stream
properly, resulting in poor playback.
For video streams, you must set the biCompression member of the BITMAPINFOHEADER
structure contained in the WMVIDEOINFOHEADER structure to the appropriate FOURCC
value for the content. This value must be equal to the first four bytes of the subtype GUID. For
example, if biCompression is MAKEFOURCC('T','E','S','T')=0x54455354, then the subtype GUID
will begin like this: 54455354-XXXX-XXXX-XXXX-XXXXXXXXXXXX.

4. Create a writer object and load the profile created in the previous step. For more information about
writing files, see Writing ASF Files.

5. Loop through the inputs of the file and assign input properties for each as you normally would. For more
information about inputs, see Working with Inputs. For the stream encoded with a third-party codec, set
the IWMInputMediaProps interface pointer to NULL before calling IWMWriter::BeginWriting.

6. Use the new profile created in the previous step to write the file. Pass the compressed samples using
IWMWriterAdvanced::WriteStreamSample instead of IWMWriter::WriteSample. For video, you
must specify which samples are key frames by passing WM_SF_CLEANPOINT as the dwFlags

Previous Next

Previous Next

parameter.

To process and decompress the stream encoded with a third-party codec, you must read compressed stream
samples. Your reading application must handle sample decompression for the stream as well.

See Also

Buffering Content
IWMWriter Interface
IWMWriterAdvanced Interface
To Deliver Compressed Samples with the Asynchronous Reader
To Retrieve Stream Samples with the Synchronous Reader
WMVIDEOINFOHEADER
Working with Profiles
Writing ASF Files

© 2000-2003 Microsoft Corporation. All rights reserved.

DirectShow and Windows Media
As an alternative to using the Windows Media Format SDK exclusively, applications can also read and write
Windows Media-based content using the Microsoft DirectShow streaming architecture, as described in the
following sections.

Previous Next

Previous Next

Section Description

About DirectShow Describes DirectShow in general terms and tells
where to get more information about it.

Why Use DirectShow? Describes how DirectShow simplifies certain tasks in
the creation and playback of Windows Media–based
content.

Reading ASF Files in DirectShow Describes how to play ASF files using DirectShow.

Creating ASF Files in DirectShow Describes how to create ASF files using DirectShow.

WMT_STATUS Event Notification in DirectShow Describes which WMT_STATUS events are handled
by the ASF Reader and ASF Writer filters, and how
applications can receive those events.

DRM Support in DirectShow Describes how to read and write DRM-protected files
through DirectShow.

Three sample applications in the SDK illustrate the use of DirectShow: DSCopy, DSPlay, and DSSeekFM. For
more information, see Sample Applications.

Note Applications that use the QASF components included in this SDK require the Microsoft DirectX® 8.1 or
later SDK runtime to be installed on Windows® 2000, Windows 98, and Windows 95 systems. Specifically,
this runtime is required by the DMO Wrapper filter which hosts the Windows Media codecs in a DirectShow
filter graph.

© 2000-2003 Microsoft Corporation. All rights reserved.

About DirectShow
DirectShow is a high-level, modular, extensible, data-streaming architecture for the Windows platform. It
provides the underlying software components and application programming interfaces (APIs) for a wide variety
of digital audio and video applications on the market today. DirectShow is available as part of the Microsoft
DirectX Software Development Kit. To learn more about DirectShow, see the Microsoft Platform SDK.

In DirectShow, all data streaming components are called filters. A filter may represent a hardware device, a
software encoder or decoder, an audio or video renderer, or any audio-video processing capability. To enable
DirectShow–based applications to read and write Windows Media Format content, including content protected
by Digital Rights Management (DRM), Microsoft provides two filters that encapsulate portions of the Windows
Media Format SDK. These are the WM ASF Reader and the WM ASF Writer. These filters and the interfaces
they expose are collectively referred to as the QASF components, after the DLL in which they are packaged.
(The Q stands for Quartz, an early code name for DirectShow.)

Note The use of the Windows Media Audio and Video 9 Series codecs through the DirectShow QASF
components requires Microsoft Windows Millennium Edition or later, or DirectX 8.0 or later.

The following diagram shows a DirectShow filter graph for playing back Windows Media Video files.

DirectShow QASF Reference Contains the reference documentation for the
DirectShow components that support Windows
Media.

Previous Next

Previous Next

The WM ASF Reader is a QASF component, the decoders are Windows Media Format 9 Series SDK
components hosted in the DMO Wrapper filter (a QASF component), and the renderers are DirectShow
components.

© 2000-2003 Microsoft Corporation. All rights reserved.

Why Use DirectShow?
There are two main reasons why an application might use DirectShow rather than the Windows Media Format
SDK directly: for the convenience of the DirectShow streaming architecture, and for access to hardware.

Convenience

With DirectShow streaming architecture, it takes only a few method calls to play Windows Media Audio or
Windows Media Video files. Creating files is also simplified. You simply specify a profile using the
IConfigAsfWriter interface on the filter, and DirectShow automatically loads the required components for
rendering or writing the streams, and provides the mechanisms for transferring and synchronizing the flow of
media data. DirectShow is especially useful when converting content from varied formats into Windows Media
Format. You can create DirectShow filter graphs that decode a wide variety of file and compression types, and
then feed the decoded streams into the WM ASF Writer filter. By comparison, the UncompAVItoWMV sample
in this SDK works only with uncompressed AVI files. Text streams and arbitrary data streams can also be
created and/or rendered through DirectShow, but this might require you to create custom DirectShow filters for
processing those streams.

Access to Hardware

DirectShow is the only way for application code to access Windows Driver Model (WDM)–based hardware
devices such as 1394 DV cameras, TV tuners, and USB webcams. If your application must capture data directly
from a WDM-based hardware device and transcode it to Windows Media Format, and the Windows Media
Encoder SDK does not suit your needs, then DirectShow is the only alternative. DirectShow can also be used to
access legacy devices based on Video for Windows.

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Reading ASF Files in DirectShow
Playback of ASF files is handled by the WM ASF Reader filter. When the WM ASF Reader reads a file, it
automatically creates an output pin for each stream, including Web streams, script command streams, and any
other type of arbitrary stream. In the case of multiple bit rate files, pins are created only for the currently
selected streams.

The WM ASF Reader supports the DirectShow IMediaSeeking interface, which enables applications to
perform temporal seeking within the file, and to set the playback speed. The filter also exposes several
Windows Media Format SDK interfaces as described in the following table.

The WM ASF Reader filter was first made available in DirectShow 8.0. The version of the filter that ships with
DirectShow 8.1 and 9.0 supports version 7.x of the Windows Media Format SDK. The most recent version of
the filter, along with the other QASF components, ships with and supports the Windows Media Format 9 Series
SDK, and it supersedes the filter in DirectX 9.0. If you install the Windows Media Format 9 Series SDK after
installing the DirectX 8.x or 9.x SDK, you will overwrite the DirectX version of qasf.dll with the 9 Series
version. This should not present any problems except possibly in one scenario where it will result in different
behavior in the DirectShow IGraphBuilder::RenderFile method. The Windows Media Format 9 Series SDK
version of the WM ASF Reader is the default source filter for the .asf, .wmv, and .wma file name extensions.
This means that the WM ASF Reader is automatically created and added to the filter graph by the Filter Graph
Manager in methods such as IGraphBuilder::RenderFile or IGraphBuilder::AddSourceFilter when a file of

Previous Next

Interface How exposed Comments

IWMStreamConfig2 IServiceProvider on pins Provided for applications that need to
detect whether a stream contains
particular data unit extensions.

IWMDRMReader IServiceProvider on filter Provided for applications that need to
play content protected by Digital
Rights Management (DRM).

IWMDRMWriter IServiceProvider on filter Provided for applications that need to
apply DRM protection to files.

IWMHeaderInfo QueryInterface on filter Provided so that applications can read
file and content attributes, as well as
marker and script information and
metadata.

IWMReaderAdvanced QueryInterface on filter Provided so that applications can
manipulate the WM Reader object
directly when necessary.

IWMReaderAdvanced2 QueryInterface on filter Provided so that applications can
manipulate the WM Reader object
directly when necessary.

this type is specified. In DirectX 9.0 and earlier, and Windows XP Service Pack 1 and earlier, the RenderFile
method will cause the older Windows Media Source Filter to be loaded for file playback. This behavior was
maintained to ensure backward compatibility with applications that used the Windows Media Player 6.4. For
more information about the legacy Windows Media Source Filter, see the DirectShow SDK Documentation.

To play an ASF file with Windows Media–based content using the WM ASF Reader, the three primary steps
are to create an instance of the filter graph manager, call IGraphBuilder::RenderFile to create the graph, and
then call IMediaControl::Run to play the file. The following code example is a complete program that plays
an ASF file using DirectShow. To run this example, you must have the DirectX SDK installed and your build
environment must be configured according to the instructions in the DirectShow SDK documentation topic
"Setting Up the Build Environment." Also, you must specify a file on your computer in the call to RenderFile.

#include <dshow.h>
#include <stdio.h>

void main(void)
{
 IGraphBuilder *pGraph = NULL;
 IMediaControl *pControl = NULL;
 IMediaEvent *pEvent = NULL;

 // Initialize the COM library.
 HRESULT hr = CoInitialize(NULL);
 if (FAILED(hr))
 {
 printf("ERROR - Could not initialize COM library");
 return;
 }

 // Create the filter graph manager and query for interfaces.
 hr = CoCreateInstance(CLSID_FilterGraph, NULL, CLSCTX_INPROC_SERVER,
 IID_IGraphBuilder, (void **)&pGraph);
 if (FAILED(hr))
 {
 printf("ERROR - Could not create the Filter Graph Manager.");
 return;
 }

 hr = pGraph->QueryInterface(IID_IMediaControl, (void **)&pControl);
 hr = pGraph->QueryInterface(IID_IMediaEvent, (void **)&pEvent);

 // Build the graph. IMPORTANT: Change this string to a file
 // on your system.
 hr = pGraph->RenderFile(L"test.wmv", NULL);
 if (SUCCEEDED(hr))
 {
 // Run the graph.
 hr = pControl->Run();
 if (SUCCEEDED(hr))
 {
 // Wait for completion.
 long evCode;
 pEvent->WaitForCompletion(INFINITE, &evCode);

 // Note: Do not use INFINITE in a real application, because it
 // can block indefinitely.
 }
 }
 pControl->Release();
 pEvent->Release();
 pGraph->Release();

 CoUninitialize();
}

Note that the application code for this simple example never references the WM ASF Reader specifically. That
filter is created, connected, run, and eventually released by the Filter Graph Manager. In many scenarios,
however, you may want to configure the WM ASF Reader before beginning playback.

© 2000-2003 Microsoft Corporation. All rights reserved.

Web Stream Playback in DirectShow
Microsoft DirectShow supports Web streams (see Web Streams for more information for more information) in
file playback scenarios through the WM ASF Reader filter, but you must write your own DirectShow filter to
capture and persist the stream.

Note To play back Web streams in content that is being streamed from a server running Windows Media
Services, use the Windows Media Player 9 Series ActiveX® control embedded in a Web page.

When given a file containing streams of type WMMEDIATYPE_FileTransfer, the WM ASF Reader will create
an output pin for it. The format block will be a WMT_WEBSTREAM_FORMAT structure. If no downstream
filter is available that can handle that media type, then the pin will remain unconnected, but the file will still
play the audio and/or video streams.

It is important to understand that each media sample in a Web stream contains a
WMT_WEBSTREAM_SAMPLE_HEADER structure, which has a variable length depending on the length
of its wszURL member. The pointer to the sample data initially points to this structure, and you must advance
the pointer past the structure in order to access the actual data in the stream. Your Web stream handler filter
should be based on the CBaseRenderer class. In the DoRenderSample method, the filter will need to parse the
structure for information about the Web stream, and then perform the appropriate action. Typically, this will
involve saving the file to disk, and then calling CommitUrlCacheEntry and CreateUrlCacheEntry to place
the files into the Internet Explorer cache. The filter must handle multipart files, that is, files that are larger than
one sample, and also must handle render commands, which are specified by the
WMT_WEBSTREAM_SAMPLE_HEADER.wSampleType member. The filter sends an
EC_OLE_EVENT to the application, along with the text of the
WMT_WEBSTREAM_SAMPLE_HEADER.wszURL string which contains the name of the file to be
rendered. The application then causes the browser to display the specified page. If the Web stream has been
authored correctly, the file should already be in the cache.

For more information on CBaseRenderer, DoRenderSample, and EC_OLE_EVENT, see the DirectShow
SDK documentation.

See Also

Previous Next

Previous Next

Web Streams

© 2000-2003 Microsoft Corporation. All rights reserved.

Script Streams in DirectShow
When the WM ASF Reader filter is given a file that includes a stream of type WMMEDIATYPE_Script, it
creates an output pin for it that can be connected to the DirectShow Internal Script Command Renderer filter.
When you call IGraphBuilder::RenderFile, that filter is automatically added to the graph and connected.
When the Internal Script Command Renderer receives a sample containing a script command, it fires an
EC_OLE_EVENT whose lParam contains the script. The application is entirely responsible for handling this
event. For more information on EC_OLE_EVENT, see the DirectShow SDK documentation.

© 2000-2003 Microsoft Corporation. All rights reserved.

Seeking in ASF Files
The WM ASF Reader, through its IMediaSeeking interface, can perform very accurate temporal-based seeking
on Windows Media–based content that has a temporal index. (All frame-indexed content also contains a
temporal index.) Guaranteed frame-accurate seeking is not directly supported in the WM ASF Reader, but there
is a way to do it if you require this functionality. First, use the Windows Media Format SDK directly to create
an instance of the synchronous reader object, open the file, obtain the time stamp associated with a specified
frame, and then use the DirectShow IMediaSeeking interface to seek to that time. The DirectShow
IVideoFrameStep interface does not support frame-accurate seeking of Windows Media–based content. The
DSSeekFm sample in the Windows Media Format SDK demonstrates how to perform frame-accurate seeking
with the WM ASF Reader.

See Also

WM ASF Reader Filter

Previous Next

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Creating ASF Files in DirectShow
You can use DirectShow to create ASF files directly from capture sources such as DV camcorders or to
transcode other files into Windows Media Format. In either scenario, applications create filter graphs that
include the WM ASF Writer filter as the renderer.

The WM ASF Writer provides a partial wrapper for the Windows Media Format SDK. Applications can use the
IConfigAsfWriter interface of the filter to pass in a system profile (versions 4, 7, or 8), or use the Windows
Media Format SDK directly to create a custom profile to pass to the filter. (This is the required method for
profiles based on Windows Media 9 Series). To add metadata and other header information, the application uses
the IWMHeaderInfo interface, which can be obtained from the filter. After the profile and metadata have been
configured, the application can simply run the filter graph. Internally, the filter uses the Windows Media Format
SDK to write the file. The filter handles all the audio-video synchronization details, which would otherwise be
the responsibility of the application.

This process is explained in more detail in the following sections.

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Section Description

Configuring the WM ASF Writer (QASF) Describes how to configure the WM ASF Writer
filter.

Building Filter Graphs to Write ASF Files (QASF) Describes how to create file-transcoding and capture
graphs.

Configuring Profiles and Other File Properties
(QASF)

Describes how to perform various ASF file-
configuration tasks using the WM ASF Writer.

Previous Next

Previous Next

Configuring the WM ASF Writer (QASF)
When the WM ASF Writer filter is created, it is configured automatically with the WMProfile_V80_256Video
profile as a default. Because this profile uses the Windows Media Audio and Windows Media Video version 8
codecs, it is recommended that you create a custom profile which uses the latest codecs, and then pass its
IWMProfile pointer to the filter using the IConfigAsfWriter::ConfigureFilterUsingProfile method. The
filter must be added to the graph before the filter can be configured, and it must be configured before it can be
connected to upstream filters. The filter uses the profile to determine what kind of Windows Media Format file
to write, how many input pins to set up, and what media types the pins can accept.

The filter allows profiles to be reset while its input pins are connected, as long as the new profile does not
require any additional input pins. For example, if you change the profile from a one-input audio-only profile to
a two-input audio and video profile, only the audio pin will be reconnectedAll input data must be time-stamped,
and all input pins must be connected before the filter can be run or paused. This means that if you configure the
filter with a profile that has an audio and a video stream, the filter will create an audio and a video input pin,
and both pins must be connected before the filter can be run.

Note In some processor-intensive scenarios such as inverse telecine, the WM ASF Writer may require more
output buffers than some downstream filters can support. The DV Decoder, for example, will not accept more
than one buffer for its output pin and the same is true for the AVI Decompressor in certain conditions. If you
encounter problems when attempting to connect to these filters, or possibly when running the graph, it may be
necessary to write an intermediary filter that accepts any number of buffers on its output pin.

© 2000-2003 Microsoft Corporation. All rights reserved.

Building Filter Graphs to Write ASF Files (QASF)
Applications based on DirectShow typically use one of three basic types of filter graphs when creating
Windows Media–based content:

Filter graphs for converting or transcoding content from some other format into Windows Media Format.
Filter graphs for inserting non Windows Media-based content (native stream formats) into ASF files.
Filter graphs for capturing live data and encoding it immediately into Windows Media Format before
saving it to disk.

Each type of filter graph is described in more detail in the following sections.

Previous Next

Previous Next

Section Description

Transcoding Files (QASF) Describes how to create file-transcoding filter graphs.

© 2000-2003 Microsoft Corporation. All rights reserved.

Transcoding Files (QASF)

You can build a file-transcoding filter graph using the WM ASF Writer in various ways. The easiest way is to
co-create, configure, and add the WM ASF Writer to the filter graph, and then use the
IGraphBuilder::RenderFile method to build the graph automatically.

An alternative way is to add each filter manually to the graph and connect the pins. After adding the WM ASF
Writer, configure it through the IConfigAsfWriter methods if the default profile is not suitable, and connect the
WM ASF Writer input pins to the corresponding output pins on the upstream filters.

The following illustration shows typical WM ASF Writer transcoding filter graph configurations.

© 2000-2003 Microsoft Corporation. All rights reserved.

Inserting Native Stream Formats Into ASF Files
(QASF)

Describes how to place any type of compressed or
non-compressed audio or video data into an ASF file.

Capturing Directly from a Device to an ASF file
(QASF)

Describes how to create capture filter graphs that
output to an ASF file.

Previous Next

Previous Next

Previous Next

Inserting Native Stream Formats Into ASF Files (QASF)

By default, the WM ASF Writer expects uncompressed audio and video streams on its input pins, and uses the
Windows Media Format SDK to access the Windows Media Audio and Windows Media Video codecs, which
compress the streams. But the ASF file container can be used for any type of data. By placing digital media data
into an ASF file container, you can add features provided by ASF, such as metadata and digital rights
management (DRM), without having to transcode your content.

To create an ASF file that contains content that is not Windows Media–based, the application must compress
the stream in the filter graph upstream of the WM ASF Writer and bypass the WM ASF Writer's compression
mechanism by calling IConfigAsfWriter2::SetParam as follows:

pConfigAsfWriter2->SetParam(AM_CONFIGASFWRITER_PARAM_DONTCOMPRESS,TRUE,0)

Then configure the filter with the desired profile. It is essential that the media type of the input stream exactly
matches the format in the profile. In some cases, it may be necessary to examine the input stream's format, and
create a custom profile to match it. For more information, see To Create ASF Files Using Third-Party Codecs.

When you connect the WM ASF Writer to the upstream filter, use the IGraphBuilder::ConnectDirect method.
Do not use any "intelligent connect" methods such as IGraphBuilder::Connect or
IGraphBuilder::RenderFile to connect the filter because this will disable the filter's "bypass compression"
mode.

© 2000-2003 Microsoft Corporation. All rights reserved.

Capturing Directly from a Device to an ASF File (QASF)

When capturing audio or video directly to an ASF file, the filter graph looks something like the following
diagram, depending on the type of capture device being used.

Previous Next

Previous Next

Previous Next

The DirectShow SDK documentation describes in detail how to create capture graphs, but there is one
important point to remember when creating capture graphs using the WM ASF Writer: the WM ASF Writer
will not run unless all of its pins are connected. If you configure the WM ASF Writer with the default system
profile (not recommended), or any profile with audio and video streams, then it will create an input pin for each
stream and each of those pins must be connected. If you do not intend to capture audio, for example, then be
sure to configure the filter with a video-only profile so that no audio pin is created.

© 2000-2003 Microsoft Corporation. All rights reserved.

Configuring Profiles and Other File Properties
(QASF)
The following items describe how to perform various tasks related to the creation of ASF files.

Creating a Profile (QASF)

To create a custom profile, use the Windows Media Format SDK directly to create a profile manager object by
using the WMCreateProfileManager function, create the profile, then pass the profile to the WM ASF Writer
by using the IConfigASFWriter::ConfigureFilterUsingProfile method. This is the only way to configure the
filter with a profile that uses the Windows Media Audio and Video 9 Series codecs. System profiles for earlier
versions of these codecs can be added by using the IConfigASFWriter::ConfigureFilterUsingProfileGuid
method.

Adding Metadata (QASF)

To add metadata to a file, call QueryInterface from the IBaseFilter interface on the WM ASF Writer to
retrieve the IWMHeaderInfo interface. After the filter has been given a profile, use the IWMHeaderInfo
interface methods to write the metadata.

Previous Next

Previous Next

Indexing a File (QASF)

The WM ASF Writer creates temporally indexed files by default. To create a frame-indexed file, use the
IConfigAsfWriter::SetIndexMode method to disable all indexing, then create the file. When it is complete,
use the Windows Media Format SDK directly to create a frame-based index for the file.

Performing Two-pass Encoding (QASF)

Two-pass encoding is supported only on Windows Media codecs of version 8 and later. Put the WM ASF
Writer into preprocess mode by calling IConfigAsfWriter2::SetParam and specifying
AM_CONFIGASFWRITER_PARAM_MULTIPASS in the dwParam parameter and TRUE in the dwParam1
parameter.

Then run the filter graph. When all the preprocessing passes are done (typically only one preprocessing pass
will be performed), the application will receive an EC_PREPROCESS_COMPLETE event from the filter.
When this event is received, use IMediaSeeking::SetPositions to reset the stream pointer back to the
beginning, and run the filter graph again. After the last pass (typically the second pass), the application will
receive an EC_COMPLETE event to signify that the encoding process is complete. If a preprocessing pass is
canceled before the EC_PREPROCESS_COMPLETE event is received, call
IConfigAsfWriter2::ResetMultiPassState to reset the filter before attempting another preprocessing run.

It is only necessary to call IConfigAsfWriter::SetParam
(AM_CONFIGASFWRITER_PARAM_MULTIPASS, FALSE) if you want to put the filter out of
preprocessing mode completely.

Important It is the application's responsibility to enable preprocessing mode based on the profile that will be
used for encoding. Some profiles require two-pass encoding; if you attempt to encode a file with such a profile,
and do not set AM_CONFIGASFWRITER_PARAM_MULTIPASS to TRUE, an EC_USERABORT error will
result. For more information on how to determine whether a given profile requires two-pass encoding, see
Using Two-Pass Encoding or Writing Variable Bit Rate Streams.

Getting and Setting Buffer Properties at Run Time (QASF)

In some scenarios, for example when you want to force key-frame insertion when writing a file, an application
may need to get or set information about a Windows Media buffer at run time. The WM ASF Reader and WM
ASF Writer filters both support a callback mechanism that enables an application to access the INSSBuffer3
interface on each individual media buffer during file reading or file writing. Applications can use this interface
to designate specific samples as key frames, or cleanpoints.

Use the IAMWMBufferPass interface to register for callbacks from the pin that is handling the video stream.
When the pin calls your IAMWMBufferPassCallback::Notify method, examine the time stamps on the buffer
and, if appropriate, call INSSBuffer3::SetProperty to set the
WM_SampleExtensionGUID_OutputCleanPoint property on the buffer to TRUE.

Non-Square Pixel Support (QASF)

The WM ASF Writer connects to an upstream filter, such as the DV Decoder, that outputs pixel aspect ratio
information. The WM ASF Writer will write this information as data unit extensions for every sample in the
file.

When the WM ASF Reader encounters pixel aspect ratio information in the file header or in data unit
extensions for the samples, it will offer a VIDEOINFOHEADER2 media type as a first choice on its output
pin. The dwPictAspectRatioX and dwPictAspectRatioY members of the structure, which describe the video

rectangle's aspect ratio, will be correctly adjusted to account for the pixel aspect ratio.

© 2000-2003 Microsoft Corporation. All rights reserved.

WMT_STATUS Event Notification in DirectShow
Both the ASF Reader and the ASF Writer forward WMT_STATUS events to applications. The writer forwards
all such events, and the reader forwards only those that pertain to DRM license acquisition. To receive these
event notifications in your application, add a case for the EC_WMT_EVENT in your event handling function.
The lParam1 parameter associated with the event contains the HRESULT and the lParam2 parameter contains
the specific WMT_STATUS code.

© 2000-2003 Microsoft Corporation. All rights reserved.

DRM Support in DirectShow
Reading and writing DRM-protected files in DirectShow is done in basically the same way as when you use the
Windows Media Format SDK directly. To begin with, you need the wmstubdrm static library, which is obtained
separately from Microsoft. In addition, you must implement the IKeyProvider interface to enable your
application to access the Windows Media Format SDK run-time objects when DRM is enabled.

When applying DRM version 1 protection, use the IWMHeaderInfo interface which is obtained as described
in Reading ASF Files in DirectShow. When applying DRM version 7 protection, obtain the IWMDRMWriter
interface by calling QueryService on the WM ASF Writer filter, as shown in the code snippet later in this topic.

All other DRM-specific configuration is exactly the same as described in Enabling DRM Support. Use
QueryService to obtain the IWMDRMReader interface from the WM ASF Reader filter.

DirectX 9.0 contains a sample, PlayWndASF, a DRM-enabled DirectShow player application that demonstrates
DRM version 1 and version 7 license acquisition. This sample also includes an implementation of the
CKeyProvider class, which supports the IKeyProvider interface.

Previous Next

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Building Filter Graphs in DRM-Enabled Applications

If your DirectShow application supports playback of DRM-protected files, then you generally should not use
RenderFile to create the filter graph because there is no way to specify which DRM rights you are requesting
before the file is opened. The WM ASF Reader by default asks for only playback rights. The filter is not added
to the graph, and is therefore not discoverable by applications, until a file is successfully opened.

To build a DRM-enabled playback graph using the WM ASF Reader, you must instantiate the filter using
CoCreateInstance, add it to the filter graph using IGraphBuilder::AddFilter, configure it, and then render its
output pins. This technique is demonstrated in the PlayWndASF sample. When you build the graph in this way,
you already have the IBaseFilter pointer that can be used to call QueryService to obtain IWMDRMWriter.
However, this interface is not available until the Windows Media Format SDK reader object is created
internally by the WM ASF Reader. The first opportunity the application has to set DRM rights is in its
WMT_NO_RIGHTS_EX event handler, as shown in this code snippet:

case WMT_NO_RIGHTS_EX:

 IServiceProvider *pServiceProvider;
 IWMDRMReader pWMDRMReader;
 JIF(g_pReader->QueryInterface(IID_IServiceProvider, (void **) &pServiceProvider));
 JIF(pServiceProvider->QueryService(IID_IWMDRMReader, IID_IWMDRMReader, (void **) &pWMD
 SAFE_RELEASE(pServiceProvider);

 // Set the rights we want for this file. These are the actions
 // we might want to perform on the file. Here we ask for two rights only.
 // In a real application you should enable the user to select which rights
 // they want.
 hr = pWMDRMReader->SetDRMProperty(g_wszWMDRM_Rights, WMT_TYPE_STRING,
 BYTE*) wszRights, (sizeof(wszRights) / sizeof(wszRights[0])) * 2);
 SAFE_RELEASE(pWMDRMReader);
 if (FAILED(hr))
 {
 Msg(TEXT("SetDRMProperty Failed! hr=0x%x\n"), hr);
 return hr;
 }
 // Now proceed with license acqusition.
 if(pEventData->pData)
 {
 hr = HandleNoRightsEx(pEventData->hrStatus,
 (WM_GET_LICENSE_DATA *)pEventData->pData);
 }
 else
 {
 hr = E_FAIL;
 }
 break;

Previous Next

Previous Next

See Also

Digital Rights Management Features
DRM Attribute List
DRM Properties
Enabling DRM Support
IWMDRMReader
IWMDRMWriter

© 2000-2003 Microsoft Corporation. All rights reserved.

DirectShow QASF Reference
This section contains programming references for the following DirectShow QASF filters, interfaces and
enumerations. The DirectShow SDK documentation contains reference and programming guide materials for
additional generic interfaces exposed by these filters, such as IBaseFilter and IPin, and for earlier versions of
the QASF components.

For an explanation of the QASF name, see About DirectShow.

The following filters are included with the DirectShow QASF components.

The following interfaces are defined for use with the DirectShow QASF components.

Previous Next

Previous Next

Filter Description

WM ASF Reader Filter Reads and parses local or remote ASF files.

WM ASF Writer Filter Creates ASF files from compressed or uncompressed
input streams.

Interface Description

IAMWMBufferPass Provides a method that enables applications to
register for callbacks from input pins of the WM ASF
Writer or WM ASF Reader filter.

IAMWMBufferPassCallback Implemented by applications and called by the filters.
Applications use the one method on this interface to
obtain information about individual samples in the
stream.

The following enumeration, structure, and events are defined for use with the DirectShow QASF components.

© 2000-2003 Microsoft Corporation. All rights reserved.

WM ASF Reader Filter
When given the name of an ASF file or a URL, the WM ASF Reader reads the compressed content, parses the
streams, and exposes an output pin for each one. This filter connects downstream to the Windows Media Audio
or Windows Media Video DMOs, which do the decompression. Seeking is supported if the ASF file is
seekable. The WM ASF Reader applies time stamps to the media samples based on the time stamp in the ASF
file, but it does not modify the time stamps in any way. Internally, the filter uses the Windows Media Format 9
Series reader object to read the Windows Media–based content.

Note In the DirectX SDK, this filter is not the default source filter for ASF files, so with that SDK you cannot

IConfigAsfWriter Implemented on the WM ASF Writer. Used by
applications to specify profiles and indexing
parameters for the file.

IConfigAsfWriter2 Provides additional configuration functions on the
WM ASF Writer.

Enumeration Description

_AM_ASFWRITERCONFIG_PARAM Defines filter configuration parameters used in the
IConfigAsfWriter2::GetParam and SetParam
methods.

Structure Description

AM_WMT_EVENT_DATA Contains information pertaining to a
WMT_STATUS event and the associated status code
returned by the Windows Media Format SDK.

Event Description

EC_WMT_EVENT Event forwarded from the Windows Media Format
SDK.

EC_WMT_INDEX_EVENT Sent when an application uses the WM ASF Writer to
index Windows Media Video files.

Previous Next

Previous Next

use this filter with the RenderFile method; you must explicitly add it to the filter graph by using its class
identifier (CLSID). This behavior is different with the Windows Media Format 9 Series SDK. When you install
the Windows Media Format 9 Series SDK run-time libraries, the WM ASF Reader is registered as the default
filter for ASF files.

The following table contains information about the WM ASF Reader filter, such as the interfaces and media
types it supports.

See Also

DirectShow QASF Reference
Reading ASF files in DirectShow

© 2000-2003 Microsoft Corporation. All rights reserved.

Filter interfaces IBaseFilter, IFileSourceFilter, IServiceProvider,
IWMHeaderInfo, IWMReaderAdvanced,
IWMReaderAdvanced2, IWMDRMReader
(through IServiceProvider)

Input pin media types Not applicable.

Input pin interfaces Not applicable.

Output pin media types MEDIATYPE_Video, MEDIATYPE_Audio,
MEDIATYPE_ScriptCommand,
MEDIATYPE_FileTransfer

Format type VIDEOINFOHEADER2 if content is interlaced,
otherwise VIDEOINFOHEADER

Output pin interfaces IMediaSeeking, IAMWMBufferPass,
IServiceProvider, IWMStreamConfig2 (through
IServiceProvider)

Filter CLSID CLSID_WMAsfReader

Property Page CLSID No property page.

Executable Qasf.dll

Merit MERIT_UNLIKELY

Filter Category CLSID_LegacyAmFilterCategory

Previous Next

Previous Next

WM ASF Writer Filter
The WM ASF Writer filter accepts a variable number of input streams and creates an ASF file. The filter
handles all compression and multiplexing (although the compression mechanism can be bypassed). You can use
the WM ASF Writer filter in various scenarios including digital video (DV) capture, audio recompression, and
conversion of Audio-Video Interleaved (AVI) or MPEG digital media files for network streaming. This filter
provides the only way to create Microsoft Windows Media Audio and Windows Media Video files in
DirectShow.

For more information, see Creating ASF files in DirectShow.

The following table contains information about the WM ASF Writer filter, such as the interfaces and media
types it supports.

Remarks

The filter requires the Windows Media Format Software Development Kit (SDK) and its underlying
dependencies.

The number of input pins on the filter depends on the profile that is passed to the filter. One pin of the
appropriate media type is created for each stream defined in the profile.

The input pins support one method from the IAMStreamConfig interface: IAMStreamConfig::GetFormat.
All other methods return E_NOTIMPL. Call the GetFormat method to query the pin's destination compression
format, which is defined by the current profile. Use the IConfigAsfWriter interface to set the profile.

Filter interfaces IAMFilterMiscFlags, IBaseFilter,
IConfigAsfWriter, IFileSinkFilter2,
IMediaSeeking, IPersistStream, IServiceProvider,
ISpecifyPropertyPages, IWMIndexer2,
IWMHeaderInfo, IWMWriterAdvanced2

Input pin media types Dependent on the profile. Typically uncompressed
types like MEDIATYPE_Audio or
MEDIATYPE_Video, although compressed types
can be accepted if they match the profile.

Input pin interfaces IPin, IMemInputPin, IAMStreamConfig,
IServiceProvider, IAMWMBufferPass,
IWMStreamConfig2 (through IServiceProvider)

Output pin media types Not applicable.

Output pin interfaces Not applicable.

Filter CLSID CLSID_WMAsfWriter

Property page CLSID CLSID_WMAsfWriterProperties

Executable Qasf.dll

Merit MERIT_DO_NOT_USE

Filter Category Not specified.

The filter's IServiceProvider interface enables applications to retrieve the IWMWriterAdvanced2 interface,
which is defined in the Windows Media Format SDK. The IWMWriterAdvanced2 interface controls video
deinterlacing, and is useful if the input is an interlaced source, such as DV (digital video). Use the
GetInputSetting and SetInputSetting methods to control deinterlacing. It is not recommended that clients use
any of the other methods on this interface. This interface can only be obtained after the filter has been added to
the filter graph. The following example shows how to query for this interface:

// Assume that m_pGraph is a valid IGraphBuilder interface pointer
// and that pAsfWriter points to the IBaseFilter interface
// on the WM ASF Writer filter.

IServiceProvider *pProvider = NULL;
IWMWriterAdvanced2 *pWMWA2 = NULL;

hr = m_pGraph->AddFilter(pAsfWriter, L"WM ASF Writer");
...
hr = pAsfWriter->QueryInterface(IID_IServiceProvider, (void**)&pProvider)
if (SUCCEEDED(hr))
{
 hr = pProvider->QueryService(IID_IWMWriterAdvanced2,
 IID_IWMWriterAdvanced2, (void**)&pWMWA2);
 pProvider->Release();
}

See Also

DirectShow QASF Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

IAMWMBufferPass Interface
The IAMWMBufferPass interface is implemented on the DirectShow WM ASF Reader and the input pins of
the WM ASF Writer. Applications use it to register for callbacks to get and set information about individual
samples in a stream. The most common use for this interface is to force key-frame insertion in a variable bit rate
video stream during file writing. To do this, you must set the cleanpoint property on individual INSSBuffer3
samples.

In addition to the methods inherited from IUnknown, the IAMWMBufferPass interface exposes the following
method.

Previous Next

Previous Next

Method Description

SetNotify Used by applications to provide the WM ASF Writer or WM ASF Reader

Requirements

Requires Dshowasf.h, Windows Media Format 9 Series SDK.

See Also

DirectShow QASF Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

IAMWMBufferPass::SetNotify

The SetNotify method is used by applications to provide the WM ASF Writer or WM ASF Reader filter with a
pointer to the application's IAMWMBufferPassCallback interface.

Syntax

HRESULT SetNotify(
 IAMWMBufferPassCallback* pCallback
);

Parameters

pCallback

[in] Pointer to the application's IAMWMBufferPassCallback interface.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

Call this method before putting the filter graph into the run state.

See Also

IAMWMBufferPass Interface

filter with a pointer to the application's IAMWMBufferPassCallback
interface.

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IAMWMBufferPassCallback Interface
The IAMWMBufferPassCallback interface is provided for advanced scenarios in which applications need
access to an INSSBuffer3 sample before it is passed downstream for further processing; most applications do
not require this functionality. The most common use for this interface is to force key-frame insertion in a
variable bit rate video stream during file writing. To do this, you must set the cleanpoint property on individual
INSSBuffer3 samples. This interface is implemented by applications and called by the WM ASF Writer or WM
ASF Reader filter each time a new sample is delivered to the filter.

Requirements

Requires Dshowasf.h, Windows Media Format 9 Series SDK.

In addition to the methods inherited from IUnknown, the IAMWMBufferPassCallback interface exposes the
following method.

See Also

DirectShow QASF Reference
IAMWMBufferPass Interface
INSSBuffer3 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IAMWMBufferPassCallback::Notify

Previous Next

Previous Next

Method Description

Notify Called by the filter for each buffer that is delivered during streaming.

Previous Next

Previous Next

The Notify method is called by the pin for each buffer that is delivered during streaming.

Syntax

HRESULT Notify(
 INSSBuffer3* pNSSBuffer3,
 IPin* pPin,
 REFERENCE_TIME* prtStart,
 REFERENCE_TIME* prtEnd
);

Parameters

pNSSBuffer3

[in] Pointer to the INSSBuffer3 interface exposed on the media sample.

pPin

[in] Pointer to the pin associated with the media stream that the sample belongs to.

prtStart

[in] Start time of the sample.

prtEnd

[in] End time of the sample.

Return Values

No particular return value is specified. The calling pin ignores the HRESULT.

Remarks

This method enables an application to examine and act on information in the media buffer before the buffer
contents are processed. The application is responsible for knowing the media type on the pin. This information
can be obtained by first getting the stream information from the profile and then calling
IConfigAsfWriter2::StreamNumFromPin method to determine which pin is associated with each stream.

See Also

DirectShow QASF Reference
IAMWMBufferPassCallback Interface
INSSBuffer3 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

IConfigAsfWriter Interface
The IConfigAsfWriter interface is implemented by the DirectShow WM ASF Writer filter and provides
methods for getting and setting the profiles and indexing mode. The filter uses the profile to determine how
many input pins to create, and what media types to accept at connection time. When the WM ASF Writer filter
is first created, it is configured automatically with the following default profile: WMProfile_V80_256Video.
(Use of this profile is not recommended because it does not use the Windows Media Audio and Video 9 Series
codecs.)

Requirements

Requires Dshowasf.h, Windows Media Format 9 Series SDK.

In addition to the methods inherited from IUnknown, the IConfigAsfWriter interface exposes the following
methods.

See Also

DirectShow QASF Reference

Previous Next

Method Description

ConfigureFilterUsingProfile The recommended way to set a profile. Configures
the filter to write an ASF file based on the specified
application-defined profile.

ConfigureFilterUsingProfileGuid Configures the filter to write an ASF file based on the
specified predefined Windows Media Format SDK
profile GUID.

ConfigureFilterUsingProfileId Configures the filter to write an ASF file with a
profile identifier (ID) index from the system profile
list. (For Windows Media Format 4.0 profiles only.)

GetCurrentProfile Retrieves the application-defined profile.

GetCurrentProfileGuid Retrieves the current profile GUID defined by the
Windows Media Format SDK.

GetCurrentProfileId Retrieves the current profile ID. (For Windows Media
Format 4.0 profiles only.)

GetIndexMode Retrieves the current index mode.

SetIndexMode Enables the application to control whether the file
will be indexed and therefore seekable.

© 2000-2003 Microsoft Corporation. All rights reserved.

IConfigAsfWriter::ConfigureFilterUsingProfile

The ConfigureFilterUsingProfile method is the recommended way to set a profile. It configures the filter to
write an ASF file based on the specified application-defined profile.

Syntax

HRESULT ConfigureFilterUsingProfile(
 IWMProfile *pProfile
);

Parameters

pProfile

[in] IWMProfile interface pointer to the application-defined profile.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

If successful, this method will cause an EC_GRAPH_CHANGED event to be sent to the application. Use this
method to configure the writer with a custom Windows Media 9 Series profile you have created using the
Windows Media Format SDK methods.

See Also

IConfigAsfWriter Interface

Previous Next

Previous Next

Return code Description

S_OK The method succeeded.

E_POINTER The IWMProfile interface pointer is not valid.

VFW_E_WRONG_STATE The graph is stopped.

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IConfigAsfWriter::ConfigureFilterUsingProfileGuid

The ConfigureFilterUsingProfileGuid method configures the filter to write an ASF file based on the specified
predefined profile.

Syntax

HRESULT ConfigureFilterUsingProfileGuid(
 REFGUID guidProfile
);

Parameters

guidProfile

[in] Profile GUID as defined in the Windows Media Format SDK header file Wmsysprf.h.

Return Values

Returns one of the following HRESULT values.

Remarks

Windows Media 9 Series does not define any new profiles. Only version 8 (or earlier) system profile GUIDs
can be used with this method.

See Also

IConfigAsfWriter Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Return code Description

S_OK The method succeeded.

E_FAIL The profile is not valid.

VFW_E_WRONG_STATE The filter graph is stopped.

Previous Next

IConfigAsfWriter::ConfigureFilterUsingProfileId

The ConfigureFilterUsingProfileId method configures the filter to write an ASF file with a profile identifier
(ID) index from the system profile list. (For Windows Media Format 4.0 profiles only.)

Syntax

HRESULT ConfigureFilterUsingProfileId(
 DWORD dwProfileId
);

Parameters

dwProfileId

[in] Profile ID as defined in version 4.0 of the Windows Media Format SDK.

Return Values

Returns one of the following HRESULT values.

Remarks

This method is now obsolete because it assumes version 4.0 Windows Media Format SDK profiles. To
configure the filter for version 7.0 and later profiles, use IConfigAsfWriter::ConfigureFilterUsingProfile or
IConfigAsfWriter::ConfigureFilterUsingProfileGuid.

See Also

IConfigAsfWriter Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Return code Description

S_OK The method succeeded.

E_FAIL The profile is not valid.

VFW_E_WRONG_STATE The filter graph is stopped.

Previous Next

IConfigAsfWriter::GetCurrentProfile

The GetCurrentProfile method retrieves the application-defined profile.

Syntax

HRESULT GetCurrentProfile(
 IWMProfile **ppProfile
);

Parameters

ppProfile

[out] Address of a pointer that receives the IWMProfile interface of the application-defined profile.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

If the method succeeds, the IWMProfile pointer that it returns has an outstanding reference count. Be sure to
release the interface when you are finished using it.

See Also

IConfigAsfWriter Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IConfigAsfWriter::GetCurrentProfileGuid

The GetCurrentProfileGuid method retrieves the current Windows Media system profile GUID.

Syntax

Previous Next

Previous Next

Previous Next

HRESULT GetCurrentProfileGuid(
 GUID *pProfileGuid
);

Parameters

pProfileGuid

[out] Pointer to a variable of type GUID that identifies the current system profile being used by the filter.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

This method is not used with Windows Media 9 Series profiles because all such profiles are created by
applications and have no GUID identifier. If no system profile is loaded, pProfileGuid will be set to NULL.

See Also

IConfigAsfWriter Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IConfigAsfWriter::GetCurrentProfileId

The GetCurrentProfileId method retrieves the current profile ID. (For Windows Media Format 4.0 profiles
only.)

Syntax

HRESULT GetCurrentProfileId(
 DWORD *pdwProfileId
);

Parameters

pdwProfileId

[out] Pointer to a variable of type DWORD that receives the current profile ID.

Return Values

Previous Next

Previous Next

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

This method is now obsolete because it assumes version 4.0 Windows Media Format SDK profiles. Use
IConfigAsfWriter::GetCurrentProfile or IConfigAsfWriter::GetCurrentProfileGuid instead to correctly
identify a profile for version 7.0 and later.

See Also

IConfigAsfWriter Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IConfigAsfWriter::GetIndexMode

The GetIndexMode method retrieves the current temporal index mode.

Syntax

HRESULT GetIndexMode(
 BOOL *pbIndexFile
);

Parameters

pbIndexFile

[out] Pointer to a variable of type BOOL that receives the temporal index mode setting. A value of TRUE
indicates that the WM ASF Writer is configured to write temporally indexed files.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

Use this method to determine whether the WM ASF Writer is currently configured to write temporally indexed
ASF files. For more information on temporally indexed and frame-indexed files, see the Remarks for
IConfigAsfWriter::SetIndexMode.

See Also

Previous Next

Previous Next

IConfigAsfWriter Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IConfigAsfWriter::SetIndexMode

The SetIndexMode method enables the application to control whether the file will be temporally indexed.

Syntax

HRESULT SetIndexMode(
 BOOL bIndexFile
);

Parameters

bIndexFile

[in] Variable of type BOOL; TRUE specifies that the file will be temporally indexed.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

By default, the WM ASF Writer creates temporally indexed ASF files. It performs the indexing when the graph
stops. You can disable this behavior if you want to do your own frame-based indexing as a post-processing step.
To create a frame-indexed file, call SetIndexMode(FALSE), create the file, and then use the Windows Media
Format SDK methods directly to create a frame-based index for the file.

See Also

IConfigAsfWriter Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

IConfigAsfWriter2 Interface
The IConfigAsfWriter2 interface inherits from the IConfigAsfWriter interface and provides additional
methods to support the new capabilities in the Windows Media Format 9 Series SDK such as two-pass encoding
and support for deinterlaced video.

Requirements

Requires Dshowasf.h, Windows Media Format 9 Series SDK.

In addition to the methods inherited from IConfigAsfWriter, the IConfigAsfWriter2 interface exposes the
following methods.

See Also

DirectShow QASF Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

IConfigAsfWriter2::GetParam

The GetParam method retrieves the current value of the specified filter configuration parameter.

Previous Next

Method Description

GetParam Retrieves the current value of the specified filter
configuration parameter.

ResetMultiPassState Resets the filter when a preprocessing encoding pass
is canceled before it is completed.

SetParam Sets the value of the specified filter configuration
parameter.

StreamNumFromPin Retrieves the stream number associated with the
specified input pin.

Previous Next

Previous Next

Syntax

HRESULT GetParam(
 DWORD dwParam,
 DWORD* pdwParam1,
 DWORD* pdwParam2
);

Parameters

dwParam

[in] Specifies the parameter to retrieve. It must be a value defined in the
_AM_ASFWRITERCONFIG_PARAM enumeration.

pdwParam1

[out] Pointer to a variable that retrieves the value of the parameter specified in dwParam.

pdwParam2

[out] Not used, must be zero.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

IConfigAsfWriter2 Interface
IConfigAsfWriter2::SetParam

© 2000-2003 Microsoft Corporation. All rights reserved.

IConfigAsfWriter2::ResetMultiPassState

The ResetMultiPassState method resets the filter when a preprocessing encoding pass is canceled before it is
completed.

Syntax

HRESULT ResetMultiPassState();

Previous Next

Previous Next

Parameters

This method takes no parameters.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

This method must be called to reset the internal state of the filter whenever a preprocessing encoding pass is
canceled before the filter has received an EC_PREPROCESS_COMPLETE event. It is not necessary to call
this method if the preprocessing encoding pass completes without errors.

See Also

IConfigAsfWriter2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IConfigAsfWriter2::SetParam

The SetParam method sets the value of the specified filter configuration parameter.

Syntax

HRESULT SetParam(
 DWORD dwParam,
 DWORD dwParam1,
 DWORD dwParam2
);

Parameters

dwParam

[in] Specifies the parameter to set. It must be a value defined in the _AM_ASFWRITERCONFIG_PARAM

Return code Description

S_OK The method succeeded.

VFW_E_NOT_STOPPED The filter was not in a stopped state.

Previous Next

Previous Next

enumeration.

dwParam1

[in] Specifies the value to assign to the dwParam parameter.

dwParam2

[in] Not used; must be 0.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

IConfigAsfWriter2 Interface
IConfigAsfWriter2::GetParam

© 2000-2003 Microsoft Corporation. All rights reserved.

IConfigAsfWriter2::StreamNumFromPin

The StreamNumFromPin method retrieves the stream number associated with the specified input pin.

Syntax

HRESULT StreamNumFromPin(
 IPin* pPin,
 WORD* pwStreamNum
);

Parameters

pPin

[in] Input pin.

pwStreamNum

[out] Pointer that receives the stream number.

Return Values

Previous Next

Previous Next

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

Sometimes you may need to use the Windows Media Format SDK interfaces directly to manipulate a stream
before running a filter graph. Because you cannot assume that an ASF stream number is the same as the
DirectShow pin number, this method is provided.

See Also

IConfigAsfWriter2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

_AM_ASFWRITERCONFIG_PARAM
Enumeration
The _AM_ASFWRITERCONFIG_PARAM DirectShow QASF enumeration type defines filter configuration
parameters used in the IConfigAsfWriter2::GetParam and SetParam methods.

Syntax

enum _AM_ASFWRITERCONFIG_PARAM{
 AM_CONFIGASFWRITER_PARAM_AUTOINDEX,
 AM_CONFIGASFWRITER_PARAM_MULTIPASS,
 AM_CONFIGASFWRITER_PARAM_DONTCOMPRESS
};

Members

AM_CONFIGASFWRITER_PARAM_AUTOINDEX

Indicates whether the WM ASF Writer should automatically create a temporal index after it has completed
encoding a file. Set this parameter to FALSE if you want to create a frame-based index using the Windows
Media Format SDK directly.

AM_CONFIGASFWRITER_PARAM_MULTIPASS

Indicates whether the filter should operate in two-pass mode. See Remarks.

AM_CONFIGASFWRITER_PARAM_DONTCOMPRESS

Previous Next

Previous Next

Indicates that the WM ASF Writer will not attempt to compress the input streams. Use this flag to pack content
that is not Windows Media–based into an ASF file.

Remarks

In two-pass mode the filter makes two passes through the file. In the first pass, the filter examines each media
stream in its entirety to determine the optimal encoding parameters for the file. The actual encoding is
performed in the second pass. Therefore, to create an ASF file in two-pass mode, you must run the graph, wait
for an EC_PREPROCESS_COMPLETE event, seek to the beginning of the source file, and then run the
graph a second time.

Important To receive the EC_PREPROCESS_COMPLETE event you must use the DirectShow GetEvent
method as demonstrated in the DSCopy sample. The DirectShow WaitForCompletion method will not receive
this particular event.

See Also

Configuring Profiles and Other File Properties (QASF)
DirectShow QASF Reference
IConfigAsfWriter2::GetParam
IConfigAsfWriter2::SetParam

© 2000-2003 Microsoft Corporation. All rights reserved.

AM_WMT_EVENT_DATA Structure
The AM_WMT_EVENT_DATA structure contains information pertaining to an EC_WMT_EVENT and the
associated status code returned by the Windows Media Format SDK.

Syntax

typedef struct {
 HRESULT hrStatus;
 void * pData; // event data
} AM_WMT_EVENT_DATA;

Members

hrStatus

The status code returned by the Windows Media Format SDK.

Previous Next

Previous Next

pData

Pointer whose data is dependent on the value of the WMT_STATUS message in lParam1 of the
EC_WMT_EVENT event. For more information, see EC_WMT_EVENT.

Remarks

This structure is relevant when using the WM ASF Reader filter to read files protected with Digital Rights
Management.

© 2000-2003 Microsoft Corporation. All rights reserved.

EC_WMT_EVENT

Sent by the Windows Media Format SDK when an application uses the ASF Reader filter to play ASF files
protected by digital rights management (DRM).

Parameters

lParam1

Can be one of the following WMT_STATUS values:

Previous Next

Previous Next

WMT_STATUS Message Description

WMT_NO_RIGHTS The file is protected with DRM version 1 and the
application has no rights to perform the requested
action.

WMT_ACQUIRE_LICENSE The license acquisition process has been completed.
(This does not necessarily mean that a license was
successfully acquired.)

WMT_NO_RIGHTS_EX The file is protected with DRM version 7 and the
application has no rights to perform the requested
action.

WMT_NEEDS_INDIVIDUALIZATION The license allows only individualized applications to
perform the requested action.

WMT_INDIVIDUALIZE The individualization process is now being performed
or has been completed.

lParam2

Pointer to an AM_WMT_EVENT_DATA structure that contains information about the event in the pData
member pointer, as well as an HRESULT status code sent by the Windows Media Format SDK. The value of
lParam2 depends on the value of lParam1, as described in the following table. (The "WM_" structures are
defined in the Windows Media Format SDK.)

See Also

Digital Rights Management Features
DirectShow QASF Reference
Enabling DRM Support

© 2000-2003 Microsoft Corporation. All rights reserved.

EC_WMT_INDEX_EVENT

Sent by the Windows Media Format SDK when an application uses the ASF Writer to index Windows Media
Video files.

Parameters

lParam1

Can be any one of the following WMT_STATUSWMT_STATUS messages.

If lParam1 is... AM_WMT_EVENT_DATA.pData is...

WMT_NO_RIGHTS A pointer to a WCHAR string containing a challenge
URL.

WMT_ACQUIRE_LICENSE A pointer to a WM_GET_LICENSE_DATA
structure.

WMT_NO_RIGHTS_EX A pointer to a WM_GET_LICENSE_DATA
structure.

WMT_NEEDS_INDIVIDUALIZATION NULL.

WMT_INDIVIDUALIZE A pointer to a WM_INDIVIDUALIZE_STATUS
structure.

Previous Next

Previous Next

Message Description

lParam2

If lParam1 is WMT_CLOSED or WMT_STARTED, then lParam2 is zero. If lParam1 is
WMT_INDEX_PROGRESS, then lParam2 is a DWORD that expresses the amount of progress as a
percentage of the total download size.

See Also

DirectShow QASF Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

Project Considerations
You must ensure that the end user can properly run applications that you create with the Windows Media
Format SDK. This section describes two things you must consider when distributing applications, file name
extensions and software redistribution.

You must use the correct file name extensions for any files created with your applications. Using proper file
name extensions makes it easier for end users to recognize ASF files and prevents confusion when decoding
files.

You must provide any redistributables that are required to run your applications. Without the correct
redistributables, users will not be able to use your applications.

The following sections describe file name extensions and software redistribution in detail.

WMT_STARTED Indexing has begun. lParam2 is zero.

WMT_CLOSED Indexing has been completed. lParam2 is zero.

WMT_INDEX_PROGRESS Indexing is in progress.

Previous Next

Previous Next

Section Description

File Name Extension Guidelines Provides information about the file name extensions
you should use for ASF files that your program
creates.

Software Redistribution Describes the redistributables for the Windows Media
Format SDK and how to include them with your

© 2000-2003 Microsoft Corporation. All rights reserved.

File Name Extension Guidelines
A file name extension provides an independent software vendor with information about the rendering
requirements of an application that uses that particular extension.

The file name extension you must use for a file created by an application based on the Windows Media Format
SDK is determined by the type of content in the file. Use the following logic to determine the file name
extension you must use.

If the file contains any streams encoded with third-party codecs or any unsupported uncompressed data
(including arbitrary data), the file must use the .asf extension.

If the file contains no unsupported streams and contains one or more video streams either uncompressed or
encoded with any Windows Media video codec, the file must use the .wmv extension. These files may also
include PCM audio streams, audio streams encoded with any Windows Media audio codec, script streams, and
Web streams.

If the file contains no unsupported streams and no supported video streams, and contains one or more audio
streams either uncompressed PCM or encoded with any Windows Media audio codec, the file must use
the .wma extension. These files may also contain script streams, and Web streams.

If the file contains only streams that are neither audio nor video, it must use the .asf extension.

Supported uncompressed video types include RGB8, RGB565, RGB555, RGB24, RGB32, I420, IYUV, YV12,
YUY2, UYVY, YVYU, and YVU9.

See Also

Project Considerations

© 2000-2003 Microsoft Corporation. All rights reserved.

applications.

Previous Next

Previous Next

Previous Next

Software Redistribution
The inclusion of Windows Media Format software in an application setup is known as redistribution. The
Windows Media Format SDK includes an installation package which can be included with your application
setup. The installation package is an executable file named wmfdist.exe. When you install the Windows Media
Format SDK, the installation package is copied to the \Redist folder of the install directory (c:\wmsdk\wmfsdk
by default).

The following sections provide procedures and other information for software redistribution setup.

See Also

Project Considerations

© 2000-2003 Microsoft Corporation. All rights reserved.

To Create a Redistribution Setup
1. Have your setup routine install your application files and make required settings before invoking the

redistribution package.
2. Install WMFDist.exe. You can use the /Q:A flag to do a quiet, unattended installation and suppress the

Previous Next

Section Description

To Create a Redistribution Setup Describes the procedure for creating an application
setup.

Detecting Setup Status Provides example code that checks the registry for
installation status to determine whether the
redistribution package needs to be installed.

Example Code for Redistribution Setup Provides example code that can be used in your setup
routine to run the redistribution packages in quiet
mode and notify your setup routine when the
computer must be restarted.

Previous Next

Previous Next

user interface of the redistribution setup during the installation of your application. Your routine must
then detect whether restarting is needed at the end.

For example:

WMFDist.exe /Q:A

See Also

Software Redistribution

© 2000-2003 Microsoft Corporation. All rights reserved.

Detecting Setup Status
When the redistribution executable runs on a computer, it records its installation status in the registry as an
HRESULT value. The following registry entry is used to store the value:

HKCU, Software\Microsoft\MediaPlayer\Setup, REG_SZ, value InstallResult

The HRESULT value can be used to determine whether the setup succeeded and whether the computer must be
restarted.

The following code will set the fSucess and fRebootNeeded variables to True or False, as appropriate, based on
the HRESULT value written by Windows Media setup in the component redistribution package.

#include <windows.h>
#include <stdio.h>

// If NS_S_REBOOT_REQUIRED is undefined, use 0xD2AF9.
#ifndef NS_S_REBOOT_REQUIRED
#define NS_S_REBOOT_REQUIRED 0xd2af9
#endif

int main(void)
{
 HKEY hKey = NULL;
 BOOL fSuccess = FALSE;
 BOOL fRebootNeeded = FALSE;

if(ERROR_SUCCESS == RegOpenKeyExA(HKEY_CURRENT_USER, "Software\\Microsoft\\MediaPlayer\\
 {
 char szResult[64];

Previous Next

Previous Next

 DWORD dwResult = sizeof(szResult);

if(ERROR_SUCCESS == RegQueryValueExA(hKey, "InstallResult", NULL, NULL, (LPBYTE)szResult
 {
 sscanf(szResult, "%x", &dwResult);
 fSuccess = SUCCEEDED(dwResult);
 fRebootNeeded = (NS_S_REBOOT_REQUIRED == dwResult);
 }

 RegCloseKey(hKey);
 }

 if(fSuccess)
 {
 printf("Setup Succeeded...");
 if(fRebootNeeded)
 printf("A reboot IS required...\n");
 else
 printf("A reboot IS NOT required...\n");
 }
 else
 {
 printf("Setup Failed...");
 if(fRebootNeeded)
 printf("A reboot IS required...\n");
 else
 printf("A reboot IS NOT required...\n");
 }

 return 0;
}

See Also

Software Redistribution

© 2000-2003 Microsoft Corporation. All rights reserved.

Example Code for Redistribution Setup
When including the redistribution package in your application, you can use the /Q:A flag when you invoke the
redistribution package in your setup routine. This suppresses the user interface (UI).

The following example code can be used in your setup routine to run the redistribution packages in quiet mode
and notify your setup routine when the computer must be restarted.

///

Previous Next

Previous Next

//
// MUST ADD:
//
// You must add "shlwapi.lib" to your project settings (link).
//
///

#include <windows.h>
#include <shlwapi.h>
#include <TCHAR.H>
#include <iostream>
using std::cout;
using std::endl;

#define MAX_TIMEOUT_MS 30 * 60 * 1000
#define TIME_INCREMENT 250

// Prototypes
BOOL GoInstallWMRedist(BOOL);
BOOL SystemNeedsReboot(void);

void main(void)
{
 // Call...
 GoInstallWMRedist(TRUE);

 cout << "Setup is complete...";

 if(SystemNeedsReboot())
 {
 // Write some code here to ensure your application will
 // restart the computer, and delay dll registrations and so on
 // until after the restart, where possible. For example,
 // set a global flag for use by the application.
 cout << "A reboot IS required..." << endl;
 }
 else
 cout << "A reboot IS NOT required..." << endl;

}

///
//
// Usage:
//
// Takes one parameter (BOOL).
//
// If you want to wait for completion, pass TRUE,
// else pass FALSE.
//
///
BOOL GoInstallWMRedist(BOOL fWaitForCompletion)
///
{
 STARTUPINFO StartUpInfo;
 PROCESS_INFORMATION ProcessInfo;

 StartUpInfo.cb = sizeof(StartUpInfo);
 StartUpInfo.lpReserved = NULL;
 StartUpInfo.dwFlags = 0;
 StartUpInfo.cbReserved2 = 0;
 StartUpInfo.lpReserved2 = NULL;
 StartUpInfo.lpDesktop = NULL;

 StartUpInfo.lpTitle = NULL;
 StartUpInfo.dwX = 0;
 StartUpInfo.dwY = 0;
 StartUpInfo.dwXSize = 0;
 StartUpInfo.dwYSize = 0;
 StartUpInfo.dwXCountChars = 0;
 StartUpInfo.dwYCountChars = 0;
 StartUpInfo.dwFillAttribute = 0;
 StartUpInfo.dwFlags = 0;
 StartUpInfo.wShowWindow = 0;
 StartUpInfo.hStdInput = NULL;
 StartUpInfo.hStdOutput = NULL;
 StartUpInfo.hStdError = NULL;

 // Run the installer with the Quiet for All dialogs and Reboot:Never
 // flags. The installation should be silent, and the setup routine
 // will be notified whether the computer must be restarted.

 if(!CreateProcess(_T("c:\\temp\\WMFDist.exe"),
 _T("c:\\temp\\WMFDist.exe /Q:A"),
 NULL, NULL, FALSE, 0, NULL, NULL,
 &StartUpInfo, &ProcessInfo))
 {
 DWORD myError = GetLastError();
 return(FALSE);
 }

 CloseHandle(ProcessInfo.hThread);

 if(fWaitForCompletion)
 {
 DWORD dwTimePassed = 0;
 while(TRUE)
 {
 if(WAIT_TIMEOUT != WaitForMultipleObjects(1,
 &ProcessInfo.hProcess,
 FALSE, TIME_INCREMENT))
 break;

 if(dwTimePassed > MAX_TIMEOUT_MS)
 {
 TerminateProcess(ProcessInfo.hProcess, E_FAIL);
 break;
 }
 dwTimePassed += TIME_INCREMENT;
 }
 }
 CloseHandle(ProcessInfo.hProcess);

 return(TRUE);
}

///
//
// Used to determine whether the system should be restarted.
//
///
BOOL SystemNeedsReboot(void)
///
{
 BOOL fNeedExists = FALSE;
 OSVERSIONINFO osvi;

 osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);
 GetVersionEx(&osvi);

 if(VER_PLATFORM_WIN32_NT != osvi.dwPlatformId)
 {
 TCHAR szIniPath[MAX_PATH];

 GetWindowsDirectory(szIniPath, sizeof(szIniPath)/sizeof(TCHAR));
 PathAddBackslash(szIniPath);
 _tcscat(szIniPath, _T("wininit.ini"));

 if(0xFFFFFFFF != GetFileAttributes(szIniPath))
 {
 HFILE hFile;

 if((hFile = _lopen(szIniPath,OF_READ|OF_SHARE_DENY_NONE))!= HFILE_ERROR)
 {
 fNeedExists = (0 != _llseek(hFile, 0L, FILE_END));
 _lclose(hFile);
 }
 }
 }
 else
 {
 HKEY hKey = NULL;

 if(ERROR_SUCCESS == RegOpenKeyEx(HKEY_LOCAL_MACHINE,
 _T("System\\CurrentControlSet\\Control\\Session Manager"),
 0, KEY_READ, &hKey))
 {
 if(ERROR_SUCCESS == RegQueryValueEx(hKey,
 _T("PendingFileRenameOperations"),
 NULL, NULL, NULL, NULL))
 {
 fNeedExists = TRUE;
 }

 RegCloseKey(hKey);
 }
 }

 return(fNeedExists);
}

See Also

Software Redistribution

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Programming Reference
The Microsoft® Windows Media® Format Software Development Kit (SDK) supports a range of objects,
interfaces, independent functions, structures, enumeration types, attributes, and so on. The following sections
document these in detail.

See Also

About the Windows Media Format SDK
Programming Guide
Windows Media Format 9 Series SDK

© 2000-2003 Microsoft Corporation. All rights reserved.

Section Description

Objects Describes the objects and the interfaces supported by each object.

Functions Describes all the independent functions, typically those used to create
and initialize the various objects.

Interfaces Describes all the interfaces and methods in this SDK.

Structures Describes the structures supported by this SDK.

Enumeration Types Describes the enumeration types supported by this SDK.

Attributes Describes the attributes that can be specified in the header of ASF files.

Media Types Describes the media type identifiers used by the Windows Media
Format SDK.

Output Settings Describes the global constants used to identify reader output settings.

Language Strings Describes the commonly used RFC 1766-compliant language
identifiers.

Device Conformance Template
Parameters

Describes the device conformance templates, which describe ranges of
values appropriate for various devices.

System Profiles Lists all supported system profiles.

Localized System Profiles Lists the localized system profile files included with the SDK and the
languages associated with each.

GUID Values Describes the GUID values used by the Windows Media Format SDK.

Error Codes Describes common error codes returned by methods and functions in
the SDK.

Previous Next

Objects
The Windows Media Format SDK uses several objects to read, write, edit, and index ASF files, and to create
and edit profiles. Each object supports a number of interfaces. Some interfaces are supported in multiple
objects. In these cases, any differences in implementation are discussed in the reference section for the
interface.

The objects in the Windows Media Format SDK are COM compliant. To make development easier, every
object has an associated creation function or method. You should create objects by using the creation function
or method rather than manually using the COM function CoCreateInstance.

Some interfaces have a number appended to their names, such as IWMProfile2 and IWMWriter3. In each
case, the numbered versions inherit all the methods of the earlier versions and add new functionality.

On each object page of this reference, the interfaces included in the main COM object are listed first, followed
by callback interfaces that must be implemented by the application.

The following table lists the objects supported by this SDK with a description of the functionality of each and
the function used to create it.

Previous Next

Object Description Creation function

Backup Restorer Backs up licenses, typically onto
removable media, and then restores
those licenses onto a different
computer.

WMCreateBackupRestorer

Indexer Creates an index for ASF files to
enable seeking in files with video
streams.

WMCreateIndexer

Metadata Editor Edits metadata in an ASF file header. WMCreateEditor

Profile Manager Provides interfaces to create, load, and
save profiles. A profile is required to
write an ASF file.

WMCreateProfileManager

Reader Reads ASF files. This object uses an
asynchronous calling model for its
operations.

WMCreateReader

Synchronous Reader Reads ASF files using synchronous
calls.

WMCreateSyncReader

Writer Writes ASF files. WMCreateWriter

Writer File Sink Controls ASF files written by the
writer object.

WMCreateWriterFileSink

The following table lists objects that are dependent upon other objects. These objects are created by methods of
existing objects.

Writer Network Sink Controls live network streaming of
ASF files written by the writer object.

WMCreateWriterNetworkSink

Writer Push Sink Controls delivery of streaming content
to publishing servers.

WMCreateWriterPushSink

Object Description Creation method

Bandwidth Sharing Manages bandwidth sharing
information in a profile. More
than one bandwidth sharing
object may exist for a profile.
There are different methods for
creating a bandwidth sharing
object depending upon whether
you want to create a new
bandwidth sharing object or
access an existing one.

IWMProfile3::CreateNewBandwidthSharing

OR

IWMProfile3::GetBandwidthSharing

Buffer Contains a media sample and any
associated data unit extensions.
Used for both writing and
reading samples.

IWMWriter::AllocateSample

OR

IWMReaderAllocatorEx::AllocateForOutputEx

OR

IWMReaderAllocatorEx::AllocateForStreamEx

OR

Created automatically by the reader object or
synchronous reader object for sample delivery.

Input Media
Properties

Manages the properties of an
input. One input properties
object can exist for each input.

IWMWriter::GetInputProps

Mutual Exclusion Manages mutual exclusion
information in a profile.
Common uses for mutual
exclusion are multiple bit rate
content and soundtracks in
several languages. There are
different methods for creating a
mutual exclusion object
depending upon whether you
want to create a new mutual
exclusion object or access an
existing one.

IWMProfile::CreateNewMutualExclusion

OR

IWMProfile::GetMutualExclusion

See Also

Programming Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

Output Media
Properties

Manages the properties of an
output. One output media
properties object can exist for
each output. These objects can be
created by the reader or by the
synchronous reader

IWMReader::GetOutputProps

OR

IWMSyncReader::GetOutputProps

Profile Contains the data in a profile
while it is being manipulated.
Profile objects are created any
time the profile needs to be
manipulated. There are different
methods for creating a profile
object depending upon whether
you want to create a new profile
or access an existing one.

IWMProfileManager::CreateEmptyProfile

OR

IWMProfileManager::LoadProfileByData

OR

IWMProfileManager::LoadProfileByID

OR

IWMProfileManager::LoadSystemProfile

Stream
Configuration

Manages the properties of a
stream within a profile. Stream
configuration objects are created
by stream objects any time you
need to access the information
about a stream. There are
different methods for creating a
stream configuration object
depending upon whether you
want to create a new stream or
access and existing one.

IWMProfile::CreateNewStream

OR

IWMProfile::GetStream

OR

IWMProfile::GetStreamByNumber

Stream Prioritization Maintains the stream priority list
for a profile. The streams will be
dropped in order of increasing
priority if available bandwidth is
restricted. There can only be one
stream prioritization object in a
profile.

IWMProfile3::CreateNewStreamPrioritization

Previous Next

Backup Restorer Object
The backup restorer provides interfaces to handle backing up licenses, typically onto removable media, and then
restoring those licenses onto a new computer.

The backup restorer object is created by the WMCreateBackupRestorer function, which sets a pointer to an
IWMLicenseBackup interface. The other interfaces of the backup restorer object can be obtained by calling the
QueryInterface method.

The following interfaces are supported by the backup restorer object.

The following callback interface must be implemented by the application in order to use the backup restorer
object.

See Also

Backing up and Restoring Licenses
Objects

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Interface Description

IWMBackupRestoreProps Sets and retrieves properties required by the
IWMLicenseBackup and IWMLicenseRestore interfaces.

IWMLicenseBackup Backs up licenses, typically so that they can be restored onto
another computer.

IWMLicenseRestore Restores licenses.

Interface Description

IWMStatusCallback Receives status messages from processes that execute in a
separate thread.

Previous Next

Previous Next

Bandwidth Sharing Object
A bandwidth sharing object is used to indicate that two or more streams, regardless of their individual bit rates,
will never use more than a specified amount of bandwidth between them. This is a purely informational object;
the bit rates set within it are not enforced programmatically by any object of this SDK.

Bandwidth sharing information is an optional part of a profile. Bandwidth sharing objects can be created for
existing bandwidth sharing information in a profile or can be created empty, ready to receive new data.
Bandwidth sharing objects cannot exist independently of a profile object. To save the contents of a bandwidth
sharing object, you must call IWMProfile3::AddBandwidthSharing.

To create a bandwidth sharing object, call one of the following methods.

Both methods in the preceding table set a pointer to an IWMBandwidthSharing interface. The
IWMStreamList interface is inherited by IWMBandwidthSharing, so there is no need to call
QueryInterface with this object.

The following interfaces are supported by every bandwidth sharing object.

See Also

Bandwidth Sharing
Profile Manager Object
Profile Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Method Description

IWMProfile3::CreateNewBandwidthSharing Creates a bandwidth sharing object without any data.

IWMProfile3::GetBandwidthSharing Creates a bandwidth sharing object populated with
data from a profile. Uses the bandwidth sharing index
to identify the desired bandwidth sharing information.

Interface Description

IWMBandwidthSharing Manages the properties of a group of streams that will
share bandwidth.

IWMStreamList Manages the list of streams that will share bandwidth.

Previous Next

Previous Next

Buffer Object
A buffer object is used to hold samples and deliver them between the objects of the Windows Media Format
SDK and your application. When you write a file, you pass your input samples to the writer using buffer
objects. When you read a file, the reader object or synchronous reader object provides samples to your
application in buffer objects.

For writing samples to a file, you can create a buffer object using the IWMWriter::AllocateSample method.
For reading samples, the reader object and synchronous reader object both create buffer objects internally. If
you choose to, you can allocate your own buffer objects for file reading by using
IWMReaderAllocatorEx::AllocateForOutputEx or IWMReaderAllocatorEx::AllocateForStreamEx.

The following interfaces are supported by every buffer object.

See Also

Objects

© 2000-2003 Microsoft Corporation. All rights reserved.

Indexer Object
The indexer object creates an index in an ASF file. An index is a standard part of an ASF file that equates video
samples with times, frame numbers, or (if applicable) Society of Motion Picture and Television Engineers
(SMPTE) standard time stamps. Without an index, neither the reader object nor the synchronous reader object
can seek to a point in the middle of a file.

Indexes created by this object are only necessary if the file contains one or more video streams. This is because
audio data is not temporally compressed, making it easy to find a given time in an audio stream.

Interface Description

INSSBuffer Controls and provides access to the buffer.

INSSBuffer2 Not implemented.

INSSBuffer3 Supports buffer properties, which are used for data
unit extensions.

INSSBuffer4 Enumerates buffer properties.

Previous Next

Previous Next

The indexer object is created by the function WMCreateIndexer, which sets a pointer to an IWMIndexer
interface. The other interfaces of the indexer object can be obtained by calling the QueryInterface method.

The following interfaces are supported by the indexer object.

The following callback interface must be implemented by the application in order to use the indexer object.

See Also

Objects
Working with Indexes

© 2000-2003 Microsoft Corporation. All rights reserved.

Input Media Properties Object
An input media properties object created by the writer object supports the following interfaces. These objects
are accessed by a call to QueryInterface on one of the interfaces of the writer object.

Interface Description

IWMIndexer Starts and stops the indexing process.

IWMIndexer2 Configures the indexer, enabling indexing by frame, by time, or
by SMPTE time code.

Interface Description

IWMStatusCallback Receives status messages from processes that execute in a
separate thread.

Previous Next

Previous Next

Interface Description

IWMInputMediaProps Retrieves the properties of an input stream.

IWMMediaProps Used as the base interface for the other media-property
interfaces (input, output, and video).

IWMVideoMediaProps Manages the properties of a video stream. This is an optional
interface, available only for video streams.

See Also

Objects
Writer Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Metadata Editor Object
The metadata editor object is used to edit information stored in the header section of ASF files. The most
common things manipulated by this object are metadata attributes. Additionally, the metadata editor deals with
markers and script commands. The only time you need to use the metadata editor is when you want to edit the
header of an existing file without playing it.

The metadata editor object is created by the function WMCreateEditor, which sets a pointer to an
IWMMetadataEditor interface. The other interfaces of the metadata editor object can be obtained by calling
the QueryInterface method.

The following interfaces are supported by the metadata editor object.

Previous Next

Previous Next

Interface Description

IWMDRMEditor Enables editing applications to examine the DRM properties of
an ASF file without having any rights to play the protected
content.

IWMHeaderInfo Manipulates attributes, markers, and script commands in the
header.

IWMHeaderInfo2 Retrieves codec information. Inherits all of the methods of
IWMHeaderInfo.

IWMHeaderInfo3 Provides advanced support for attributes, including large
attributes, multiple languages, and duplicate attribute names.
Inherits all of the methods of IWMHeaderInfo and
IWMHeaderInfo2.

IWMMetadataEditor Opens, closes, and saves changes to the header of an ASF file.

IWMMetadataEditor2 Opens an ASF file for header editing with multiple file access
and sharing options. Inherits all of the methods of
IWMMetadataEditor.

See Also

Markers
Metadata
Objects
Script Commands
Working with Metadata

© 2000-2003 Microsoft Corporation. All rights reserved.

Mutual Exclusion Object
A mutual exclusion object is used to specify a number of streams, of which only one can be delivered at a time.
This can be used in several ways, such as providing an audio stream in several languages as the soundtrack for
one video stream.

Mutual exclusion is an optional part of a profile. Mutual exclusion objects can be created for existing mutual
exclusion information in a profile or can be created empty, ready to receive new data. Mutual exclusion objects
cannot exist independently of a profile object. To save the contents of a mutual exclusion object, you must call
IWMProfile::AddMutualExclusion.

To create a mutual exclusion object, use one of the following methods.

Both methods in the preceding table set a pointer to an IWMMutualExclusion interface. The IWMStreamList
interface is inherited by IWMMutualExclusion and never needs to be accessed directly. The other interface of
the mutual exclusion object can be obtained by calling the QueryInterface method.

The following interfaces are supported by every mutual exclusion object.

Previous Next

Previous Next

Method Description

IWMProfile::CreateNewMutualExclusion Creates a mutual exclusion object without any data.

IWMProfile::GetMutualExclusion Creates a mutual exclusion object populated with data
from a profile. Uses the mutual exclusion index to
identify the desired mutual exclusion information.

Interface Description

IWMMutualExclusion Sets and retrieves the type of mutual exclusion to be used.

IWMMutualExclusion2 Organizes streams into records, which can be used to create

See Also

Mutual Exclusion
Objects
Profile Manager Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Output Media Properties Object
An output media properties object is used to retrieve and set an output property. Output media properties
objects are created for supported output formats of streams in a file that is loaded into a reader object. For
compressed streams, the output properties are determined by the possible outputs of the decompressing codec.

An output media properties object is created by IWMReader::GetOutputProps This method creates an output
media properties object that contains the properties of the default output format. Other formats may be
supported for an output. To obtain additional output formats, you can call
IWMReader::GetOutputFormatCount to get the number of supported output formats and then loop through
them using calls to IWMReader::GetOutputFormat. GetOutputFormat creates an output media properties
object populated with the data for the selected output format.

Output media properties objects can also be created with the synchronous reader. All of the method names are
identical to those in the reader and they are all exposed by the IWMSyncReader interface.

GetOutputProps and GetOutputFormat both set a pointer to an IWMOutputMediaProps interface. The
other interfaces of the output media properties object can be obtained by calling the QueryInterface method.

The following interfaces are supported by every output media properties object.

complex mutual exclusion scenarios. Inherits all of the methods
of IWMMutualExclusion.

IWMStreamList Manages the list of mutually exclusive streams.

Previous Next

Previous Next

Interface Description

IWMMediaProps Used as the base interface for the other media-property
interfaces (input, output, and video).

IWMOutputMediaProps Retrieves the properties of an output.

IWMVideoMediaProps Manages the properties of a video stream. This is an optional

See Also

Objects
Reader Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Profile Object
A profile object manages the settings of a profile. Profile objects can be created for existing profile data or can
be created empty, ready to receive new data. A profile object is also created by the reader object (and the
synchronous reader object) when a file is loaded for reading. In this case the object is populated with the profile
information stored in the header of the file.

To save the contents of a profile object, you must call IWMProfileManager::SaveProfile.

A profile contains multiple objects that control various aspects of the profile (such as streams). All of these
objects are subordinate to the profile object. You do not create these objects with creation functions as you
would with the major objects of this SDK. Instead, the interfaces of the profile object contain methods that
create the subordinate objects.

To create a profile object, call one of the following methods.

interface, available only for video streams.

Previous Next

Previous Next

Method Description

IWMProfileManager::CreateEmptyProfile Creates a profile object without any profile data.

IWMProfileManager::LoadProfileByData Creates a profile object populated with data from a
profile saved as a string. This is the only way to
create a profile object with data from a custom
profile.

IWMProfileManager::LoadProfileByID Creates a profile object populated with data from a
system profile. Uses the GUID to identify the desired
system profile.

IWMProfileManager::LoadSystemProfile Creates a profile object populated with data from a
system profile. Uses the profile index to identify the
desired system profile.

All of the methods in the preceding table set a pointer to an IWMProfile interface. The other interfaces of the
profile object can be obtained by calling the QueryInterface method.

The following interfaces are supported by every profile object.

See Also

Objects
Profile Manager Object
Profiles

© 2000-2003 Microsoft Corporation. All rights reserved.

Profile Manager Object
A profile is a set of media parameters used to create an ASF file. The profile manager object creates profile
objects for editing. Profile objects can be created without any data in them or built from existing profile data.
The profile manager object also provides methods for enumerating supported codecs and querying those codecs
for information.

The profile manager object is created by the WMCreateProfileManager function, which sets a pointer to an
IWMProfileManager interface. The other interfaces of the profile manager object can be obtained by calling
the QueryInterface method.

Interface Description

IWMLanguageList Manages a list of languages supported by an ASF file.

IWMPacketSize Controls the maximum size of packets in a file.

IWMPacketSize2 Controls the minimum size of packets in a file. Inherits
all of the methods of IWMPacketSize.

IWMProfile Controls the basic settings and objects included in a
profile.

IWMProfile2 Retrieves the globally unique identifier (GUID)
associated with the profile. Inherits all of the methods
of IWMProfile.

IWMProfile3 Controls bandwidth sharing and stream prioritization
information in a profile. Inherits all of the methods of
IWMProfile and IWMProfile2.

Previous Next

Previous Next

The following interfaces are supported by the profile manager object.

Remarks

When a profile manager object is created, it parses all of the system profiles, which can take several seconds.
Creating and releasing a profile manager every time you need to use it will adversely affect performance. You
should create a profile manager once in your application and release it only when you no longer need to use it.

See Also

Objects
Profile Object
Profiles

© 2000-2003 Microsoft Corporation. All rights reserved.

Reader Object
The reader object reads data samples from media files. The reader object currently supports files using the
advanced systems format (ASF) file structure as well as MP3 files. Data delivered by the reader object is

Interface Description

IWMCodecInfo Retrieves information about supported codecs and their
formats.

IWMCodecInfo2 Retrieves the names of the supported codecs and the
descriptions of their formats. Inherits all of the methods of
IWMCodecInfo.

IWMCodecInfo3 Retrieves codec properties and queries codecs for supported
features. Inherits all of the methods of IWMCodecInfo and
IWMCodecInfo2.

IWMProfileManager Creates new profiles, loads existing profiles, and saves custom
profiles.

IWMProfileManager2 Controls the version of system profiles enumerated by the
profile manager. Inherits all of the methods of
IWMProfileManager.

IWMProfileManagerLanguage Controls the language of the system profiles parsed by the
profile manager.

Previous Next

Previous Next

uncompressed and ready for rendering by default, though samples can be delivered without being decompressed
if desired. Samples are delivered asynchronously from the reader object; you must set up a callback function to
receive them. For synchronous playback of ASF files, use the synchronous reader object. Neither the reader nor
synchronous reader renders any data. You must provide your own rendering routines to display the media
retrieved from a file.

When a file contains encoded media that can be decoded with a codec supported by the reader object, you can
control the format of the uncompressed output. To change the format of decompressed output for a stream, you
must retrieve the default output media properties object for that stream, make changes to it, and reassign it to
the stream in the reader. Output media properties objects are subordinate to the reader object and should only be
created by using the IWMReader::GetOutputProps method.

The reader object is created by the function WMCreateReader, which sets a pointer to an IWMReader
interface. The other interfaces of the reader object can be obtained by calling the QueryInterface method.

The following interfaces are supported by the reader object.

Interface Description

IReferenceClock Provides access to the system clock used by the reader.

IWMDRMReader Manages license acquisition, DRM properties, and client
individualization.

IWMHeaderInfo Sets and retrieves header information, including metadata,
markers, and script data.

IWMHeaderInfo2 Retrieves information about the codecs that were used to
encode the content in the file. Inherits all of the methods of
IWMHeaderInfo.

IWMHeaderInfo3 Supports large attribute sizes, duplicate attribute names, and
multiple language support. Inherits all of the methods of
IWMHeaderInfo and IWMHeaderInfo2.

IWMPacketSize Retrieves the size of the largest packet in the file loaded in the
reader.

IWMPacketSize2 Retrieves the size of the smallest packet in the file loaded in the
reader.

IWMProfile Provides access to the profile information of the file loaded in
the reader.

IWMProfile2 Retrieves the globally unique identifier (GUID), if any,
associated with the profile. Inherits all of the methods of
IWMProfile.

IWMProfile3 Supports bandwidth sharing and stream prioritization
information in the profile. Inherits all of the methods of
IWMProfile and IWMProfile2.

IWMReader Provides basic file reading capabilities, including operations
such as open, close, start, pause, resume, stop, and getting and
setting the output properties.

The following callback interfaces can be implemented in the application to track the progress of a reader object.

See Also

Objects
Reading ASF Files

IWMReaderAccelerator Communicates with DirectX video acceleration.

IWMReaderAdvanced Provides advanced features of the reader, such as a user-
provided clock, buffer allocation, return statistics, and stream
selection notifications.

IWMReaderAdvanced2 Provides an additional range of advanced methods for an
existing reader object. Inherits all of the methods of
IWMReaderAdvanced.

IWMReaderAdvanced3 Provides advanced seeking and streaming control. Inherits all of
the methods of IWMReaderAdvanced and
IWMReaderAdvanced2.

IWMReaderAdvanced4 Provides advanced reader options including multiple language
support. Inherits all of the methods of IWMReaderAdvanced,
IWMReaderAdvanced2, and IWMReaderAdvanced3.

IWMReaderNetworkConfig Controls network configuration settings.

IWMReaderNetworkConfig2 Provides access to advanced network configuration settings.
Inherits all of the methods of IWMReaderNetworkConfig.

IWMReaderStreamClock Sets and cancels timers on stream clocks, and retrieves the
current value of a specified stream clock.

IWMReaderTimecode Provides information about SMPTE time code ranges in the file
loaded in the reader.

IWMReaderTypeNegotiation Tests whether changes to the output properties of a stream are
working properly.

Interface Description

IWMCredentialCallback Acquires the credentials of users and checks that they have
permission to access a remote site.

IWMReaderAllocatorEx Provides expanded alternatives to the AllocateForOutput and
AllocateForStream methods of the
IWMReaderCallbackAdvanced interface.

IWMReaderCallback Provides callback methods for the Start and Open methods of
IWMReader.

IWMReaderCallbackAdvanced Provides callback methods for the IWMReaderAdvanced
interface methods.

IWMStatusCallback Required when status information must be communicated to the
host application.

Synchronous Reader Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Stream Configuration Object
A stream configuration object is used to specify the properties of a media stream in an ASF file. Stream
configuration objects can be created for existing streams in a profile or can be created empty, ready to receive
new data. Stream configuration objects cannot exist independently of a profile object. To save the contents of a
stream configuration object, you must call either IWMProfile::AddStream to add a new stream or
IWMProfile::ReconfigStream to save changes made to an existing stream.

To create a stream configuration object, use one of the following methods.

All of the methods in the preceding table set a pointer to an IWMStreamConfig interface. The other interfaces
of the stream configuration object can be obtained by calling the QueryInterface method.

The following interfaces are supported by the stream configuration object.

Previous Next

Previous Next

Method Description

IWMProfile::CreateNewStream Creates a stream configuration object without any data.

IWMProfile::GetStream Creates a stream configuration object populated with
data from a profile. Uses the stream index to identify
the desired stream.

IWMProfile::GetStreamByNumber Creates a stream configuration object populated with
data from a profile. Uses the stream number to identify
the desired stream.

Interface Description

IWMMediaProps Sets and retrieves the WM_MEDIA_TYPE structure
for the stream.

IWMPropertyVault Sets and retrieves properties that are not required for
all streams, like variable bit rate (VBR) settings.

IWMStreamConfig Sets and retrieves all of the basic information about a
stream.

IWMStreamConfig2 Configures the types of data unit extensions associated

See Also

Configuring Streams
Objects
Profile Manager Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Stream Prioritization Object
A stream prioritization object is used to specify an order of importance for the streams in a profile. When full
playback is not possible due to bit-rate limitations, the lowest priority streams will be the first to be dropped.

Stream prioritization objects can be created for existing stream prioritization data in a profile or can be created
empty, ready to receive new data. Stream prioritization objects cannot exist independently of a profile object.
To save the contents of a stream prioritization object, you must call IWMProfile3::SetStreamPrioritization.
To create a stream prioritization object, use one of the following methods.

Both methods in the preceding table set a pointer to an IWMStreamPrioritization interface. This is the only
interface supported by the stream prioritization object.

with the stream. Inherits all of the methods of
IWMStreamConfig.

IWMStreamConfig3 Sets and retrieves the language for the stream. Inherits
all of the methods of IWMStreamConfig and
IWMStreamConfig2.

IWMVideoMediaProps Manages the properties of a video stream. This is an
optional interface, and is available only for video
streams.

Previous Next

Previous Next

Method Description

IWMProfile3::CreateNewStreamPrioritization Creates a stream prioritization object without any data.

IWMProfile3::GetStreamPrioritization Creates a stream prioritization object populated with
data from the profile.

Interface Description

Remarks

Only one stream prioritization can exist for a given profile. If you create a new stream prioritization for a profile
that already contains a stream prioritization, the old one will be deleted.

See Also

Objects
Profile Object
Using Stream Prioritization

© 2000-2003 Microsoft Corporation. All rights reserved.

Synchronous Reader Object
The synchronous reader object is used to read digital media files by using synchronous calls.

The synchronous reader object is created by the function WMCreateSyncReader, which sets a pointer to an
IWMSyncReader interface. The other interfaces supported by the synchronous reader interface can be obtained
by calling the QueryInterface method.

The following interfaces are supported by the synchronous reader object.

IWMStreamPrioritization Manages the list of streams within the stream
prioritization object.

Previous Next

Previous Next

Interface Description

IWMHeaderInfo Sets and retrieves header information, such as metadata,
markers, and so on.

IWMHeaderInfo2 Enumerates the available codec information. Inherits all of the
methods of IWMHeaderInfo.

IWMHeaderInfo3 Supports large attribute sizes, duplicate attribute names, and
multiple language support. Inherits all of the methods of
IWMHeaderInfo and IWMHeaderInfo2.

IWMProfile Provides access to the profile information of the Windows
Media file loaded into the reader.

IWMProfile2 Retrieves the globally unique identifier (GUID), if any,

See Also

Objects
Reader Object
Reading Files with the Synchronous Reader

© 2000-2003 Microsoft Corporation. All rights reserved.

Writer Object
The writer object is used to write digital media files using the advanced systems format (ASF) file structure.
The process of writing a digital media file involves many steps internal to the writer, which coordinates
compression, packetization, and multiplexing.

The writer object includes interfaces for output to files or a network, supports one callback interface, and can
create one or more input media properties objects.

The writer object is created by the function WMCreateWriter, which sets a pointer to an IWMWriter
interface. The other interfaces of the writer object can be obtained by calling the QueryInterface method.

The following interfaces are supported by the writer object.

associated with the profile. Inherits all of the methods of
IWMProfile.

IWMProfile3 Supports bandwidth sharing and stream prioritization
information in the profile. Inherits all of the methods of
IWMProfile and IWMProfile2.

IWMSyncReader Provides synchronous reading capabilities for digital media
files.

IWMSyncReader2 Provides support for seeking to SMPTE time codes and for
allocating samples manually. Inherits all of the methods of
IWMSyncReader.

Previous Next

Previous Next

Interface Description

IWMDRMWriter Provides methods to generate DRM keys.

IWMHeaderInfo Manages the specification and retrieval of header information,
such as metadata, markers, and so on.

The following callback interface must be implemented by the application to track the progress of postviewing.

See Also

Objects
Writing ASF Files

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMHeaderInfo2 Manages enumerating through the available codec information.
Inherits all of the methods of IWMHeaderInfo.

IWMHeaderInfo3 Manages enumerating through the available codec information.
Inherits all of the methods of IWMHeaderInfo and
IWMHeaderInfo2.

IWMWatermarkInfo Provides access to information about watermarking systems
present on the system.

IWMWriter Starts and stops the writing of ASF files; it includes methods
for allocating buffers, setting and retrieving input properties,
setting profiles and output file names, and unlocking the writer.

IWMWriterAdvanced Adds, gets, and removes specified sink objects; retrieves
statistics, number of sinks, and the clock time the writer is
working to; and performs other advanced functions.

IWMWriterAdvanced2 Provides some advanced functionality, particularly for handling
deinterlaced video. Inherits all of the methods of
IWMWriterAdvanced.

IWMWriterAdvanced3 Provides additional writer functionality, including the ability to
get detailed writer statistics. Inherits all of the methods of
IWMWriterAdvanced and IWMWriterAdvanced2.

IWMWriterPostView Manages some advanced writing functionality related to
postviewing samples. Postviewing is viewing the output,
usually from an encoder, to check that the encoding/decoding
process is working correctly.

IWMWriterPreprocess Manages preprocessing passes made by the writer.
Preprocessing passes are used to improve the quality of
encoded output.

Interface Description

IWMWriterPostViewCallback Manages how uncompressed samples are received from the
writer object to preview what the codec is doing.

Previous Next

Writer File Sink Object
The writer file sink object is used when writing Windows Media output to a file.

The writer file sink object is created by the function WMCreateWriterFileSink, which sets a pointer to an
IWMWriterFileSink interface. The other interfaces of the writer file sink object can be obtained by calling the
QueryInterface method.

The following interfaces are supported by the writer file sink object.

The following callback interface should be implemented by the application to track the progress of a writer file
sink object.

See Also

Objects
Working with Writer Sinks

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Interface Description

IWMRegisterCallback Enables the application to get status messages from the object.

IWMWriterFileSink Opens a file to which the writer object can write data.

IWMWriterFileSink2 Provides extended management of a file sink object. Inherits all
of the methods of IWMWriterFileSink.

IWMWriterFileSink3 Provides additional options for writing files. Inherits all of the
methods of IWMWriterFileSink and IWMWriterFileSink2.

IWMWriterSink Allocates memory, determines whether the sink is operating in
real time, and handles several callback functions.

Interface Description

IWMStatusCallback Required when status information must be communicated to the
host application.

Previous Next

Writer Network Sink Object
The writer network sink object is used to write digital media to a network.

The writer network sink object is created by the function WMCreateWriterNetworkSink, which sets a pointer
to an IWMWriterNetworkSink interface. The other interfaces of the writer network sink object can be
obtained by calling the QueryInterface method.

The following callback interface can be implemented by the application to track the progress of a writer
network sink object.

See Also

Broadcasting ASF Data
Objects
Working with Writer Sinks

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Interface Description

IWMClientConnections Collects information on connected clients.

IWMClientConnections2 Retrieves advanced client information.

IWMRegisterCallback Enables the application to get status messages from the object.

IWMWriterNetworkSink Opens and closes ports, sets and retrieves the maximum number
of clients that can connect to the sink object, sets the network
protocol to be used by the writer object, and performs other
advanced functions.

IWMWriterSink Allocates memory, determines whether the sink is operating in
real time, and handles several callback functions.

Interface Description

IWMStatusCallback Required when status information must be communicated to the
host application.

Previous Next

Writer Push Sink Object
The writer push sink object distributes digital media to publishing points. For example, a live concert can be
encoded by a single server and then delivered, or pushed, to several other servers that will actually stream the
content to users.

A writer push sink object is created by the function WMCreateWriterPushSink, which sets a pointer to an
IWMWriterPushSink interface. The other interfaces supported by the object, listed in the following table, can
be obtained by calling the QueryInterface method.

The following callback interface can be implemented by the application to track the progress of a writer push
sink object.

See Also

Objects
Sending ASF Data to a Publishing Point
Working with Writer Sinks

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Interface Description

IWMRegisterCallback Enables the application to get status messages from
the object.

IWMWriterPushSink Manages a push distribution session.

IWMWriterSink Allocates memory, determines whether the sink is
operating in real time, and exposes several callback
functions.

Interface Description

IWMStatusCallback Required when status information must be communicated to the
host application.

Previous Next

Previous Next

Functions
The Windows Media Format SDK includes functions for creating objects and helper functions to simplify some
procedures.

This SDK supports the following functions for initial creation of objects. If an object is not listed below, you
must create it using an interface from another object. For more information, see Objects.

The following functions provide convenient shortcuts for analyzing files.

See Also

Objects
Programming Reference

Function Description

WMCreateBackupRestorer Creates a backup restorer object.

WMCreateCertificate Wraps the user's certificates into an object.

WMCreateEditor Creates a metadata editor object.

WMCreateIndexer Creates an indexer object.

WMCreateProfileManager Creates a profile manager object.

WMCreateReader Creates a reader object.

WMCreateSyncReader Creates a synchronous reader object.

WMCreateWriter Creates a writer object.

WMCreateWriterFileSink Creates a writer file sink object.

WMCreateWriterNetworkSink Creates a writer network sink object.

Function Description

WMCheckURLExtension Attempts to determine whether a file is readable by
the objects of the Windows Media Format SDK,
based on the file extension.

WMCheckURLScheme Determines whether a network protocol is supported
by the objects of the Windows Media Format SDK.

WMIsAvailableOffline Determines whether a file is available for playback
offline.

WMIsContentProtected Checks a file for DRM-protected content.

WMValidateData Attempts to determine whether a file is readable by
the objects of the Windows Media Format SDK by
analyzing data at the beginning of the file.

© 2000-2003 Microsoft Corporation. All rights reserved.

WMCheckURLExtension
The WMCheckURLExtension function examines the file extension in the URL or file name that is passed in
as an argument. The extension is compared to a list of typically supported types in an attempt to determine
whether the file can be opened by the objects of this SDK.

If you are writing an application that can handle many different file types, you can use this function to try to
quickly determine whether the file can be read using objects of the Windows Media Format SDK.

Syntax

HRESULT WMCheckURLExtension(
 LPCWSTR pwszURL
);

Parameters

pwszURL

 [in] A wide-character null-terminated string containing a file name or URL.

Return Values

The function returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

This function cannot report with absolute certainty whether a particular URL can be handled, as this cannot be
determined until the URL is opened.

See Also

Previous Next

Previous Next

Return code Description

S_OK The function succeeded.

NS_E_INVALID_NAME The URL passed is not of a type typically supported
by the objects of the Windows Media Format SDK.

E_INVALIDARG pwszURL is NULL.

Functions

© 2000-2003 Microsoft Corporation. All rights reserved.

WMCheckURLScheme
The WMCheckURLScheme function examines a network protocol and compares it to an internal list of
commonly used schemes.

If you are writing an application that can handle many different network protocols, you can use this function to
ascertain quickly whether a network address should be handled using the methods of the Windows Media
Format SDK.

Syntax

HRESULT WMCheckURLScheme(
 LPCWSTR pwszURLScheme
);

Parameters

pwszURLScheme

 [in] A wide-character null-terminated string containing a network protocol designation, such as "http".

Return Values

The function returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

This function cannot report with absolute certainty whether a particular URL can be handled, as this cannot be
determined until the URL is opened.

See Also

Previous Next

Previous Next

Return code Description

S_OK The function succeeded.

NS_E_INVALID_NAME The URL passed does not conform to any of the
commonly used schemes.

Functions

© 2000-2003 Microsoft Corporation. All rights reserved.

WMCreateBackupRestorer
The WMCreateBackupRestorer function creates a backup restorer object.

Syntax

HRESULT WMCreateBackupRestorer(
 IUnknown* pCallback,
 IWMLicenseBackup** ppBackup
);

Parameters

pCallback

[in] Pointer to an IWMStatusCallback interface containing the OnStatus callback method to be used by the
new backup restorer object.

ppBackup

[out] Pointer to a pointer to the IWMLicenseBackup interface of the newly created backup restorer object.

Return Values

If the function succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

Use IWMLicenseBackup::QueryInterface to obtain a pointer to the IWMBackupRestoreProps interface.

See Also

Backup Restorer Object

Previous Next

Previous Next

Return code Description

E_OUTOFMEMORY The function is unable to allocate memory for the new object.

Functions

© 2000-2003 Microsoft Corporation. All rights reserved.

WMCreateCertificate
The WMCreateCertificate function wraps the user's certificates into an object.

Syntax

HRESULT WMCreateCertificate(
 IUnknown** pUnkCert
);

Parameters

pUnkCert

[out] Pointer to a pointer to the IUnknown interface of the newly created certificate object.

Return Values

If the function succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

This creates an object that wraps the certificates the user has been given. Usually there is no need to call this
method; it is only used if the certificates must be supplied to another object that is using the SDK, such as the
Microsoft® DirectShow® application programming interface (API).

See Also

Functions

Previous Next

Previous Next

Return code Description

E_OUTOFMEMORY The function is unable to allocate memory for the new object.

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

WMCreateEditor
The WMCreateEditor function creates a metadata editor object.

Syntax

HRESULT WMCreateEditor(
 IWMMetadataEditor** ppEditor
);

Parameters

ppEditor

[out] Pointer to a pointer to the IWMMetadataEditor interface of the newly created metadata editor object.

Return Values

If the function succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

Functions
Metadata Editor Object

© 2000-2003 Microsoft Corporation. All rights reserved.

WMCreateIndexer

Previous Next

Return code Description

E_OUTOFMEMORY The function is unable to allocate memory for the new object.

Previous Next

Previous Next

The WMCreateIndexer function creates an indexer object.

Syntax

HRESULT WMCreateIndexer(
 IWMIndexer** ppIndexer
);

Parameters

ppIndexer

[out] Pointer to a pointer to the IWMIndexer interface of the newly created indexer object.

Return Values

If the function succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

Functions
Indexer Object
IWMIndexer Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

WMCreateProfileManager
The WMCreateProfileManager function creates a profile manager object.

Syntax

HRESULT WMCreateProfileManager(
 IWMProfileManager** ppProfileManager
);

Parameters

Return code Description

E_OUTOFMEMORY The function is unable to allocate memory for the new object.

Previous Next

Previous Next

ppProfileManager

[out] Pointer to a pointer to the IWMProfileManager interface of the newly created profile manager object.

Return Values

If the function succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

When a profile manager object is created, it parses all of the system profiles. Creating and releasing a profile
manager every time you need to use it will adversely affect performance. You should create a profile manager
once in your application and release it only when you no longer need to use it.

See Also

Functions
IWMMediaProps Interface
IWMProfileManager Interface
Profile Manager Object

© 2000-2003 Microsoft Corporation. All rights reserved.

WMCreateReader
The WMCreateReader function creates a reader object.

Syntax

HRESULT WMCreateReader(
 IUnknown* pUnkReserved,
 DWORD dwRights,
 IWMReader** ppReader
);

Parameters

pUnkReserved

Return code Description

E_OUTOFMEMORY The function is unable to allocate memory for the new object.

Previous Next

Previous Next

[in] Pointer to an IUnknown interface. This value must be set to NULL.

dwRights

[in] DWORD indicating the desired operation. When playing back non-DRM content, or for an application
that does not have DRM rights, this value can be set to zero. Otherwise, this value must be one of the values
from the WMT_RIGHTS enumeration type, indicating the operation that is performed on this file. If multiple
operations are being performed, dwRights must consist of multiple values from WMT_RIGHTS combined
with the bitwise OR operator.

ppReader

[out] Pointer to a pointer to the IWMReader interface of the newly created reader object.

Return Values

If the function succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

After this object has been created, you can modify the rights that will be requested for the next file opened by
calling IWMDRMReader::SetDRMProperty with the DRM_Rights property. Note that when using this
property, the rights are specified as strings, not as DWORD values.

See Also

DRM Attribute List
DRM Properties
Enabling DRM Support
Functions
Reader Object

© 2000-2003 Microsoft Corporation. All rights reserved.

WMCreateSyncReader
The WMCreateSyncReader function creates a synchronous reader object.

Return code Description

E_OUTOFMEMORY The function is unable to allocate memory for the new object.

Previous Next

Previous Next

Syntax

HRESULT WMCreateSyncReader(
 IUnknown* pUnkCert,
 DWORD dwRights,
 IWMSyncReader** ppSyncReader
);

Parameters

pUnkCert

[in] Pointer to an IUnknown interface. This value must be set to NULL.

dwRights

[in] DWORD specifying the desired operation. When playing back non-DRM content, or for an application
that does not have DRM rights, this value can be set to zero. Otherwise, this value must be one of the values
from the WMT_RIGHTS enumeration type, indicating the operation that is performed on this file. If multiple
operations are being performed, dwRights must consist of multiple values from WMT_RIGHTS combined by
using the bitwise OR operator.

ppSyncReader

[out] Pointer to a pointer to the IWMSyncReader interface of the newly created synchronous reader object.

Return Values

If the function succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

Functions
Synchronous Reader Object

© 2000-2003 Microsoft Corporation. All rights reserved.

WMCreateWriter

Return code Description

E_OUTOFMEMORY The function is unable to allocate memory for the new object.

Previous Next

Previous Next

The WMCreateWriter function creates a writer object.

Syntax

HRESULT WMCreateWriter(
 IUnknown* pUnkReserved,
 IWMWriter** ppWriter
);

Parameters

pUnkReserved

[in] Pointer to an IUnknown interface. This value is not used and should be set to NULL.

ppWriter

[out] Pointer to a pointer to the IWMWriter interface of the newly created writer object.

Return Values

If the function succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

Functions
Writer Object

© 2000-2003 Microsoft Corporation. All rights reserved.

WMCreateWriterFileSink
The WMCreateWriterFileSink function creates a writer file sink object.

Syntax

HRESULT WMCreateWriterFileSink(
 IWMWriterFileSink** ppSink

Return code Description

E_OUTOFMEMORY The function is unable to allocate memory for the new object.

Previous Next

Previous Next

);

Parameters

ppSink

[out] Pointer to a pointer to the IWMWriterFileSink interface of the newly created writer file sink object.

Return Values

If the function succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

Functions
Writer File Sink Object

© 2000-2003 Microsoft Corporation. All rights reserved.

WMCreateWriterNetworkSink
The WMCreateWriterNetworkSink function creates a writer network sink object.

Syntax

HRESULT WMCreateWriterNetworkSink(
 IWMWriterNetworkSink** ppSink
);

Parameters

ppSink

[out] Pointer to a pointer to the IWMWriterNetworkSink interface of the newly created writer network sink
object.

Return Values

Return code Description

E_OUTOFMEMORY The function is unable to allocate memory for the new object.

Previous Next

Previous Next

If the function succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

Functions
Writer Network Sink Object

© 2000-2003 Microsoft Corporation. All rights reserved.

WMCreateWriterPushSink
The WMCreateWriterPushSink function creates a writer push sink object. Push sinks are used to deliver
streaming content to other media servers for distribution.

Syntax

HRESULT WMCreateWriterPushSink(
 IWMWriterPushSink** ppSink
);

Parameters

ppSink

[out] Pointer to a pointer to the IWMWriterPushSink interface of the newly created writer push sink object.

Return Values

If the function succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

Functions

Return code Description

E_OUTOFMEMORY The function is unable to allocate memory for the new object.

Previous Next

Previous Next

Return code Description

E_OUTOFMEMORY The function is unable to allocate memory for the new object.

Writer Push Sink Object

© 2000-2003 Microsoft Corporation. All rights reserved.

WMIsAvailableOffline
The WMIsAvailableOffline function validates that an ASF file can be played from a cached copy. If a user
plays a file from a network location, part or all of the file may be stored in a cache. If that cached copy exists on
the local machine, the user may be able to play the file without being connected to the network.

Syntax

HRESULT WMIsAvailableOffline(
 LPCWSTR pwszURL,
 LPCWSTR pwszLanguage,
 BOOL* pfIsAvailableOffline
);

Parameters

pwszURL

[in] Wide-character null-terminated string containing the URL of the file to be checked.

pwszLanguage

[in] Wide-character null-terminated string containing the RFC 1766-compliant language ID specifying which
language is desired for playback. This value is only important in the case of files that contain language-based
mutual exclusion.

Set to NULL if any language is acceptable.

pfIsAvailableOffline

[out] Pointer to a Boolean value that is set to True if the file is available offline.

Return Values

The function returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Previous Next

Previous Next

Return code Description

See Also

Functions

© 2000-2003 Microsoft Corporation. All rights reserved.

WMIsContentProtected
The WMIsContentProtected function checks a file for DRM-protected content. This function is a shortcut so
that your application can quickly identify protected files.

Syntax

HRESULT WMIsContentProtected(
 const WCHAR* pwszFileName,
 BOOL* pfIsProtected
);

Parameters

pwszFileName

[in] Pointer to a wide-character null-terminated string containing the name of the file to check for DRM-
protected content.

pfIsProtected

[out] Pointer to a Boolean value that is True if the file contains DRM-protected content.

Return Values

The function returns an HRESULT. Possible values include, but are not limited to, those in the following table.

S_OK The function succeeded.

E_INVALIDARG One or both of the input parameters are NULL.

Previous Next

Previous Next

Return code Description

S_OK The function succeeded.

See Also

Functions

© 2000-2003 Microsoft Corporation. All rights reserved.

WMValidateData
The WMValidateData function verifies that a data buffer containing data from the beginning of a file is
consistent with the header section of a file type that is supported by the objects of the Windows Media Format
SDK.

If you are writing an application that can handle many different file types, you can use this function to try to
quickly determine whether the file can be read using the Windows Media Format SDK.

Syntax

HRESULT WMValidateData(
 BYTE* pbData,
 DWORD* pdwDataSize
);

Parameters

pbData

[in] Pointer to a BYTE array containing the data buffer to validate. This data should be part of a file, starting at
the beginning of the file, and continuing for the number of bytes specified in pdwDataSize.

You can set this parameter to NULL to retrieve the minimum number of bytes to pass.

pdwDataSize

[in, out] Pointer to a DWORD containing the data size. If pbData is set to NULL, this value will be set to the
minimum buffer size on return. The minimum buffer size is 512 bytes.

Return Values

E_INVALIDARG One or both of the parameters are NULL.

S_FALSE The content is unprotected.

Previous Next

Previous Next

The function returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

This function is typically used after a call to WMCheckURLExtension. This is for efficiency, because
WMValidateData requires that you read some of the data from the file, whereas WMCheckURLExtension
only evaluates the file name extension.

It is possible for this function to identify a file as playable when it is not playable. However, if the function
identifies a file as not playable, the file is certainly not playable.

See Also

Functions

© 2000-2003 Microsoft Corporation. All rights reserved.

Interfaces
The following two tables describe the interfaces supported by this SDK and show their relationship to objects
and other interfaces.

Return code Description

S_OK The function succeeded.

NS_E_INVALID_DATA The data buffer cannot be handled by the objects of the
Windows Media Format SDK.

E_INVALIDARG pdwDataSize is NULL.

ASF_E_BUFFERTOOSMALL The pdwDataSize parameter points to a value that is smaller
than the minimum data buffer required to validate the data.

Previous Next

Previous Next

Interface Description

INSNetSourceCreator Creates an administrative network source plug-in, which can be
used to cache passwords and locate proxy servers.

INSSBuffer Controls a buffer stored in a buffer object. This interface is used
for passing samples to and from methods in this SDK.

INSSBuffer2 Inherits from INSSBuffer. The new methods of this interface

are undocumented because they are not implemented in this
release.

INSSBuffer3 Sets and retrieves buffer properties. Buffer properties are used
to convey information with a buffer when passed to or from
methods of this SDK.

INSSBuffer4 Enumerates buffer properties.

IReferenceClock Provides access to a standard reference clock.

IWMAddressAccess Controls IP access lists on the writer network sink object.

IWMAddressAccess2 Adds IPv6 support to the IWMAddressAccess interface.

IWMBackupRestoreProps Sets, retrieves, and removes the properties required by the
IWMLicenseBackup and IWMLicenseRestore interfaces.

IWMBandwidthSharing Configures bandwidth sharing objects. Bandwidth sharing
objects are created by profile objects to specify streams that,
regardless of their individual bit rates, will never use more than
a certain amount of bandwidth between them.

IWMClientConnections Retrieves information about clients connected to a writer
network sink object.

IWMClientConnections2 Retrieves advanced information about clients connected to a
writer network sink object.

IWMCodecAMVideoAccelerator Exposed by the Windows Media Decoder DMO and called by a
media player's source filter to set up the various connections
required to enable DirectX VA for decoding of Windows Media
Video content.

IWMCodecInfo Retrieves the available formats for the supported audio codecs
loaded on the system. These formats are used when creating
audio streams in profiles.

IWMCodecInfo2 Provides access to the names of codecs and descriptions of the
formats supported by each.

IWMCodecInfo3 Provides access to codec properties and audio format
properties. Also enables you to query codecs for feature
support.

IWMCredentialCallback Acquires the credentials of users and checks that they have
permission to access a remote site.

IWMDRMEditor Enables applications to examine DRM header properties
without having a license for the protected content.

IWMDRMReader Acquires licenses, configures DRM properties, and
individualizes clients.

IWMDRMWriter Provides license creation capabilities from the writer object.

IWMHeaderInfo Manages header information, such as metadata, markers, and so
on.

IWMHeaderInfo2 Provides access to information about the codecs used to create
the file.

IWMHeaderInfo3 Provides attribute language support and other advanced
metadata features.

IWMImageInfo Retrieves ID3v2 "APIC" frames from a file. Use of this
interface should be avoided in favor of the WM/Picture
attribute.

IWMIndexer Provides methods to manually index files.

IWMIndexer2 Provides indexing configuration options.

IWMInputMediaProps Manages the properties of an input media stream.

IWMIStreamProps Reads the properties of an IStream object.

IWMLanguageList Manages the language list for an ASF file.

IWMLicenseBackup Backs up licenses, typically so that they can be restored onto
another computer.

IWMLicenseRestore Restores licenses.

IWMMediaProps Provides access to the media type structure for a stream.

IWMMetadataEditor Provides file management for metadata editing.

IWMMetadataEditor2 Provides an improved method for opening files for use by the
metadata editor.

IWMMutualExclusion Configures mutual exclusion objects. A mutual exclusion object
is created by a profile object to specify a group of mutually
exclusive streams.

IWMMutualExclusion2 Adds grouping and naming support for mutual exclusion.

IWMOutputMediaProps Manages the properties of an output stream.

IWMPacketSize Manages the maximum size of packets in an ASF file.

IWMPacketSize2 Manages the minimum size of packets in an ASF file.

IWMPlayerTimestampHook Implemented on the player or player source filter. It enables the
filter to modify the time stamps on the video samples before
delivering them downstream.

IWMProfile Manages the creation and editing of profiles. Profiles describe
the format of a file, such as stream type, bit rates, and so on.
Most applications use existing profiles and do not need to
implement this interface.

IWMProfile2 Provides access to profile IDs.

IWMProfile3 Provides methods for dealing with bandwidth sharing, stream
prioritization, and other advanced features supported by
profiles.

IWMProfileManager Manages the loading and saving of profiles.

IWMProfileManager2 Manages the version numbers of system profiles used by the
profile manager object.

IWMProfileManagerLanguage Manages the language of the enumerated system profiles.

IWMPropertyVault Provides a standardized interface for managing properties.

IWMReader Manages the asynchronous reading of ASF files.

IWMReaderAccelerator Implemented on the WM Reader object. It is called by a player
or a player source filter to obtain interfaces from the decoder
DMO.

IWMReaderAdvanced Provides advanced features of the reader, such as a user-
provided clock, buffer allocation, return statistics, and receiving
stream selection notifications.

IWMReaderAdvanced2 Provides an additional range of advanced methods for an
existing reader object.

IWMReaderAdvanced3 Provides additional advanced methods for the reader object.

IWMReaderAdvanced4 Provides support for language selection and other advanced
reading features.

IWMReaderAllocatorEx Provides expanded alternatives to the AllocateForOutput and
AllocateForStream methods of the
IWMReaderCallbackAdvanced interface.

IWMReaderCallback Implemented by the application to provide sample and status
information about a current reading operation.

IWMReaderCallbackAdvanced Optionally implemented by the application to provide advanced
functionality to an existing reader callback object.

IWMReaderNetworkConfig Manages network configuration settings.

IWMReaderNetworkConfig2 Provides additional network configuration features.

IWMReaderStreamClock Used to set and cancel timers on stream clocks, as well as to
retrieve the current value of the stream clock.

IWMReaderTimecode Provides information about SMPTE time codes in a file.

IWMReaderTypeNegotiation Provides a single method that can be used to test whether
certain changes to the output properties of a stream are working
properly.

IWMRegisterCallback Enables the application to get status messages from a sink
object.

IWMSBufferAllocator Provides methods for allocating buffers on a server.

IWMSInternalAdminNetSource Manages the password cache and proxy location.

IWMSInternalAdminNetSource2 Provides more secure password caching methods than
IWMSInternalAdminNetSource.

IWMSInternalAdminNetSource3 Provides an improved method to locate proxy servers.

The following table shows the inheritance of each interface and the objects from which an instance can be
obtained.

IWMStatusCallback Implemented by the application to respond to the status of
several objects of this SDK.

IWMStreamConfig Manages the configuration of streams for use in profiles.

IWMStreamConfig2 Provides additional stream-manipulation methods.

IWMStreamConfig3 Manages language information for streams.

IWMStreamList Manages the various objects that define relationships between
streams.

IWMStreamPrioritization Provides methods to configure the stream prioritization object.

IWMSyncReader Provides the ability to read files with synchronous calls.

IWMSyncReader2 Adds SMPTE time code support to the synchronous reader.

IWMVideoMediaProps Manages the properties of a video stream.

IWMWatermarkInfo Provides access to the available watermarks.

IWMWriter Used as the main interface for writing ASF files.

IWMWriterAdvanced Provides advanced functionality for an existing writer object.

IWMWriterAdvanced2 Provides some advanced functionality, particularly for handling
deinterlaced video.

IWMWriterAdvanced3 Provides methods for detailed writer statistics.

IWMWriterFileSink Manages a file sink object.

IWMWriterFileSink2 Provides extended management of a file sink object.

IWMWriterFileSink3 Further extends the functionality of the file sink object.

IWMWriterNetworkSink Manages a network sink object.

IWMWriterPostView Manages the output of samples from the writer. Used to verify
encoded content for a file during the encoding process.

IWMWriterPostViewCallback Implemented by the application to receive postview samples
from the writer.

IWMWriterPreprocess Manages settings for multi-pass encoding.

IWMWriterPushSink Manages a push sink object.

IWMWriterSink Manages raw Windows Media Format input from the writer
interfaces. Used as a base interface for the other writer sink
interfaces.

Interface Inherits from Objects

INSNetSourceCreator IUnknown Source Creator Object

INSSBuffer IUnknown Buffer Object

INSSBuffer2 INSSBuffer Buffer Object

INSSBuffer3 INSSBuffer2 Buffer Object

INSSBuffer4 INSSBuffer3 Buffer Object

IReferenceClock IUnknown Reader Object

IWMAddressAccess IUnknown Writer Network Sink Object

IWMAddressAccess2 IWMAddressAccess Writer Network Sink Object

IWMBackupRestoreProps IUnknown Backup Restorer Object

IWMBandwidthSharing IWMStreamList Bandwidth Sharing Object

IWMClientConnections IUnknown Writer Network Sink Object

IWMClientConnections2 IWMClientConnections Writer Network Sink Object

IWMCodecAMVideoAccelerator IUnknown Windows Media decoder DMO

IWMCodecInfo IUnknown Profile Manager Object

IWMCodecInfo2 IWMCodecInfo Profile Manager Object

IWMCodecInfo3 IWMCodecInfo2 Profile Manager Object

IWMCredentialCallback IUnknown Implemented by the application

IWMDRMEditor IUnknown Metadata Editor Object

IWMDRMReader IUnknown Reader Object

IWMDRMWriter IUnknown Writer Object

IWMHeaderInfo IUnknown Metadata Editor Object, Reader
Object, Synchronous Reader
Object, Writer Object

IWMHeaderInfo2 IWMHeaderInfo Metadata Editor Object, Reader
Object, Synchronous Reader
Object, Writer Object

IWMHeaderInfo3 IWMHeaderInfo2 Metadata Editor Object, Reader
Object, Synchronous Reader
Object, Writer Object

IWMImageInfo IUnknown Metadata Editor Object, Reader
Object, Synchronous Reader
Object

IWMIndexer IUnknown Indexer Object

IWMIndexer2 IWMIndexer Indexer Object

IWMInputMediaProps IWMMediaProps Input Media Properties Object

IWMIStreamProps IUnknown Stream object (IStream)

IWMLanguageList IUnknown Profile Object, Metadata Editor
Object, Reader Object,
Synchronous Reader Object,
Writer Object

IWMLicenseBackup IUnknown Backup Restorer Object

IWMLicenseRestore IUnknown Backup Restorer Object

IWMMediaProps IUnknown Input Media Properties Object,
Output Media Properties Object,
Stream Configuration Object

IWMMetadataEditor IUnknown Metadata Editor Object

IWMMetadataEditor2 IWMMetadataEditor Metadata Editor Object

IWMMutualExclusion IWMStreamList Mutual Exclusion Object

IWMMutualExclusion2 IWMMutualExclusion Mutual Exclusion Object

IWMOutputMediaProps IUnknown Output Media Properties Object

IWMPacketSize IUnknown Profile Manager Object

IWMPacketSize2 IWMPacketSize Profile Manager Object

IWMPlayerTimestampHook IUnknown Source filter

IWMProfile IUnknown Profile Object

IWMProfile2 IWMProfile Profile Object

IWMProfile3 IWMProfile2 Profile Object

IWMProfileManager IUnknown Profile Manager Object

IWMProfileManager2 IWMProfileManager Profile Manager Object

IWMProfileManagerLanguage IUnknown Profile Manager Object

IWMPropertyVault IUnknown Stream Configuration Object

IWMReader IUnknown Reader Object

IWMReaderAccelerator IUnknown Reader Object

IWMReaderAdvanced IUnknown Reader Object

IWMReaderAdvanced2 IWMReaderAdvanced Reader Object

IWMReaderAdvanced3 IWMReaderAdvanced2 Reader Object

IWMReaderAdvanced4 IWMReaderAdvanced3 Reader Object

IWMReaderAllocatorEx IUnknown Implemented by the application

IWMReaderCallback IWMStatusCallback Implemented by the application

IWMReaderCallbackAdvanced IUnknown Implemented by the application

IWMReaderNetworkConfig IUnknown Reader Object

IWMReaderNetworkConfig2 IWMReaderNetworkConfig Reader Object

IWMReaderStreamClock IUnknown Reader Object

IWMReaderTimecode IUnknown Reader Object

IWMReaderTypeNegotiation IUnknown Reader Object

IWMRegisterCallback IUnknown Implemented by the application

IWMSBufferAllocator IUnknown Implemented by a network server

IWMSInternalAdminNetSource IUnknown Network source administrator
object

IWMSInternalAdminNetSource2 IWMSInternalAdminNetSource Network source administrator
object

IWMSInternalAdminNetSource3 IWMSInternalAdminNetSource2 Network source administrator
object

IWMStatusCallback IUnknown Implemented by the application

IWMStreamConfig IUnknown Stream Configuration Object

IWMStreamConfig2 IWMStreamConfig Stream Configuration Object

IWMStreamConfig3 IWMStreamConfig2 Stream Configuration Object

IWMStreamList IUnknown Bandwidth Sharing Object, Mutual
Exclusion Object

IWMStreamPrioritization IUnknown Stream Prioritization Object

IWMSyncReader IUnknown Synchronous Reader Object

IWMSyncReader2 IWMSyncReader Synchronous Reader Object

IWMVideoMediaProps IWMMediaProps Stream Configuration Object

IWMWatermarkInfo IUnknown Writer Object

IWMWriter IUnknown Writer Object

IWMWriterAdvanced IUnknown Writer Object

IWMWriterAdvanced2 IWMWriterAdvanced Writer Object

IWMWriterAdvanced3 IWMWriterAdvanced2 Writer Object

IWMWriterFileSink IWMWriterSink Writer File Sink Object

IWMWriterFileSink2 IWMWriterFileSink Writer File Sink Object

IWMWriterFileSink3 IWMWriterFileSink2 Writer File Sink Object

IWMWriterNetworkSink IWMWriterSink Writer Network Sink Object

IWMWriterPostView IUnknown Writer Object

IWMWriterPostViewCallback IUnknown Implemented by the application

Remarks

The interface identifier for each of the interfaces in this SDK is the name of the interface preceded by "IID_".
For example, the identifier for the IWMReaderAdvanced interface is IID_IWMReaderAdvanced. To obtain a
pointer to the IWMReaderAdvanced interface of a reader object, use the following code, where pReader is a
pointer to an IWMReader interface:

IWMReaderAdvanced *pReaderAdvanced
hr = pReader->QueryInterface(IID_IWMReaderAdvanced,
 (LPVOID*) &pReaderAdvanced);

See Also

Objects
Programming Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

INSNetSourceCreator Interface
The INSNetSourceCreator interface creates an administrative network source plug-in. You can use an
administrative network source plug-in to cache passwords and to locate the appropriate proxy server to use for
Internet operations.

Unlike most of the interfaces in the Windows Media Format SDK, the INSNetSourceCreator interface must be
obtained by using CoCreateInstance.

In addition to the methods inherited from IUnknown, the INSNetSourceCreator interface exposes the
following methods.

IWMWriterPreprocess IUnknown Writer Object

IWMWriterPushSink IWMWriterSink Writer Push Sink Object

IWMWriterSink IUnknown Writer File Sink Object, Writer
Network Sink Object, Writer Push
Sink Object

Previous Next

Previous Next

Method Description

CreateNetSource Reserved.

See Also

Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

INSNetSourceCreator::GetNetSourceAdminInterfac
The GetNetSourceAdminInterface method retrieves a pointer to the IDispatch interface of the administrative
network source object.

Syntax

HRESULT GetNetSourceAdminInterface(
 LPCWSTR pszStreamName,
 VARIANT* pVal
);

Parameters

pszStreamName

[in] Pointer to a wide-character null-terminated string containing the desired network protocol. Typically, this
value is either "http\0" or "mms\0".

pVal

[out] Pointer to a VARIANT that receives the address of the IDispatch interface on successful return. Use this

GetNetSourceAdminInterface Retrieves a pointer to an administrative network
source object.

GetNetSourceProperties Reserved.

GetNetSourceSharedNamespace Reserved.

GetNumProtocolsSupported Reserved.

Initialize Initializes the network source creator.

GetProtocolName Reserved.

Shutdown Shuts down the network source creator.

Previous Next

Previous Next

interface pointer to obtain the interface pointer of the desired network admin interface:
IWMSInternalAdminNetSource, IWMSInternalAdminNetSource2, or IWMSInternalAdminNetSource3.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

See Also

INSNetSourceCreator Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

INSNetSourceCreator::Initialize
The Initialize method prepares the network source creator for operations. You must call this method before
calling any of the other methods in the INSNetSourceCreator interface.

Syntax

HRESULT Initialize();

Parameters

This method takes no parameters.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Return code Description

S_OK The method succeeded.

E_INVALIDARG One or both of the parameters are NULL.

E_OUTOFMEMORY Unable to allocate memory for an internal resource.

NS_E_UNKNOWN_PROTOCOL The protocol specified by pwszStreamName is not
supported.

Previous Next

Previous Next

Remarks

When you are finished using the network source creator, you must call the Shutdown method to ensure that all
resources are released properly.

See Also

INSNetSourceCreator Interface
INSNetSourceCreator::Shutdown

© 2000-2003 Microsoft Corporation. All rights reserved.

INSNetSourceCreator::Shutdown
The Shutdown method properly disposes of all allocated memory used by the network source creator. You
must call this method when you are finished using the network source creator, to ensure that all resources are
released.

Syntax

HRESULT Shutdown();

Parameters

This method takes no parameters.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

INSNetSourceCreator Interface
INSNetSourceCreator::Initialize

Return code Description

S_OK The method succeeded.

E_OUTOFMEMORY The method could not allocate memory for an internal
resource.

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

INSSBuffer Interface
The INSSBuffer interface is the basic interface of a buffer object. A buffer object is a wrapper around a
memory buffer. The methods exposed by this interface are used to manipulate the buffer.

In both writing and reading ASF files, buffer objects are used to contain samples. Depending upon where you
use a sample, you will obtain a reference to the INSSBuffer interface in one of three ways:

When passing samples to the writer, you can obtain buffer objects by calling
IWMWriter::AllocateSample.
When you are receiving samples from the asynchronous reader, buffer objects are created automatically,
and references to an INSSBuffer interface are passed with every call the reader makes to the
IWMReaderCallback::OnSample callback method.
When you are receiving samples from the synchronous reader, a reference to an INSSBuffer interface is
set with every call you make to IWMSyncReader::GetNextSample.

In addition to the methods inherited from IUnknown, the INSSBuffer interface exposes the following methods.

The following interfaces can be obtained by using the QueryInterface method of this interface.

See Also

Previous Next

Previous Next

Method Description

GetBuffer Retrieves the location of the buffer.

GetBufferAndLength Retrieves the location and size of the used portion of the buffer.

GetLength Retrieves the size of the used portion of the buffer.

GetMaxLength Retrieves the maximum size to which a buffer can be set.

SetLength Specifies the size of the used portion of the buffer.

Interface IID

INSSBuffer2 IID_INSSBuffer2

INSSBuffer3 IID_INSSBuffer3

INSSBuffer4 IID_INSSBuffer4

Buffer Object
Interfaces
Reading ASF Files
Writing ASF Files

© 2000-2003 Microsoft Corporation. All rights reserved.

INSSBuffer::GetBuffer
The GetBuffer method retrieves the location of the buffer controlled by the buffer object. Buffers are used to
store samples. When passing samples to the writer, you need the location of the buffer so you can copy your
samples into it. When you copy data to the address returned by this call, you must call INSSBuffer::SetLength
to specify how much of the buffer actually contains data.

When receiving samples from the reader or synchronous reader, retrieve the size of the buffer at the same time
as the location by calling INSSBuffer::GetBufferAndLength.

Syntax

HRESULT GetBuffer(
 BYTE** ppdwBuffer
);

Parameters

ppdwBuffer

[out] Pointer to a pointer to the buffer.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

See Also

INSSBuffer Interface

Previous Next

Previous Next

Return code Description

S_OK The method succeeded.

E_POINTER The ppdwBuffer parameter is NULL.

INSSBuffer::GetBufferAndLength

© 2000-2003 Microsoft Corporation. All rights reserved.

INSSBuffer::GetBufferAndLength
The GetBufferAndLength method retrieves the location and size of the used portion of the buffer controlled by
the buffer object. Buffers are used to store samples. When reading ASF files, you can use the location and
length to copy a sample from a buffer delivered by the reader or synchronous reader.

Syntax

HRESULT GetBufferAndLength(
 BYTE** ppdwBuffer,
 DWORD* pdwLength
);

Parameters

ppdwBuffer

[out] Pointer to a pointer to the buffer.

pdwLength

[out] Pointer to a DWORD containing the length of the buffer, in bytes.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

See Also

INSSBuffer Interface
INSSBuffer::GetBuffer

Previous Next

Previous Next

Return code Description

S_OK The method succeeded.

E_POINTER The ppdwBuffer or pdwLength parameter is NULL.

© 2000-2003 Microsoft Corporation. All rights reserved.

INSSBuffer::GetLength
The GetLength method retrieves the size of the used portion of the buffer controlled by the buffer object.

Syntax

HRESULT GetLength(
 DWORD* pdwLength
);

Parameters

pdwLength

[out] Pointer to a DWORD containing the length of the buffer, in bytes.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

The allocated buffer may be larger than the used portion. To find the total size of the allocated buffer, call
INSSBuffer::GetMaxLength.

See Also

INSSBuffer Interface
INSSBuffer::GetMaxLength
INSSBuffer::SetLength

Previous Next

Previous Next

Return code Description

S_OK The method succeeded.

E_POINTER The pdwLength parameter is NULL.

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

INSSBuffer::GetMaxLength
The GetMaxLength method retrieves the maximum size to which a buffer can be set. The maximum value is
set when the sample is created. If you are using IWMWriter::AllocateSample, the size you specify becomes
the maximum buffer length. The actual amount of the buffer that is used can be retrieved by calling
INSSBuffer::GetLength.

Syntax

HRESULT GetMaxLength(
 DWORD* pdwLength
);

Parameters

pdwLength

[out] Pointer to a DWORD containing the maximum length, in bytes.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

The maximum size of the buffer as returned by this method does not affect or reflect the size of any data unit
extensions associated with the sample stored in the buffer.

See Also

Data Unit Extensions
INSSBuffer Interface
INSSBuffer::GetLength

Previous Next

Return code Description

S_OK The method succeeded.

E_POINTER The pdwLength parameter is NULL.

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

INSSBuffer::SetLength
The SetLength method specifies the size of the used portion of the buffer. If you are storing a sample in the
buffer, call INSSBuffer::GetBuffer to retrieve the address of the buffer. Then copy your data to that address
and use this method to set the length of the used portion of the buffer.

Syntax

HRESULT SetLength(
 DWORD dwLength
);

Parameters

dwLength

[in] DWORD containing the size of the used portion, in bytes.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

See Also

INSSBuffer Interface
INSSBuffer::GetLength

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Return code Description

S_OK The method succeeded.

E_INVALIDARG dwLength is greater than the buffer size.

Previous Next

INSSBuffer2 Interface
The INSSBuffer2 interface inherits from INSSBuffer and defines two additional methods. Currently, neither of
these methods is implemented.

In addition to the methods inherited from INSSBuffer, the INSSBuffer2 interface exposes the following
methods.

In addition to the methods of IUnknown, this interface inherits the following methods.

The following interfaces can be obtained by using the QueryInterface method of this interface.

See Also

Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Method Description

GetSampleProperties Not implemented.

SetSampleProperties Not implemented.

Method Description

GetBuffer Retrieves the location of the buffer.

GetBufferAndLength Retrieves the location and size of the used portion of the buffer.

GetLength Retrieves the size of the used portion of the buffer.

GetMaxLength Retrieves the maximum size to which a buffer can be set.

SetLength Specifies the size of the used portion of the buffer.

Interface IID

INSSBuffer IID_INSSBuffer

INSSBuffer3 IID_INSSBuffer3

INSSBuffer4 IID_INSSBuffer4

Previous Next

INSSBuffer3 Interface
The INSSBuffer3 interface enhances the INSSBuffer interface by adding the ability to set and retrieve single
properties for a sample. This interface inherits its functionality from the INSSBuffer2 interface, which inherits
functionality from INSSBuffer. INSSBuffer2 is not documented separately in this documentation because the
two methods it exposes are not implemented at this time.

To obtain a pointer to the INSSBuffer3 interface of an existing buffer object, call
INSSBuffer::QueryInterface.

In addition to the methods inherited from INSSBuffer2, the INSSBuffer3 interface exposes the following
methods.

In addition to the methods of IUnknown, this interface inherits the following methods.

The following interfaces can be obtained by using the QueryInterface method of this interface.

Previous Next

Method Description

GetProperty Retrieves a property for the sample.

SetProperty Sets a property for the sample.

Method Description

GetBuffer Retrieves the location of the buffer.

GetBufferAndLength Retrieves the location and size of the used portion of the buffer.

GetLength Retrieves the size of the used portion of the buffer.

GetSampleProperties Not implemented.

GetMaxLength Retrieves the maximum size to which a buffer can be set.

SetLength Specifies the size of the used portion of the buffer.

SetSampleProperties Not implemented.

Interface IID

INSSBuffer IID_INSSBuffer

INSSBuffer2 IID_INSSBuffer2

INSSBuffer4 IID_INSSBuffer4

See Also

INSSBuffer Interface
Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

INSSBuffer3::GetProperty
The GetProperty method is used to retrieve a property of the sample in the buffer. Buffer properties are used to
pass information along with the sample to the writer object when writing ASF files. Sample properties are
GUID values.

Syntax

HRESULT GetProperty{
 GUID guidBufferProperty,
 void* pvBufferProperty,
 DWORD* pdwBufferPropertySize
};

Parameters

guidBufferProperty

[in] GUID value identifying the property to retrieve. The following table lists the constants representing the
supported values.

Previous Next

Previous Next

Buffer property GUID Description

WM_SampleExtensionGUID_OutputCleanPoint Specifies that the value retrieved in pvBufferProperty
indicates whether the sample is a cleanpoint. A
retrieved value of zero indicates that it is not a
cleanpoint. A non-zero value indicates that it is a
cleanpoint. This sample data unit extension (DUE)
type is used to keep track of cleanpoints when writing
precompressed media streams that were encoded with
third-party codecs.

WM_SampleExtensionGUID_Timecode Specifies that the value retrieved in pvBufferProperty
is a WMT_TIMECODE_EXTENSION_DATA

pvBufferProperty

structure containing SMPTE time code data
associated with the sample.

The size for this DUE is always
WM_SampleExtension_Timecode_Size, which is 14
bytes.

WM_SampleExtensionGUID_FileName Specifies that the value retrieved in pvBufferProperty
is a file name for which the sample applies. This type
of sample extension is used for file streams. The file
name is a wide-character string containing the file
name in name.extension format without any path
information.

WM_SampleExtensionGUID_ContentType Specifies that the value retrieved in pvBufferProperty
identifies the type of content contained by the sample.
This type of sample extension is used with interlaced
video streams.

Possible values are WM_CT_INTERLACED,
WM_CT_BOTTOM_FIELD_FIRST, and
WM_CT_TOP_FIELD_FIRST.

The size for this DUE is always
WM_SampleExtension_ContentType_Size.

WM_SampleExtensionGUID_PixelAspectRatio Specifies that the value retrieved in pvBufferProperty
indicates the pixel aspect ratio of the content in the
sample. This applies only to video.

Aspect ratio values are stored as a word whose low
byte is the X aspect and whose high byte is the Y
aspect. For example, 16:9 is stored as 0x0910.

The size for this DUE is always
WM_SampleExtension_ PixelAspectRatio_Size.

WM_SampleExtensionGUID_SampleDuration This DUE is set automatically by the SDK run-time
components on video streams with bit rates of 100
kbps or greater, where the overhead of the DUE
information is not significant. It is not set for streams
with bit rates under 100 kbps. Applications should
not set this DUE manually because the writer (on
high bit rate streams) will overwrite the value with its
own data. When this DUE is set, pvBufferProperty
indicates the duration, in milliseconds, of the sample
contained in the buffer object. On playback, if this
DUE is set the reader object will use it to overwrite
the existing sample duration value. The size for this
DUE is always
WM_SampleExtension_SampleDuration_Size, which
is 2 bytes.

[out] Pointer to a buffer that will receive the value of the property specified by guidBufferProperty.

pdwBufferPropertySize

[in, out] Pointer to a DWORD value containing the size of the buffer pointed to by pvBufferProperty. If you
pass NULL for pvBufferProperty, the method sets the value pointed to by this parameter to the size required to
hold the property value. If you pass a non-NULL value for pvBufferProperty, the value pointed to by this
parameter must equal the size of the buffer pointed to by pvBufferProperty.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

See Also

INSSBuffer3 Interface
INSSBuffer3::SetProperty

© 2000-2003 Microsoft Corporation. All rights reserved.

INSSBuffer3::SetProperty
The SetProperty method is used to specify a property for the sample in the buffer. Buffer properties are used to
pass information along with the sample to the writer object when writing ASF files. Sample properties are
GUID values.

Syntax

HRESULT SetProperty{
 GUID guidBufferProperty,
 void* pvBufferProperty,
 DWORD dwBufferPropertySize
};

Return code Description

S_OK The method succeeded.

E_POINTER pdwBufferPropertySize is NULL.

NS_E_UNSUPPORTED_PROPERTY The property specified as guidBufferProperty is not set in this
buffer object.

Previous Next

Previous Next

Parameters

guidBufferProperty

[in] GUID value identifying the property you want to set. The following table lists the constants representing
the supported values. You can also define your own sample extension schemes using your own GUID values.

Buffer property GUID Description

WM_SampleExtensionGUID_OutputCleanPoint Specifies that the sample is a compressed media
sample that is a cleanpoint. This sample extension
type is used to keep track of cleanpoints when writing
precompressed media streams that were encoded with
third-party codecs.

WM_SampleExtensionGUID_Timecode Specifies a SMPTE time code entry that is associated
with the sample.

The size for this DUE is always
WM_SampleExtension_Timecode_Size, which is 14
bytes.

WM_SampleExtensionGUID_FileName Specifies a file name for which the sample applies.
This type of sample extension is used for file streams.
The file name is a wide-character string containing
the file name in name.extension format without any
path information.

WM_SampleExtensionGUID_ContentType Specifies the type of content contained in the sample.
This type of sample extension is used with interlaced
video streams.

Possible values are WM_CT_INTERLACED,
WM_CT_BOTTOM_FIELD_FIRST, and
WM_CT_TOP_FIELD_FIRST.

The size for this DUE is always
WM_SampleExtension_ContentType_Size.

WM_SampleExtensionGUID_PixelAspectRatio Specifies the aspect ratio of the content in the sample.
This applies only to video. Aspect ratio values are
written as two concatenated two digit values equal to
the ratio with the colon removed. For example, 16:9
is written as 1609 or 0x0649. This is always a 2-byte
value.

The size for this DUE is always
WM_SampleExtension_ PixelAspectRatio_Size.

WM_SampleExtensionGUID_SampleDuration Specifies the duration of the sample. The size for this
DUE is always
WM_SampleExtension_SampleDuration_Size, which
is 2 bytes.

pvBufferProperty

[out] Pointer to a buffer containing the property value.

dwBufferPropertySize

[in] DWORD value containing the size of the buffer pointed to by pvBufferProperty.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

If you set a buffer property with a size larger than that specified in your call to
IWMStreamConfig2::AddDataUnitExtension, you will not get an error from SetProperty. However, when
the writer writes the sample, NS_E_DATA_UNIT_EXTENSION_TOO_LARGE will be returned.

See Also

INSSBuffer3 Interface
INSSBuffer3::GetProperty

© 2000-2003 Microsoft Corporation. All rights reserved.

INSSBuffer4 Interface
The INSSBuffer4 interface provides methods to enumerate buffer properties. These methods are important
when reading files that may have properties of which you are not aware.

An INSSBuffer4 interface exists for every buffer object. To retrieve a pointer to an instance of INSSBuffer4,
call the QueryInterface method of one of the other interfaces in the buffer object, typically INSSBuffer.

In addition to the methods inherited from INSSBuffer3, the INSSBuffer4 interface exposes the following

Return code Description

S_OK The method succeeded.

E_OUTOFMEMORY The method was unable to allocate memory for the new
property.

Previous Next

Previous Next

methods.

In addition to the methods of IUnknown, this interface inherits the following methods.

The following interfaces can be obtained by using the QueryInterface method of this interface.

See Also

INSSBuffer Interface
INSSBuffer3 Interface
Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

Method Description

GetPropertyByIndex Retrieves a buffer property, also called a data unit extension,
using an index instead of a name.

GetPropertyCount Retrieves the total count of buffer properties associated with the
sample.

Method Description

GetBufferAndLength Retrieves the location and size of the used portion of the buffer.

GetBuffer Retrieves the location of the buffer.

GetLength Retrieves the size of the used portion of the buffer.

GetMaxLength Retrieves the maximum size to which a buffer can be set.

GetProperty Retrieves a property for the sample.

GetSampleProperties Not implemented.

SetLength Specifies the size of the used portion of the buffer.

SetProperty Sets a property for the sample.

SetSampleProperties Not implemented.

Interface IID

INSSBuffer IID_INSSBuffer

INSSBuffer2 IID_INSSBuffer2

INSSBuffer3 IID_INSSBuffer3

Previous Next

INSSBuffer4::GetPropertyByIndex
The GetPropertyByIndex method retrieves a buffer property, also called a data unit extension, that was set
using INSSBuffer3::SetProperty. This method differs from INSSBuffer3::GetProperty in that, instead of
accessing the property by name, it uses an index ranging from zero to one less than the total number of
properties associated with the sample.

Syntax

HRESULT GetPropertyByIndex(
 DWORD dwBufferPropertyIndex,
 GUID* pguidBufferProperty,
 void* pvBufferProperty,
 DWORD* pdwBufferPropertySize
);

Parameters

dwBufferPropertyIndex

[in] DWORD containing the buffer property index. This value will be between zero and one less than the total
number of properties associated with the sample. You can retrieve the total number of properties by calling
INSSBuffer4::GetPropertyCount.

pguidBufferProperty

[out] Pointer to a GUID specifying the type of buffer property.

pvBufferProperty

[out] Void pointer containing the value of the buffer property.

pdwBufferPropertySize

[in, out] Pointer to a DWORD containing the size of the value pointed to by pvBufferProperty. If you set
pvBufferProperty to NULL, this value will be set to the required size in bytes of the buffer needed to store the
property value.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

INSSBuffer4 Interface

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

INSSBuffer4::GetPropertyCount
The GetPropertyCount method retrieves the total number of buffer properties, also called data unit extensions,
associated with the sample contained in the buffer object. When using INSSBuffer4::GetPropertyByIndex to
retrieve properties, the index used is between zero and the number specified by this method.

Syntax

HRESULT GetPropertyCount(
 DWORD* pcBufferProperties
);

Parameters

pcBufferProperties

[out] Pointer to the size of buffer properties.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

INSSBuffer4 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IReferenceClock Interface

Previous Next

Previous Next

Previous Next

Previous Next

The IReferenceClock interface provides access to an external clock. This interface is provided to enable all
rendering routines to be synchronized to the same clock.

This interface can be obtained from a reader object.

In addition to the methods inherited from IUnknown, the IReferenceClock interface exposes the following
methods.

For information on other interfaces that can be obtained by using the QueryInterface method of this interface,
see Reader Object.

See Also

Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

IReferenceClock::AdvisePeriodic
This method is not implemented.

In other implementations of the IReferenceClock interface, such as in the DirectShow® component of
Microsoft® DirectX®, the AdvisePeriodic method is used to create a periodic advise request that would signal
the specified event object each time the specified time interval elapses. This SDK does not implement the
functionality of this method, and any calls made to it will result in a return value of E_NOTIMPL.

See Also

IReferenceClock Interface

Method Description

AdvisePeriodic Not implemented by this SDK.

AdviseTime Requests an asynchronous notification that a time has elapsed.

GetTime Retrieves the current reference time.

Unadvise Cancels a notification request.

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IReferenceClock::AdviseTime
The AdviseTime method requests an asynchronous notification that a time has elapsed.

Syntax

HRESULT AdviseTime(
 REFERENCE_TIME rtBaseTime,
 REFERENCE_TIME rtStreamTime,
 HEVENT hEvent,
 DWORD* pdwAdviseCookie
);

Parameters

rtBaseTime

[in] Base reference time, in 100-nanosecond units.

rtStreamTime

[in] Stream offset time, in 100-nanosecond units.

hEvent

[in] Handle to an event, created by the caller. This event will be signaled when the time specified elapses.

pdwAdviseCookie

[out] Pointer to a variable that receives an identifier for the request. This is used to identify this call to
AdviseTime in the future—for example, to cancel the request.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Previous Next

Return code Description

S_OK The method succeeded.

E_POINTER The pdwAdviseCookie parameter is NULL.

E_FAIL Unspecified failure.

See Also

IReferenceClock Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IReferenceClock::GetTime
The GetTime method retrieves the current reference time.

Syntax

HRESULT GetTime(
 REFERENCE_TIME *pTime
);

Parameters

pTime

[out] Pointer to a variable that receives the current time, in 100-nanosecond units.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

See Also

IReferenceClock Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Return code Description

S_OK The method succeeded.

E_POINTER The pTime parameter is NULL.

Previous Next

IReferenceClock::Unadvise
The Unadvise method cancels a notification request.

Syntax

HRESULT Unadvise(
 DWORD dwAdviseCookie
};

Parameter

dwAdviseCookie

[in] Identifier of the request to remove. Use the value returned by AdviseTime in the pdwAdviseCookie
parameter.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

See Also

IReferenceClock Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMAddressAccess Interface

Previous Next

Return code Description

S_OK The method succeeded.

S_FALSE The identifier passed in does not exist.

Previous Next

Previous Next

The IWMAddressAccess interface controls IP access lists on the writer network sink object. Applications can
use this interface to exclude specific IP addresses, or ranges of IP addresses, from connecting to the network
sink. To obtain this interface, call QueryInterface on another interface of the writer network sink object.

This interface supports only Internet Protocol version 4 (IPv4) addresses. The IWMAddressAccess2 interface
inherits IWMAddressAccess and adds support for IPv6 addresses.

In addition to the methods inherited from IUnknown, the IWMAddressAccess interface exposes the following
methods.

The following interfaces can be obtained by using the QueryInterface method of this interface.

See Also

Interfaces
Writer Network Sink Object

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMAddressAccess::AddAccessEntry

Method Description

AddAccessEntry Adds an entry to the access list.

GetAccessEntry Retrieves an entry from the access list.

GetAccessEntryCount Retrieves the number of entries in the access list.

RemoveAccessEntry Removes an entry from the access list.

Interface IID

IWMAddressAccess2 IID_IWMAddressAccess2

IWMClientConnections IID_IWMClientConnections

IWMClientConnections2 IID_IWMClientConnections2

IWMWriterNetworkSink IID_IWMWriterNetworkSink

IWMWriterSink IID_IWMWriterSink

Previous Next

Previous Next

The AddAccessEntry method adds an entry to the IP address access list.

Syntax

HRESULT AddAccessEntry(
 WM_AETYPE aeType,
 WM_ADDRESS_ACCESSENTRY* pAddrAccessEntry
);

Parameters

aeType

[in] A member of the WM_AETYPE enumeration specifying the access permissions (exclusion or inclusion).

pAddrAccessEntry

[in] Pointer to a WM_ADDRESS_ACCESSENTRY structure that specifies the IP address or range of
addresses.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

IWMAddressAccess Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMAddressAccess::GetAccessEntry
The GetAccessEntry method retrieves an entry from the IP address access list.

Syntax

HRESULT GetAccessEntry(
 WM_AETYPE aeType,
 DWORD dwEntryNum,
 WM_ADDRESS_ACCESSENTRY* pAddrAccessEntry
);

Parameters

Previous Next

Previous Next

aeType

[in] A member of the WM_AETYPE enumeration specifying the type of entry to retrieve (exclusion or
inclusion).

dwEntryNum

[in] Specifies the zero-based index of the entry. Use the IWMAddressAccess::GetAccessEntryCount method
to get the number of entries.

pAddrAccessEntry

[out] Pointer to a WM_ADDRESS_ACCESSENTRY structure that receives the access entry.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

See Also

IWMAddressAccess Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMAddressAccess::GetAccessEntryCount
The GetAccessEntryCount method retrieves the number of entries in the IP address access list.

Syntax

HRESULT GetAccessEntryCount(
 WM_AETYPE aeType,
 DWORD* pcEntries
);

Value Description

S_OK The method succeeded.

E_INVALIDARG NULL pointer argument.

NS_E_INVALID_INDEX Invalid index number.

Previous Next

Previous Next

Parameters

aeType

[in] A member of the WM_AETYPE enumeration specifying the type of entry (exclusion or inclusion).

pcEntries

[out] Pointer to a variable that receives the number of entries of the type specified in aeType.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

IWMAddressAccess Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMAddressAccess::RemoveAccessEntry
The RemoveAccessEntry method removes an access entry.

Syntax

HRESULT RemoveAccessEntry(
 WM_AETYPE aeType,
 DWORD dwEntryNum
);

Parameters

aeType

[in] A member of the WM_AETYPE enumeration specifying the type of entry to remove (exclusion or
inclusion).

dwEntryNum

[in] Zero-based index of the access entry to remove. Use the IWMAddressAccess::GetAccessEntryCount
method to get the number of entries.

Previous Next

Previous Next

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

See Also

IWMAddressAccess Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMAddressAccess2 Interface
The IWMAddressAccess2 interface controls IP access lists on the writer network sink object. Applications can
use this interface to exclude specific IP addresses, or ranges of IP addresses, from connecting to the network
sink. To obtain this interface, call QueryInterface on another interface of the writer network sink object.

This interface extends the IWMAddressAccess interface by adding support for Internet Protocol version 6
(IPv6) addresses.

In addition to the methods inherited from IWMAddressAccess, the IWMAddressAccess2 interface exposes
the following methods.

In addition to the methods of IUnknown, this interface inherits the following methods.

Value Description

S_OK The method succeeded.

E_INVALIDARG NULL pointer argument.

NS_E_INVALID_INDEX Invalid index number.

Previous Next

Previous Next

Method Description

AddAccessEntryEx Adds an entry to the access list.

GetAccessEntryEx Retrieves an entry from the access list.

Method Description

AddAccessEntry Adds an entry to the access list.

The following interfaces can be obtained by using the QueryInterface method of this interface.

See Also

Interfaces
Writer Network Sink Object

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMAddressAccess2::AddAccessEntryEx
The AddAccessEntryEx method adds an entry to the IP address access list.

Syntax

HRESULT AddAccessEntryEx(
 WM_AETYPE aeType,
 BSTR bstrAddress,
 BSTR bstrMask
);

Parameters

aeType

GetAccessEntry Retrieves an entry from the access list.

GetAccessEntryCount Retrieves the number of entries in the access list.

RemoveAccessEntry Removes an entry from the access list.

Interface IID

IWMAddressAccess IID_IWMAddressAccess

IWMClientConnections IID_IWMClientConnections

IWMClientConnections2 IID_IWMClientConnections2

IWMWriterNetworkSink IID_IWMWriterNetworkSink

IWMWriterSink IID_IWMWriterSink

Previous Next

Previous Next

[in] A member of the WM_AETYPE enumeration specifying the specifying the access permissions (exclusion
or inclusion).

bstrAddress

[in] Specifies an IP address as a BSTR, using standard "dot" notation. Both IPv4 and IPv6 addresses are
supported. For example, 206.73.118.1 is an IPv4 address and fe80::201:3ff:fee8:5058 is an IPv6 address.

bstrMask

[in] Bit mask that defines which bits in the IP address are matched against. For example, if the IP address is
206.73.118.1 and the mask is 255.255.255.0, only the first 24 bits of the address are examined. Thus, any IP
addresses in the range 206.73.118.XXX would match this entry.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

IWMAddressAccess2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMAddressAccess2::GetAccessEntryEx
The GetAccessEntryEx method retrieves an entry from the IP address access list.

Syntax

HRESULT GetAccessEntryEx(
 WM_AETYPE aeType,
 DWORD dwEntryNum,
 BSTR* pbstrAddress,
 BSTR* pbstrMask
);

Parameters

aeType

[in] A member of the WM_AETYPE enumeration specifying the type of entry to retrieve (exclusion or

Previous Next

Previous Next

inclusion).

dwEntryNum

[in] Zero-based index of the entry. Use the IWMAddressAccess::GetAccessEntryCount method to get the
number of entries.

pbstrAddress

[out] Pointer to a variable that receives the IP address.

pbstrMask

[out] Pointer to a variable that receives the bit mask.

Remarks

For more information about the meaning of the pbstrAddress and pbstrMask parameters, see
IWMAddressAccess2::AddAccessEntryEx.

The caller must release the returned BSTR values, by calling SysFreeString.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

IWMAddressAccess2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMBackupRestoreProps Interface
The IWMBackupRestoreProps interface sets and retrieves properties required by the IWMLicenseBackup
and IWMLicenseRestore interfaces.

This interface can be obtained from the backup restorer object.

In addition to the methods inherited from IUnknown, the IWMBackupRestoreProps interface exposes the
following methods.

Previous Next

Previous Next

The following interfaces can be obtained by using the QueryInterface method of this interface.

See Also

Backup Restorer Object
Interfaces
IWMLicenseBackup Interface
IWMLicenseRestore Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMBackupRestoreProps::GetPropByIndex
The GetPropByIndex method retrieves the name and value of a property by index.

This method is not implemented.

Syntax

HRESULT GetPropByIndex(

Method Description

GetPropByIndex Retrieves the name and value of a property by index. This
method is not implemented.

GetPropByName Retrieves the value of a property by name. This method is not
implemented.

GetPropCount Retrieves the number of properties. This method is not
implemented.

RemoveAllProps Removes all properties.

RemoveProp Removes one property.

SetProp Adds a property, and sets its name and value.

Interface IID

IWMLicenseBackup IID_IWMLicenseBackup

IWMLicenseRestore IID_IWMLicenseRestore

Previous Next

Previous Next

 WORD wIndex,
 WCHAR* pwszName,
 WORD* pcchNameLen,
 WMT_ATTR_DATATYPE* pType,
 BYTE* pValue,
 WORD* pcbLength
);

Parameters

wIndex

[in] WORD containing the index of the property.

pwszName

[out] Pointer to a wide-character null-terminated string containing the name.

pcchNameLen

[in, out] On input, contains the length of pwszName. On output, points to a variable containing the number of
characters in pwszName, including the terminating null character.

pType

[out] Pointer to a variable containing one member of the WMT_ATTR_DATATYPE enumeration type.

pValue

[out] Pointer to a byte array containing the value of the property.

pcbLength

[in, out] On input, contains the length of pValue. On output, points to a count of the bytes in pValue that are
used.

Return Values

The method returns E_NOTIMPL.

Remarks

You should make two calls to GetPropByIndex. On the first call, pass NULL for pwszName and pValue. On
return, the value pointed to by pcchNameLen is set to the length in wide characters of the property name
(including the terminating null character) and the value pointed to by pcbLength is set to the number of bytes
required to hold the property value. You can then allocate buffers of the appropriate sizes to hold the values
pwszName and pValue and pass pointers to them on the second call.

See Also

IWMBackupRestoreProps Interface
IWMBackupRestoreProps::SetProp

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMBackupRestoreProps::GetPropByName
The GetPropByName method retrieves the value of a property by name.

This method is not implemented.

Syntax

HRESULT GetPropByName(
 LPCWSTR pszName,
 WMT_ATTR_DATATYPE* pType,
 BYTE* pValue,
 WORD* pcbLength
);

Parameters

pszName

[in] Pointer to a wide-character null-terminated string containing the name.

pType

[out] Pointer to a variable containing one member of the WMT_ATTR_DATATYPE enumeration type.

pValue

[out] Pointer to a byte array containing the value of the property.

pcbLength

[in, out] On input, contains the length of pValue. On output, points to a count of the bytes in pValue that are
used.

Return Values

The method returns E_NOTIMPL.

Remarks

Previous Next

Previous Next

You should make two calls to GetPropByName. On the first call, pass NULL as pValue. On return, the value
pointed to by pcbLength is set to the buffer size required to hold the property value. Then you can allocate the
required amount of memory for the buffer and pass a pointer to it as pValue on the second call.

See Also

IWMBackupRestoreProps Interface
IWMBackupRestoreProps::SetProp
WMT_ATTR_DATATYPE

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMBackupRestoreProps::GetPropCount
The GetPropCount method retrieves the number of properties.

This method is not implemented.

Syntax

HRESULT GetPropCount(
 WORD* pcProps
);

Parameters

pcProps

[out] Pointer to a count of the properties.

Return Values

The method returns E_NOTIMPL.

See Also

IWMBackupRestoreProps Interface
IWMBackupRestoreProps::SetProp

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMBackupRestoreProps::RemoveAllProps
The RemoveAllProps method removes all properties.

Syntax

HRESULT RemoveAllProps();

Parameters

This method takes no parameters.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

IWMBackupRestoreProps Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMBackupRestoreProps::RemoveProp
The RemoveProp method removes a property specified by name.

Syntax

HRESULT RemoveProp(
 LPCWSTR pcwszName
);

Previous Next

Previous Next

Previous Next

Parameters

pcwszName

[in] Specifies the name of the property to be removed.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

IWMBackupRestoreProps Interface
IWMBackupRestoreProps::SetProp

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMBackupRestoreProps::SetProp
The SetProp method adds a property, and specifies its name and value.

Syntax

HRESULT SetProp(
 LPCWSTR pszName,
 WMT_ATTR_DATATYPE Type,
 const BYTE* pValue,
 WORD cbLength
);

Parameters

pszName

[in] Pointer to a null-terminated string containing the name.

Type

[in] Pointer to a variable containing one member of the WMT_ATTR_DATATYPE enumeration type. The
current implementation of this method accepts only WMT_TYPE_STRING. Specifying a different type causes
the method to return E_INVALIDARG.

Previous Next

Previous Next

pValue

[in] Pointer to a byte array containing the value of the property.

cbLength

[in] Length of pValue, in bytes.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

This method is used to set properties that are needed by the other backup restorer object interfaces.

The following table lists the predefined properties.

See Also

IWMBackupRestoreProps Interface
IWMLicenseBackup Interface
IWMLicenseRestore Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMBandwidthSharing Interface
The IWMBandwidthSharing interface contains methods to manage the properties of combined streams.

The list of streams that share bandwidth is stored in the bandwidth sharing object. The streams can be
manipulated using the methods of the IWMStreamList interface. IWMBandwidthSharing inherits from
IWMStreamList, so the stream list manipulation methods are always exposed through this interface.

Property name Type Description

BackupPath String Full path to the location where the backup files must be
saved.

RestorePath String Full path to the location where the backup files can be
found and used to restore data.

Previous Next

Previous Next

The information in a bandwidth sharing object is purely informational. Nothing in the SDK seeks to enforce or
check the accuracy of the bandwidth specified. You might want to use bandwidth sharing so that a reading
application can make adjustments based on the information contained in the bandwidth sharing object.

An IWMBandwidthSharing interface is exposed for each bandwidth sharing object upon creation. Bandwidth
sharing objects are created using the IWMProfile3::CreateNewBandwidthSharing method.

In addition to the methods inherited from IWMStreamList, the IWMBandwidthSharing interface exposes the
following methods.

In addition to the methods of IUnknown, this interface inherits the following methods.

The following interface can be obtained by using the QueryInterface method of this interface.

See Also

Bandwidth Sharing Object
Using Bandwidth Sharing

© 2000-2003 Microsoft Corporation. All rights reserved.

Method Description

GetBandwidth Retrieves the bandwidth and maximum buffer size of the
streams in the bandwidth sharing object.

GetType Retrieves the type of sharing (exclusive or partial) for the
bandwidth sharing object.

SetBandwidth Sets the bandwidth and maximum buffer size for streams in the
bandwidth sharing object.

SetType Sets the type of sharing (exclusive or partial) for the bandwidth
sharing object.

Method Description

AddStream Adds a stream to the list.

GetStreams Retrieves an array of stream numbers that make up the list.

RemoveStream Removes a stream from the list.

Interface IID

IWMStreamList IID_IWMStreamList

Previous Next

IWMBandwidthSharing::GetBandwidth
The GetBandwidth method retrieves the bandwidth and maximum buffer size of a combined stream.

Syntax

HRESULT GetBandwidth(
 DWORD* pdwBitrate,
 DWORD* pmsBufferWindow
);

Parameters

pdwBitrate

[out] Pointer to a DWORD containing the bit rate in bits per second. The combined bandwidths of the streams
cannot exceed this value.

pmsBufferWindow

[out] Pointer to DWORD containing the buffer window in milliseconds. The combined buffer sizes of the
streams cannot exceed this value.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

The settings of a bandwidth sharing object are purely informational. They are not checked for accuracy.

See Also

IWMBandwidthSharing Interface
IWMBandwidthSharing::SetBandwidth

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Return code Description

S_OK The method succeeded.

E_INVALIDARG One or both of the parameters are NULL.

Previous Next

IWMBandwidthSharing::GetType
The GetType method retrieves the type of sharing for the bandwidth sharing object.

Syntax

HRESULT GetType(
 GUID* pguidType
);

Parameters

pguidType

[out] Pointer to a globally unique identifier specifying the type of combined stream to be used. This will be one
of the following values.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

The settings of a bandwidth sharing object are purely informational. They are not checked for accuracy.

See Also

IWMBandwidthSharing Interface
IWMBandwidthSharing::SetType

Previous Next

Bandwidth sharing type Description

CLSID_WMBandwidthSharing_Exclusive Only one of the constituent streams can be active at
any given time.

CLSID_WMBandwidthSharing_Partial The constituent streams can be active simultaneously.

Return code Description

S_OK The method succeeded.

E_INVALIDARG The pointer passed is NULL.

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMBandwidthSharing::SetBandwidth
The SetBandwidth method sets the bandwidth and maximum buffer size for a combined stream.

Syntax

HRESULT SetBandwidth(
 DWORD dwBitrate,
 DWORD msBufferWindow
);

Parameters

dwBitrate

[in] DWORD containing the bit rate in bits per second. The combined bandwidths of the streams cannot
exceed this value.

msBufferWindow

[in] Specifies the buffer window in milliseconds. The combined buffer sizes of the streams cannot exceed this
value.

Return Values

This method always returns S_OK.

Remarks

The settings of a bandwidth sharing object are purely informational. They are not checked for accuracy.

See Also

IWMBandwidthSharing Interface
IWMBandwidthSharing::GetBandwidth

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

IWMBandwidthSharing::SetType
The SetType method sets the type of sharing (exclusive or partial) for the bandwidth sharing object.

Syntax

HRESULT SetType(
 REFGUID guidType
);

Parameters

guidType

[in] Globally unique identifier specifying the type of combined stream to be used. The only valid GUIDs are
those in the following table.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

The settings of a bandwidth sharing object are purely informational. They are not checked for accuracy.

See Also

IWMBandwidthSharing Interface
IWMBandwidthSharing::GetType

Previous Next

Bandwidth sharing type Description

CLSID_WMBandwidthSharing_Exclusive Only one of the constituent streams can be active at
any given time.

CLSID_WMBandwidthSharing_Partial The constituent streams can be active simultaneously.

Return code Description

S_OK The method succeeded.

E_INVALIDARG The GUID passed in guidType is any value other than
CLSID_BandwidthSharingExclusive or
CLSID_BandwidthSharingPartial.

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMClientConnections Interface
The IWMClientConnections interface manages the collecting of information about clients connected to a
writer network sink object.

The writer network sink object exposes this interface. You can retrieve a pointer to this interface by calling the
QueryInterface method of any other interface on a writer network sink object.

In addition to the methods inherited from IUnknown, the IWMClientConnections interface exposes the
following methods.

The following interfaces can be obtained by using the QueryInterface method of this interface.

See Also

Interfaces
IWMClientConnections2 Interface
Writer Network Sink Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Method Description

GetClientCount Retrieves the number of connected clients.

GetClientProperties Retrieves information, including the IP address and
protocol, about a connected client.

Interface IID

IWMClientConnections2 IID_IWMClientConnections2

IWMRegisterCallback IID_IWMRegisterCallback

IWMWriterNetworkSink IID_IWMWriterNetworkSink

IWMWriterSink IID_IWMWriterSink

Previous Next

IWMClientConnections::GetClientCount
The GetClientCount method retrieves the number of connected clients.

Syntax

HRESULT GetClientCount(
 DWORD* pcClients
);

Parameters

pcClients

[out] Pointer to a count of the clients that are connected.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

See Also

IWMClientConnections Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Return code Description

S_OK The method succeeded.

NS_E_INVALID_REQUEST Streaming has not yet begun.

E_INVALIDARG pcClients has been passed a null value.

Previous Next

Previous Next

IWMClientConnections::GetClientProperties
The GetClientProperties method retrieves information, including the IP address and protocol, about a
connected client.

Syntax

HRESULT GetClientProperties(
 DWORD dwClientNum,
 WM_CLIENT_PROPERTIES* pClientProperties
);

Parameters

dwClientNum

[in] DWORD containing the client's index number.

pClientProperties

[out] Pointer to a WM_CLIENT_PROPERTIES structure.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

See Also

IWMClientConnections Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Return code Description

S_OK The method succeeded.

NS_E_INVALID_REQUEST Streaming has not yet begun.

E_INVALIDARG pcClientProperties has been passed a null value.

NS_E_INVALID_CLIENT A client number larger than the number of clients has been
passed in.

OR

Failed to get client information for unspecified reason.

Previous Next

IWMClientConnections2 Interface
The IWMClientConnections2 interface retrieves advanced client information.

The writer network sink object exposes this interface. You can retrieve a pointer to this interface by calling the
QueryInterface method of any other interface on a writer network sink object.

In addition to the methods inherited from IWMClientConnections, the IWMClientConnections2 interface
exposes the following methods.

In addition to the methods of IUnknown, this interface inherits the following methods.

The following interfaces can be obtained by using the QueryInterface method of this interface.

See Also

Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Method Description

GetClientInfo Retrieves detailed information about a client attached to a
writer network sink.

Method Description

GetClientCount Retrieves the number of connected clients.

GetClientProperties Retrieves information, including the IP address and protocol,
about a connected client.

Interface IID

IWMClientConnections IID_IWMClientConnections

IWMRegisterCallback IID_IWMRegisterCallback

IWMWriterNetworkSink IID_IWMWriterNetworkSink

IWMWriterSink IID_IWMWriterSink

Previous Next

IWMClientConnections2::GetClientInfo
The GetClientInfo method retrieves information about a client attached to a writer network sink.

Syntax

HRESULT GetClientInfo(
 DWORD dwClientNum,
 WCHAR* pwszNetworkAddress,
 DWORD* pcchNetworkAddress,
 WCHAR* pwszPort,
 DWORD* pcchPort,
 WCHAR* pwszDNSName,
 DWORD* pcchDNSName
);

Parameters

dwClientNum

[in] DWORD containing the client number.

pwszNetworkAddress

[out] Pointer to a wide-character null-terminated string containing the network address of the client. Pass
NULL to retrieve the size of the string, which is returned in pcchNetworkAddress.

pcchNetworkAddress

[in, out] Pointer to a DWORD containing the size of pwszNetworkAddress, in wide characters. This size
includes the terminating null character.

pwszPort

[out] Pointer to a wide-character null-terminated string containing the network port of the client. Pass NULL to
retrieve the size of the string, which is returned in pcchPort.

pcchPort

[in, out] Pointer to a DWORD containing the size of pwszPort, in wide characters. This size includes the
terminating null character.

pwszDNSName

[out] Pointer to a wide-character null-terminated string containing the name of the domain name server
supporting the client. Pass NULL to retrieve the size of the string, which is returned in pcchDNSName.

Previous Next

pcchDNSName

[in, out] Pointer to a DWORD containing the size of pwszDNSName, in wide characters. This size includes the
terminating null character.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

IWMClientConnections2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMCodecAMVideoAccelerator Interface
This interface is exposed by the Windows Media Decoder DMO and is called by a media player source filter to
set up the various connections required to enable DirectX® video acceleration (VA) for decoding of Windows
Media-based video content. A player obtains this interface by calling the
IWMReaderAccelerator::GetCodecInterface method, which is exposed on the reader object.

In addition to the methods inherited from IUnknown, the IWMCodecAMVideoAccelerator interface exposes
the following methods.

See Also

Previous Next

Previous Next

Method Description

NegotiateConnection Called by the output pin on the player's source filter
during the connection process when it has been given
a DirectX VA media type.

SetAcceleratorInterface Called by the output pin on the player's source filter
to pass the VMR's IAMVideoAccelerator interface
to the decoder DMO.

SetPlayerNotify Called by the output pin on the source filter to
provide the decoder DMO with the source filter's
IWMPlayerTimestampHook interface to enable the
filter to update the time stamps on the samples before
they are delivered to the renderer.

Enabling DirectX Video Acceleration
Interfaces
Reader Object

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMCodecAMVideoAccelerator::NegotiateConnecti
The NegotiateConnection method is called by the output pin on the player's source filter during the connection
process when it has been given a DirectX VA media type.

Syntax

HRESULT NegotiateConnection(
 DMO_MEDIA_TYPE* pMediaType
);

Parameters

pMediaType

[in] Pointer to the media type structure that represents the media type being proposed for the connection.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

See Also

Enabling DirectX Video Acceleration
IWMCodecAMVideoAccelerator Interface

Previous Next

Previous Next

Return code Description

S_OK The method succeeded.

DMO_E_TYPE_NOT_SET No input type has been set on the decoder.

E_FAIL The decoder has no valid IAMVideoAccelerator
interface pointer.

E_POINTER pMediaType is NULL.

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMCodecAMVideoAccelerator::SetAcceleratorInte
The SetAcceleratorInterface method is called by the output pin on the player's source filter to pass the
IAMVideoAccelerator interface on the Video Mixing Renderer (VMR) to the decoder DMO.

Syntax

HRESULT SetAcceleratorInterface(
 IAMVideoAccelerator* pIAMVA
);

Parameters

pIAMVA

[in] Pointer to the IAMVideoAccelerator interface on the VMR.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

Enabling DirectX Video Acceleration
IWMCodecAMVideoAccelerator Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMCodecAMVideoAccelerator::SetPlayerNotify

Previous Next

Previous Next

Previous Next

Previous Next

The SetPlayerNotify method is called by the output pin on the source filter to provide the decoder DMO with
the source filter's IWMPlayerTimestampHook interface to enable the source filter to update the time stamps
on the samples before they are delivered to the renderer.

Syntax

HRESULT SetPlayerNotify(
 IWMPlayerTimestampHook* pHook
);

Parameters

pHook

[in] Pointer to the IWMPlayerTimestampHook interface exposed on the player.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code

See Also

Enabling DirectX Video Acceleration
IWMCodecAMVideoAccelerator Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMCodecInfo Interface
The IWMCodecInfo interface retrieves the number and types of codecs available. You can use this interface to
get information about supported compressed data formats for creating custom profiles.

Individual codec formats exist only for audio codecs. The characteristics of compressed video will vary based
upon the frame size and color depth of the original digital media and, therefore, cannot be predicted until the
time of encoding.

An IWMCodecInfo interface exists for each profile manager object. You can obtain a pointer to an instance of
this interface by calling the QueryInterface method of any other interface in the profile manager object,
typically IWMProfileManager.

The methods of the IWMCodecInfo interface are inherited by IWMCodecInfo2 and IWMCodecInfo3.

Previous Next

Previous Next

In addition to the methods inherited from IUnknown, the IWMCodecInfo interface exposes the following
methods.

The following interfaces can be obtained by using the QueryInterface method of this interface.

See Also

Interfaces
IWMCodecInfo2 Interface
IWMCodecInfo3 Interface
IWMProfileManager Interface
Profile Manager Object

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMCodecInfo::GetCodecFormat
The GetCodecFormat method retrieves one format supported by a specified codec. This method retrieves a
pointer to the IWMStreamConfig interface of a stream configuration object containing the stream settings for
the supported format.

Syntax

Method Description

GetCodecFormat Retrieves a structure describing the format of a specified codec.

GetCodecFormatCount Retrieves the number of formats supported by the specified
codec.

GetCodecInfoCount Retrieves the number of supported codecs.

Interface IID

IWMCodecInfo2 IID_IWMCodecInfo2

IWMCodecInfo3 IID_IWMCodecInfo3

IWMProfileManager IID_IWMProfileManager

IWMProfileManager2 IID_IWMProfileManager2

IWMProfileManagerLanguage IID_IWMProfileManagerLanguage

Previous Next

Previous Next

HRESULT GetCodecFormat(
 REFGUID guidType,
 DWORD dwCodecIndex,
 DWORD dwFormatIndex,
 IWMStreamConfig** ppIStreamConfig
);

Parameters

guidType

[in] GUID identifying the major type of digital media. This must be one of the following constants.

dwCodecIndex

[in] DWORD containing the codec index ranging from zero to one less than the number of supported codecs of
the type specified by guidType. To retrieve the number of individual codecs supporting a major type, use the
IWMCodecInfo::GetCodecInfoCount method.

dwFormatIndex

[in] DWORD containing the format index ranging from zero to one less than the number of supported formats.
To retrieve the number of individual formats supported by a codec, use the
IWMCodecInfo::GetCodecFormatCount method.

ppIStreamConfig

[out] Pointer to a pointer to the IWMStreamConfig interface of a stream configuration object containing the
settings of the specified format.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

Use this method along with GetCodecFormatCount to enumerate the formats supported by the codec.

The codec format describes the characteristics of the compressed data stream in the file, and has no direct
correlation to the uncompressed format of the input media or the output media. The format of input media data
is determined at the time of encoding, using the IWMWriter::SetInputProps method. The format of output

Constant Description

WMMEDIATYPE_Video Specifies a video codec.

WMMEDIATYPE_Audio Specifies an audio codec.

Return code Description

S_OK The method succeeded.

E_INVALIDARG An invalid or null value has been passed in.

media data is determined at the time of decoding, using the SetOutputProps method of either the IWMReader
interface or the IWMSyncReader interface.

The Windows Media Format SDK provides codecs only for audio and video. If you specify another major type,
this method will return an error.

See Also

IWMCodecInfo Interface
IWMCodecInfo::GetCodecFormatCount
IWMStreamConfig Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMCodecInfo::GetCodecFormatCount
The GetCodecFormatCount method retrieves the number of formats supported by the specified codec. Each
codec format is a stream configuration that is valid for use with the codec.

Syntax

HRESULT GetCodecFormatCount(
 REFGUID guidType,
 DWORD dwCodecIndex,
 DWORD* pcFormat
);

Parameters

guidType

[in] GUID identifying the major type of digital media. This must be one of the following constants.

dwCodecIndex

[in] DWORD containing the codec index ranging from zero to one less than the number of supported codecs of

Previous Next

Previous Next

Constant Description

WMMEDIATYPE_Video Specifies a video codec.

WMMEDIATYPE_Audio Specifies an audio codec.

the type specified by guidType. To retrieve the number of individual codecs supporting a major media type, use
the IWMCodecInfo::GetCodecInfoCount method.

pcFormat

[out] Pointer to a count of the formats supported by the codec.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

Use this method along with GetCodecFormat to enumerate the formats supported by the codec.

The Windows Media Format SDK provides codecs only for audio and video. If you specify another major type,
this method will return an error.

See Also

IWMCodecInfo Interface
IWMCodecInfo::GetCodecFormat

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMCodecInfo::GetCodecInfoCount
The GetCodecInfoCount method retrieves the number of supported codecs for a specified major type of digital
media (audio or video).

Syntax

HRESULT GetCodecInfoCount(
 REFGUID guidType,

Return code Description

S_OK The method succeeded.

E_POINTER pcFormat has been passed a null value.

E_INVALIDARG Other unspecified failure.

Previous Next

Previous Next

 DWORD* pcCodecs
);

Parameters

guidType

[in] GUID identifying the major type of digital media. This must be one of the following constants.

pcCodecs

[out] Pointer to a count of supported codecs.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

Use this method along with GetCodecFormatCount and GetCodecFormat to enumerate through the
supported codecs for each media type, and the supported formats for each codec.

The Windows Media Format SDK provides codecs only for audio and video. If you specify another major type,
this method will return an error.

See Also

IWMCodecInfo Interface
IWMCodecInfo::GetCodecFormatCount
IWMCodecInfo::GetCodecFormat

© 2000-2003 Microsoft Corporation. All rights reserved.

Constant Description

WMMEDIATYPE_Video Specifies a video codec.

WMMEDIATYPE_Audio Specifies an audio codec.

Return code Description

S_OK The method succeeded.

E_POINTER pcCodecs has been passed a null value.

E_INVALIDARG guidType is not a type for which codecs are used.

Previous Next

IWMCodecInfo2 Interface
The IWMCodecInfo2 interface manages the retrieval of information about codecs. To access it, call
QueryInterface on a profile manager object.

In addition to the methods inherited from IWMCodecInfo, the IWMCodecInfo2 interface exposes the
following methods.

In addition to the methods of IUnknown, this interface inherits the following methods.

The following interfaces can be obtained by using the QueryInterface method of this interface.

See Also

Interfaces
IWMCodecInfo Interface
IWMProfileManager Interface
Profile Manager Object

Previous Next

Method Description

GetCodecFormatDesc Retrieves a description of a specified codec format.

GetCodecName Retrieves the name of a specified codec.

Method Description

GetCodecFormat Retrieves a structure describing the format of a specified codec.

GetCodecFormatCount Retrieves the number of formats supported by the specified
codec.

GetCodecInfoCount Retrieves the number of supported codecs.

Interface IID

IWMCodecInfo IID_IWMCodecInfo

IWMCodecInfo3 IID_IWMCodecInfo3

IWMProfileManager IID_IWMProfileManager

IWMProfileManager2 IID_IWMProfileManager2

IWMProfileManagerLanguage IID_IWMProfileManagerLanguage

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMCodecInfo2::GetCodecFormatDesc
The GetCodecFormatDesc method retrieves a description of a specified codec format. This method also
retrieves a stream configuration object containing the settings for the codec format.

Syntax

HRESULT GetCodecFormatDesc(
 REFGUID guidType,
 DWORD dwCodecIndex,
 DWORD dwFormatIndex,
 IWMStreamConfig** ppIStreamConfig,
 WCHAR* wszDesc,
 DWORD* pcchDesc
);

Parameters

guidType

[in] GUID identifying the major type of digital media. This must be one of the following constants.

dwCodecIndex

[in] DWORD containing the codec index ranging from zero to one less than the number of supported codecs of
the type specified by guidType. To retrieve the number of individual codecs supporting a major type, use the
IWMCodecInfo::GetCodecInfoCount method.

dwFormatIndex

[in] DWORD containing the format index ranging from zero to one less than the number of supported formats.
To retrieve the number of individual formats supported by a codec, use the
IWMCodecInfo::GetCodecFormatCount method.

ppIStreamConfig

Previous Next

Previous Next

Constant Description

WMMEDIATYPE_Video Specifies a video codec.

WMMEDIATYPE_Audio Specifies an audio codec.

[out] Pointer to a pointer to the IWMStreamConfig interface of a stream configuration object containing the
settings of the specified format. When calling GetCodecFormatDesc to retrieve the size of the description
string, pass NULL for this parameter.

wszDesc

[out] Pointer to a wide-character null-terminated string containing the codec format description.

pcchDesc

[in, out] On input, a pointer to the length of the wszDesc buffer. On output, a pointer to the length of the codec
format description string, including the terminating null character.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

You should make two calls to GetCodecFormatDesc. On the first call, pass NULL as wszDesc. On return, the
value pointed to by pcchDesc will be set to the number of wide characters required to hold the description,
including the terminating null character. Then you can allocate a buffer of the appropriate size and pass a
pointer to it as wszDesc on the second call.

Some formats of the Windows Media Audio 9 codec and Windows Media Audio 9 Professional codec have
very similar descriptions. For example both "64 kbps, 44 kHz, stereo CBR" and "64 kbps, 44 kHz, stereo (A/V)
CBR" are listed. In these cases, the format with "(A/V)" in its description is designed for use in files that also
contain one or more video streams. The other format is for files that contain only audio.

See Also

IWMCodecInfo2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Return code Description

S_OK The method succeeded.

E_INVALIDARG An invalid or null value has been passed in.

Previous Next

Previous Next

IWMCodecInfo2::GetCodecName
The GetCodecName method retrieves the name of a specified codec.

Syntax

HRESULT GetCodecName(
 REFGUID guidType,
 DWORD dwCodecIndex,
 WCHAR* wszName,
 DWORD* pcchName
);

Parameters

guidType

[in] GUID identifying the major type of digital media. This must be one of the following constants.

dwCodecIndex

[in] DWORD containing the codec index ranging from zero to one less than the number of supported codecs of
the type specified by guidType. To retrieve the number of individual codecs supporting a major type, use the
IWMCodecInfo::GetCodecInfoCount method.

wszName

[out] Pointer to a wide-character null-terminated string that receives the codec name.

pcchName

[in, out] On input, pointer to a DWORD containing the size, in wide characters, of the buffer wszName. On
output, pointer to a variable containing the number of characters in wszName, including the terminating null
character.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

Constant Description

WMMEDIATYPE_Video Specifies a video codec.

WMMEDIATYPE_Audio Specifies an audio codec.

Return code Description

S_OK The method succeeded.

E_INVALIDARG An invalid or null value has been passed in.

You should make two calls to GetCodecName. On the first call, pass NULL as wszName. On return, the value
at pcchName will be set to the buffer size required to hold the codec name, including the terminating character.
Then you can allocate the required amount of memory for the buffer and pass a pointer to it as wszName on the
second call.

See Also

IWMCodecInfo2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMCodecInfo3 Interface
The IWMCodecInfo3 interface retrieves properties from a codec.

You can retrieve a pointer to IWMCodecInfo3 with a call to the QueryInterface method of any other interface
of the profile manager object.

In addition to the methods inherited from IWMCodecInfo2, the IWMCodecInfo3 interface exposes the
following methods.

In addition to the methods of IUnknown, this interface inherits the following methods.

Previous Next

Previous Next

Method Description

GetCodecEnumerationSetting Obtains the current value for a codec enumeration
setting. Codec enumeration settings enable you to
enumerate codec formats by feature.

GetCodecFormatProp Retrieves a property from one format of a codec.

GetCodecProp Retrieves a codec property.

SetCodecEnumerationSetting Sets a codec enumeration setting. Codec enumeration
settings enable you to enumerate codec formats by
feature.

Method Description

GetCodecFormatCount Retrieves the number of formats supported by the
specified codec.

The following interfaces can be obtained by using the QueryInterface method of this interface.

See Also

Interfaces
IWMCodecInfo Interface
IWMCodecInfo2 Interface
Profile Manager Object

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMCodecInfo3::GetCodecEnumerationSetting
The GetCodecEnumerationSetting method retrieves the current value for one codec enumeration setting.
Codec enumeration settings dictate the codec formats that can be enumerated by the methods of
IWMCodecInfo. You can change codec enumeration settings in order to retrieve codec formats supporting
specific features by calling IWMCodecInfo3::SetCodecEnumerationSetting.

Syntax

GetCodecFormatDesc Retrieves a description of a specified codec format.

GetCodecFormat Retrieves a structure describing the format of a
specified codec.

GetCodecInfoCount Retrieves the number of supported codecs.

GetCodecName Retrieves the name of a specified codec.

Interface IID

IWMCodecInfo IID_IWMCodecInfo

IWMCodecInfo2 IID_IWMCodecInfo2

IWMPacketSize IID_IWMPacketSize

IWMPacketSize2 IID_IWMPacketSize2

IWMProfileManager IID_IWMProfileManager

IWMProfileManager2 IID_IWMProfileManager2

IWMProfileManagerLanguage IID_IWMProfileManagerLanguage

Previous Next

Previous Next

HRESULT GetCodecEnumerationSetting(
 REFGUID guidType,
 DWORD dwCodecIndex,
 LPCWSTR pszName,
 WMT_ATTR_DATATYPE* pType,
 BYTE* pValue,
 DWORD* pdwSize
);

Parameters

guidType

[in] GUID identifying the major type of digital media. This must be one of the following constants.

dwCodecIndex

[in] DWORD containing the codec index ranging from zero to one less than the number of supported codecs of
the type specified by guidType. To retrieve the number of individual codecs supporting a major type, use the
IWMCodecInfo::GetCodecInfoCount method.

pszName

[in] Pointer to a wide-character null-terminated string containing the name of the enumeration setting. Use one
of the following constants.

pType

[out] Pointer to a WMT_ATTR_DATATYPE enumeration value specifying the data type of the value
returned in pValue.

pValue

[out] Pointer to a BYTE array containing the codec enumeration data. The data type and meaning of the data

Constant Description

WMMEDIATYPE_Video Specifies a video codec.

WMMEDIATYPE_Audio Specifies an audio codec.

Constant Description

g_wszVBREnabled Use to enumerate the supported codec formats that use variable
bit rate (VBR) encoding.

The value returned in pValue is a BOOL.

g_wszNumPasses Use to enumerate the supported codec formats that use a
number of passes equal to the value in pValue.

The value returned in pValue is a DWORD specifying the
number of passes.

returned in this array depends on the setting specified by pszName. You can set this value to NULL to retrieve
the required size of the array in pdwSize.

pdwSize

[in, out] Pointer to a DWORD containing the size of the setting value in bytes. If you set pValue to NULL, this
value will be set to the size required to hold the setting value.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

See Also

IWMCodecInfo3 Interface
SetCodecEnumerationSetting

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMCodecInfo3::GetCodecFormatProp
The GetCodecFormatProp method retrieves a property from one format of a codec.

Syntax

HRESULT GetCodecFormatProp(
 REFGUID guidType,
 DWORD dwCodecIndex,
 DWORD dwFormatIndex,
 LPCWSTR pszName,
 WMT_ATTR_DATATYPE* pType,
 BYTE* pValue,
 DWORD* pdwSize
);

Parameters

Return code Description

S_OK The method succeeded.

NS_E_UNSUPPORTED_PROPERTY The enumeration setting specified is not valid for the
codec.

Previous Next

Previous Next

guidType

[in] GUID identifying the major type of digital media. This must be one of the following constants.

dwCodecIndex

[in] DWORD containing the codec index ranging from zero to one less than the number of supported codecs of
the type specified by guidType. To retrieve the number of individual codecs supporting a major type, use the
IWMCodecInfo::GetCodecInfoCount method.

dwFormatIndex

[in] DWORD containing the format index ranging from zero to one less than the number of supported formats.
To retrieve the number of individual formats supported by a codec, use the
IWMCodecInfo::GetCodecFormatCount method.

pszName

[in] Pointer to a wide-character null-terminated string containing the name of the property to retrieve.

Currently only one codec format property is supported; it is listed in the following table. The format property
determines the data type and value of the property; this information is included in the table.

pType

[out] Pointer to a variable that will receive a member of the WMT_ATTR_DATATYPE enumeration type.
This value specifies the type of information returned to the buffer pointed to by pValue.

pValue

[out] Pointer to a buffer that will receive the value of the property. The data returned is of a type specified by
pType.

pdwSize

[in, out] Pointer to a DWORD value specifying the length of the buffer pointed to by pValue.

Constant Description

WMMEDIATYPE_Video Specifies a video codec.

WMMEDIATYPE_Audio Specifies an audio codec.

Global constant Data type Description

g_wszSpeechCaps WMT_TYPE_DWORD The value is one from the
WMT_MUSICSPEECH_CLASS_MODE
enumeration type indicating the supported
mode of the format. This property applies
only to the Windows Media Audio 9 Voice
codec.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

You should make two calls to GetCodecFormatProp for each property you want to retrieve. On the first call,
pass NULL as pValue. On return, the value of pdwSize will be set to the buffer size required to hold the value of
the specified property. Then you can allocate the required amount of memory for the buffer and pass a pointer
to it as pValue on the second call.

See Also

IWMCodecInfo3 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMCodecInfo3::GetCodecProp
The GetCodecProp method retrieves a codec property.

Syntax

HRESULT GetCodecProp(
 REFGUID guidType,
 DWORD dwCodecIndex,
 LPCWSTR pszName,
 WMT_ATTR_DATATYPE* pType,

Return code Description

S_OK The method succeeded.

E_INVALIDARG pszName or pType or pdwSize is NULL.

OR

guidType specifies an invalid input type.

OR

pszName specifies an invalid property name.

Previous Next

Previous Next

 BYTE* pValue,
 DWORD* pdwSize
);

Parameters

guidType

[in] GUID identifying the major type of digital media. This must be one of the following constants.

dwCodecIndex

[in] DWORD containing the codec index ranging from zero to one less than the number of supported codecs of
the type specified by guidType. To retrieve the number of individual codecs supporting a major type, use the
IWMCodecInfo::GetCodecInfoCount method.

pszName

[in] Pointer to a null-terminated string containing the name of the property to retrieve.

The following table lists the codec properties you can retrieve. The property dictates the data type and value;
this information is also included in the table.

Constant Description

WMMEDIATYPE_Video Specifies a video codec.

WMMEDIATYPE_Audio Specifies an audio codec.

Global constant Data type Description

g_wszComplexityMax WMT_TYPE_DWORD The value is the maximum
complexity value for the codec.
Codec complexity applies only to
video codecs. The range of
complexity values is from 0 to this
value.

g_wszComplexityOffline WMT_TYPE_DWORD The value is the suggested
complexity value for the codec
when encoding files for local
playback. Codec complexity applies
only to video codecs. The range of
complexity values is from 0 to the
value retrieved with
g_wszComplexityMax.

g_wszComplexityLive WMT_TYPE_DWORD The value is the suggested
complexity value for the codec
when encoding files for streaming
playback. Codec complexity applies
only to video codecs. The range of
complexity values is from 0 to the

pType

[out] Pointer to a variable that will receive a member of the WMT_ATTR_DATATYPE enumeration type.
This value specifies the type of information returned to the buffer at pValue.

pValue

[out] Pointer to a buffer that will receive the value of the property. The data returned is of a type specified by
pType.

pdwSize

[in, out] Pointer to a DWORD value specifying the length of the buffer at pValue.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

You should make two calls to GetCodecProp for each property you want to retrieve. On the first call, pass
NULL as pValue. On return, the value of pdwSize will be set to the buffer size required to hold the value of the
specified property. Then you can allocate the required amount of memory for the buffer and pass a pointer to it
as pValue on the second call.

See Also

IWMCodecInfo3 Interface

value retrieved with
g_wszComplexityMax.

g_wszIsVBRSupported WMT_TYPE_BOOL The value indicates whether the
codec supports VBR.

Return code Description

S_OK The method succeeded.

E_INVALIDARG pszName or pType or pdwSize is NULL.

OR

guidType specifies an invalid input type.

OR

pszName specifies an invalid property name.

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMCodecInfo3::SetCodecEnumerationSetting
The SetCodecEnumerationSetting method sets the value of one codec enumeration setting. Codec
enumeration settings dictate the codec formats that can be enumerated by the methods of IWMCodecInfo.

Syntax

HRESULT SetCodecEnumerationSetting(
 REFGUID guidType,
 DWORD dwCodecIndex,
 LPCWSTR pszName,
 WMT_ATTR_DATATYPE Type,
 const BYTE* pValue,
 DWORD dwSize
);

Parameters

guidType

[in] GUID identifying the major type of digital media. This must be one of the following constants.

dwCodecIndex

[in] DWORD containing the codec index ranging from zero to one less than the number of supported codecs of
the type specified by guidType. To retrieve the number of individual codecs supporting a major type, use the
IWMCodecInfo::GetCodecInfoCount method.

pszName

[in] Pointer to a wide-character null-terminated string containing the name of the enumeration setting. Use one
of the following constants.

Previous Next

Constant Description

WMMEDIATYPE_Video Specifies a video codec.

WMMEDIATYPE_Audio Specifies an audio codec.

Constant Description

g_wszVBREnabled Use to enumerate the supported codec formats that use variable
bit rate (VBR) encoding.

Type

[in] A WMT_ATTR_DATATYPE value specifying the data type of the value in pValue.

pValue

[in] A pointer to a BYTE array containing the setting value.

dwSize

[in] DWORD containing the size of the pValue BYTE array.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

The Windows Media Audio and Video 9 Series codecs can potentially enumerate four different sets of codec
formats, as listed in the following table.

Not all codecs support all formats.

See Also

GetCodecEnumerationSetting
IWMCodecInfo3 Interface

The value returned in pValue is a BOOL.

g_wszNumPasses Use to enumerate the supported codec formats that use a
number of passes equal to the value in pValue.

The value returned in pValue is a DWORD specifying the
number of passes.

Return code Description

S_OK The method succeeded; the feature is supported by
the codec.

NS_E_UNSUPPORTED_PROPERTY The enumeration setting specified is not valid for the
codec.

 Constant bit rate
(CBR) stream

Two-pass CBR
stream

Quality-based
variable bit rate
(VBR) stream

Bit-rate-based
VBR stream
(constrained or
unconstrained)

g_wszVBREnabled FALSE FALSE TRUE TRUE

g_wszNumPasses 1 2 1 2

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMCredentialCallback Interface
The IWMCredentialCallback interface is a callback interface used by the reader object to acquire user
credentials. When the reader object receives an authentication challenge from the server, it calls the
application's AcquireCredentials method to get the credentials of the user, in order to access the remote site.
This interface is implemented by the application.

In addition to the methods inherited from IUnknown, the IWMCredentialCallback interface exposes the
following method.

See Also

Authentication
Interfaces
Reader Object

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMCredentialCallback::AcquireCredentials
The AcquireCredentials method acquires the credentials of the user, to verify that the user has permission to
access a remote site.

Previous Next

Previous Next

Method Description

AcquireCredentials Acquires the credentials of the user, to verify that the user has
permission to access a remote site.

Previous Next

Previous Next

Syntax

HRESULT AcquireCredentials(
 WCHAR* pwszRealm,
 WCHAR* pwszSite,
 WCHAR* pwszUser,
 DWORD cchUser,
 WCHAR* pwszPassword,
 DWORD cchPassword,
 HRESULT hrStatus,
 DWORD* pdwFlags
);

Parameters

pwszRealm

[in] Pointer to a wide-character null-terminated string that contains the name of the realm.

pwszSite

[in] Pointer to a wide-character null-terminated string containing the name of the site. The site is the name of
the remote server.

pwszUser

[in, out] Pointer to a buffer for the user name. The application should copy the user name into this buffer. When
this method is first called, the buffer is empty. If the method is called again — for example, if the user typed his
or her credentials incorrectly — the buffer may contain the name from the previous invocation.

cchUser

[in] Specifies the size of the pwszUser buffer, in number of wide characters.

pwszPassword

[in, out] Pointer to a buffer for the password. The application should copy the user's password into this buffer.

cchPassword

[in] Specifies the size of the pwszPassword buffer, in number of wide characters.

hrStatus

[in] Specifies an HRESULT return code.

pdwFlags

[in, out] Pointer to a DWORD containing a bitwise OR of zero or more flags from the
WMT_CREDENTIAL_FLAGS enumeration type. On input, the caller sets whichever flags are relevant. On
output, the application should clear the flags that were set by the caller, and set any additional flags, as
appropriate. For details, see WMT_CREDENTIAL_FLAGS.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

This method is used when a request for a remote URL requires authentication.

The reader object calls the AcquireCredentials method on the application to retrieve the user name and
password of the user.

See Also

Authentication
IWMCredentialCallback Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMDRMEditor Interface
The IWMDRMEditor interface is exposed on the metadata editor object. It can be obtained by calling
QueryInterface from IWMMetadataEditor. The IWMDRMEditor interface enables editing applications to
examine the DRM attributes of an ASF file without having the wmstubdrm.lib static library. The
IWMDRMReader interface contains a similar method, but the application must be linked to a valid
wmstubdrm.lib library in order to use that interface.

In addition to the methods inherited from IUnknown, the IWMDRMEditor interface exposes the following
method.

For information on other interfaces that can be obtained by using the QueryInterface method of this interface,
see Metadata Editor Object.

See Also

Interfaces
IWMDRMReader::GetDRMProperty
Metadata Editor Object
Viewing Attributes of Protected Files

Previous Next

Previous Next

Method Description

GetDRMProperty Retrieves the specified DRM property or file
attribute.

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMDRMEditor::GetDRMProperty
The GetDRMProperty method retrieves the specified DRM property.

Syntax

HRESULT GetDRMProperty(
 LPCWSTR pwstrName,
 WMT_ATTR_DATATYPE* pdwType,
 BYTE* pValue,
 WORD* pcbLength
);

Parameters

pwstrName

[in] Specifies the DRM file attribute to retrieve.

pdwType

[out] Pointer that receives the data type of the returned value.

pValue

[out] Pointer to the value requested in pwstrName.

pcbLength

[out] Length of pValue in bytes.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

This method retrieves only DRM properties listed below. The file must first be opened using
IWMMetadataEditor::Open or IWMMetadataEditor2::OpenEx.

Previous Next

Previous Next

Also, before calling GetDRMProperty on an opened file, always call the helper function
WMIsContentProtected to ensure that the file is protected with DRM. It is important to do this because in
some cases this method might succeed when called on unprotected content.

The following properties are accessible from this method:

DRM_IsDRM
DRM_IsDRMCached
DRM_BaseLicenseAcqURL
DRM_Rights
DRM_LicenseID
DRM_ActionAllowed_Playback
DRM_ActionAllowed_CopyToCD
DRM_ActionAllowed_CopyToSDMIDevice
DRM_ActionAllowed_CopyToNonSDMIDevice
DRM_ActionAllowed_Backup
DRM_DRMHeader_KeyID
DRM_DRMHeader_LicenseAcqURL
DRM_DRMHeader_ContentID
DRM_DRMHeader_IndividualizedVersion
DRM_DRMHeader_ContentDistributor
DRM_DRMHeader_SubscriptionContentID

See Also

IWMDRMEditor Interface
DRM Attribute List
DRM Properties

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMDRMReader Interface
The IWMDRMReader interface provides methods to configure the DRM component and to manage DRM
license acquisition and individualization of client applications. It is used only for content protected using DRM
version 7, not the earlier DRM version 1.

This interface can be obtained from a reader object.

In addition to the methods inherited from IUnknown, the IWMDRMReader interface exposes the following
methods.

Previous Next

Previous Next

For information on other interfaces that can be obtained by using the QueryInterface method of this interface,
see Reader Object.

See Also

Digital Rights Management Features
DRM Attribute List
DRM Properties
Interfaces
IWMReader Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMDRMReader::AcquireLicense
The AcquireLicense method begins the license acquisition process.

Syntax

HRESULT AcquireLicense(

Method Description

AcquireLicense Begins the license acquisition process for a DRM
version 7 license.

CancelIndividualization Cancels a current call to the Individualize method.

CancelLicenseAcquisition Cancels a current call to the AcquireLicense method.

CancelMonitorLicenseAcquisition Cancels a current call to the
MonitorLicenseAcquisition method.

GetDRMProperty Retrieves DRM-specific file attributes or run-time
properties.

Individualize Individualizes the client.

MonitorLicenseAcquisition In non-silent license acquisition, informs the
application when a license has been successfully
acquired.

SetDRMProperty Sets the DRM_Rights that will be requested for the
next file that is opened.

Previous Next

Previous Next

 DWORD dwFlags
);

Parameters

dwFlags

[in] DWORD containing the relevant flags.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

This is an asynchronous call that returns immediately.

For silent acquisition: When the license acquisition is complete, IWMStatusCallback::OnStatus is called
with the status parameter set to WMT_ACQUIRE_LICENSE. If the license acquisition was successful, the
pvalue parameter is set to a byte pointer to a WM_GET_LICENSE_DATA structure. If there was an error
during the license acquisition, the HRESULT from the OnStatus call holds the appropriate error code.

For non-silent acquisition: OnStatus will return immediately and send a WMT_ACQUIRE_LICENSE
event to the application. In that case, the WM_GET_LICENSE_DATA structure contains information about
the URL to be used to acquire the license.

See Also

Handling License Acquisition Events
IWMDRMReader Interface
IWMDRMReader::CancelLicenseAcquisition
WMT_STATUS

© 2000-2003 Microsoft Corporation. All rights reserved.

Flag Description

0x1 Indicates that the method will attempt to acquire the license silently.

0x0 Indicates that the OnStatus callback will return a URL to use on the
Web to acquire a license.

Return code Description

S_OK The method succeeded.

E_OUTOFMEMORY Not enough memory to complete the task.

Previous Next

IWMDRMReader::CancelIndividualization
The CancelIndividualization method cancels a current call to the Individualize method.

Syntax

HRESULT CancelIndividualization();

Parameters

This method takes no parameters.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

IWMDRMReader Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMDRMReader::CancelLicenseAcquisition
The CancelLicenseAcquisition method cancels a current call to the AcquireLicense method.

Syntax

HRESULT CancelLicenseAcquisition();

Parameters

This method takes no parameters.

Return Values

Previous Next

Previous Next

Previous Next

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

IWMDRMReader Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMDRMReader::CancelMonitorLicenseAcquisitio
The CancelMonitorLicenseAcquisition method cancels a current call to the MonitorLicenseAcquisition
method.

Syntax

HRESULT CancelMonitorLicenseAcquisition();

Parameters

This method takes no parameters.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

This method terminates the thread that periodically checks the license store to determine when the most recently
requested license has been obtained.

See Also

IWMDRMReader Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

IWMDRMReader::GetDRMProperty
The GetDRMProperty method retrieves DRM-specific file attributes and run-time properties.

Syntax

HRESULT GetDRMProperty(
 LPCWSTR pwstrName,
 WMT_ATTR_DATATYPE* pdwType,
 BYTE* pValue,
 WORD* pcbLength
);

Parameters

pwstrName

[in] Specifies the property or file attribute to retrieve.

pdwType

[out] Pointer that receives the data type of the returned value.

pValue

[out] Pointer to the value requested in pwstrName.

pcbLength

[out] Size of pValue, in bytes.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

This method can be used to retrieve both DRM header attributes and DRM license information for the current
file. DRM-related constants are defined in drmexternals.idl and wmsdkidl.idl.

If you specify a "license state" constant, the returned data is a pointer to a WM_LICENSE_STATE_DATA
structure that fully describes the terms of the license for the particular right. The supported license state
constants are described in the following table.

Previous Next

Constant Literal string value Descript

If you specify an "action allowed" constant, the returned data is a Boolean that indicates whether a specified
action is allowed at this time. The supported constants are:

If you specify a "DRM Header" constant, the returned value is the string literal for the specified property. The

g_wszWMDRM_LicenseState_Playback "LicenseStateData.Play" License
restriction
on playin
the file.

g_wszWMDRM_LicenseState_CopyToCD "LicenseStateData.Print.redbook" License
restriction
on copyin
the file to
CD.

g_wszWMDRM_LicenseState_CopyToSDMIDevice "LicenseStateData.Transfer.SDMI" License
restriction
on copyin
the file to
an SDMI
device.

g_wszWMDRM_LicenseState_CopyToNonSDMIDevice "LicenseStateData.Transfer.NONSDMI" License
restriction
on copyin
the file to
non-SMD
device.

Constant Literal string value Descript

g_wszWMDRM_ActionAllowed_Playback "ActionAllowed.Play" Right to
play file
now.

g_wszWMDRM_ActionAllowed_CopyToCD "ActionAllowed.Print.redbook" Right to
copy file
CD now

g_wszWMDRM_ActionAllowed_CopyToSDMIDevice "ActionAllowed.Transfer.SDMI" Right to
copy file
an SDM
device n

g_wszWMDRM_ActionAllowed_CopyToNonSDMIDevice "ActionAllowed.Transfer.NONSDMI" Right to
copy file
a non-
SMDI
device n

g_wszWMDRM_ActionAllowed_Backup "ActionAllowed.Backup" Right to
back up
file now

supported DRM Header constants are:

Before calling this method on a new file, always call the helper function WMIsContentProtected to ensure
that the file is protected with DRM. It is important to do this because in some cases this method might succeed
when called on unprotected content.

See Also

DRM Attribute List
DRM Properties
IWMDRMEditor::GetDRMProperty
IWMDRMReader Interface
IWMDRMReader::SetDRMProperty
WMT_ATTR_DATATYPE

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMDRMReader::Individualize
The Individualize method individualizes the client by updating their DRM system components.

Syntax

Constant Literal string value Description

g_wszWMDRM_DRMHeader_KeyID "DRMHeader.KID" DRM key
value.

g_wszWMDRM_DRMHeader_LicenseAcqURL "DRMHeader.LAINFO" DRM license
acquisition
URL.

g_wszWMDRM_DRMHeader_ContentID "DRMHeader.CID" DRM content
ID.

g_wszWMDRM_DRMHeader_IndividualizedVersion "DRMHeader.SECURITYVERSION" Individualized
version.

g_wszWMDRM_DRMHeader_ContentDistributor "DRMHeader.ContentDistributor" Content
distributor.

g_wszWMDRM_DRMHeader_SubscriptionContentID "DRMHeader.SubscriptionContentID" Subscription
content ID.

Previous Next

Previous Next

HRESULT Individualize(
 DWORD dwFlags
);

Parameters

dwFlags

[in] DWORD containing the relevant flags.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

This is an asynchronous call that returns immediately. To abandon the attempt, call CancelIndividualization.

IMPORTANT Because this operation will cause the user's system to be modified, you should display a
message that explains what this operation will do and let the user choose whether or not to individualize. For
more information and suggested message text, see DRM Individualization.

Individualization is the process of making the DRM client unique by downloading and installing an
individualized component from the Microsoft Individualization Service. The entire process is performed
automatically after an application calls the Individualize method. The application is informed of the progress of
the individualization process through repeated WMT_INDIVIDUALIZE events, each of which has an
associated WM_INDIVIDUALIZE_STATUS structure which is sent to the application's
IWMStatusCallback::OnStatus callback method.

There are two times to initiate the individualization process: the first is when a piece of content requires it, and
the second is when a player individualizes the client as part of the setup. In the latter case, there is no reason to
individualize the client again.

See Also

DRM Individualization
Individualizing DRM Applications
IWMDRMReader Interface
IWMDRMReader::CancelIndividualization
WM_INDIVIDUALIZE_STATUS

Flag Description

0x0 Indicates that the client can be individualized again.

0x1 Indicates that the client will not be individualized again.

Return code Description

S_OK The method succeeded.

E_INVALIDARG A null or invalid argument has been passed in.

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMDRMReader::MonitorLicenseAcquisition
The MonitorLicenseAcquisition method, in non-silent license acquisition, informs the application when a
license has been successfully acquired.

Syntax

HRESULT MonitorLicenseAcquisition();

Parameters

This method takes no parameters.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

This method should be used whenever non-silent license acquisition has been initiated for DRM version 7
content. It is an asynchronous call that returns immediately. This method creates a thread that periodically
checks the local license store to determine when the requested license has been received. To cancel the attempt,
call CancelMonitorLicenseAcquisition.

When the license acquisition is completed (whether successful or otherwise), the application is notified through
a WMT_LICENSE_ACQUIRE event that is sent to the application's IWMStatusCallback::OnStatus
method.

See Also

Handling License Acquisition Events
IWMDRMReader Interface
IWMDRMReader::CancelMonitorLicenseAcquisition
IWMStatusCallback::OnStatus

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

IWMDRMReader::SetDRMProperty
The SetDRMProperty method on the reader object is used only to set the DRM_Rights property to specify
which rights are being requested.

Syntax

HRESULT SetDRMProperty(
 LPCWSTR pwstrName,
 WMT_ATTR_DATATYPE dwType,
 const BYTE* pValue,
 WORD cbLength
);

Parameters

pwstrName

[in] Specifies the property name. Only g_wszWMDRM_Rights can be set from the reader object.

dwType

[in] One member of the WMT_ATTR_DATATYPE enumeration type. The only supported value for this
method is WMT_TYPE_STRING.

pValue

[in] Pointer to a byte array containing the attribute value.

cbLength

[in] Size of pValue, in bytes.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

DRM Attribute List
DRM Properties
IWMDRMReader Interface
IWMDRMReader::GetDRMProperty
WMT_ATTR_DATATYPE

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMDRMWriter Interface
The IWMDRMWriter interface provides support for applying DRM protection to content in ASF files. You
can use this interface to set various DRM file attributes and run-time properties, and to generate DRM keys for
encrypting the content and the DRM header, without needing to call functions external to the Windows Media
Format SDK. Prior to Windows Media 9 Series, it was necessary to use the Windows Media Rights Manager
SDK to apply protection to files. The ability to protect files "on the fly" as you write them enables scenarios
such as "Live DRM" in which live streaming content, such as a pay-per-view sports event or concert, can be
delivered over the Internet.

An IWMDRMWriter interface exists for every writer object. You can obtain a pointer to an instance of this
interface by calling the QueryInterface method of any interface in a writer object.

In addition to the methods inherited from IUnknown, the IWMDRMWriter interface exposes the following
methods.

For information on other interfaces that can be obtained by using the QueryInterface method of this interface,
see Writer Object.

See Also

DRM Attribute List
DRM Properties
Interfaces
Writer Object

Previous Next

Previous Next

Method Description

GenerateKeyID Generates a DRM key ID that will be used in
conjunction with a key seed to encrypt and decrypt
files.

GenerateKeySeed Generates a DRM key seed that will be used in
conjunction with a key ID to create protected files.

GenerateSigningKeyPair Generates a public and a private key that will be used
to sign the ASF header object.

SetDRMAttribute Sets DRM header attributes as well as other DRM
run-time properties.

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMDRMWriter::GenerateKeyID
The GenerateKeyID method generates a DRM key ID.

Syntax

HRESULT GenerateKeyID(
 WCHAR* pwszKeyID,
 DWORD* pcwchLength
);

Parameters

pwszKeyID

[out] Pointer to a wide-character null-terminated string containing the key identifier. Set to NULL to retrieve
the size of the string, which is returned in pcwchLength.

pcwchLength

[in, out] Pointer to a DWORD containing the size, in wide characters, of pwszKeyID. This size includes the
terminating null character.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

Each file should have its own key ID.

See Also

IWMDRMWriter Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

IWMDRMWriter::GenerateKeySeed
The GenerateKeySeed method generates a DRM key seed.

Syntax

HRESULT GenerateKeySeed(
 WCHAR* pwszKeySeed,
 DWORD* pcwchLength
);

Parameters

pwszKeySeed

[out] Pointer to a wide-character null-terminated string containing the key seed. Set to NULL to retrieve the
size of the string, which is returned in pcwchLength.

pcwchLength

[in, out] Pointer to a DWORD containing the size, in wide characters, of pwszKeySeed. This size includes the
terminating null character.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

This method is used infrequently because the same key seed should be used for multiple files. You can use the
same key seed for every file created by an application, or distributed from the same server, or you can use it for
some subset of files.

See Also

IWMDRMWriter Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

IWMDRMWriter::GenerateSigningKeyPair
The GenerateSigningKeyPair method generates a public and private key pair that are used to sign the DRM
header object.

Syntax

HRESULT GenerateSigningKeyPair(
 WCHAR* pwszPrivKey,
 DWORD* pcwchPrivKeyLength,
 WCHAR* pwszPubKey,
 DWORD* pcwchPubKeyLength
);

Parameters

pwszPrivKey

[out] Pointer to a wide-character null-terminated string containing the private key. Set to NULL to retrieve the
size of the string, which is returned in pcwchPrivKeyLength. Use this key to set the
DRM_HeaderSignPrivKey property.

pcwchPrivKeyLength

[in, out] Pointer to a DWORD containing the size, in wide characters, of pwszPrivKey. This size includes the
terminating null character.

pwszPubKey

[out] Pointer to a wide-character null-terminated string containing the public key. Set to NULL to retrieve the
size of the string, which is returned in pcwchPubKeyLength. This key is shared only with the license server; it
enables the license server to verify the signature of the DRM header object when users attempt to obtain a
content license for a file.

pcwchPubKeyLength

[in, out] Pointer to a DWORD containing the size, in wide characters, of pwsPubKey. This size includes the
terminating null character.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

Do not confuse the signature that is applied to the ASF header object, using these keys, with the signature that is

Previous Next

applied to the DRM header object by using the DRM_LASignaturePrivKey and other properties that make up
the digital signature object in the file.

The keys generated by this method are the basis for revocation lists, so the number of different key pairs you
use will be based on your particular business needs. In general, the same key pair should be used for some set of
content that forms a logical group and that shares the same revocation list.

See Also

IWMDRMWriter Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMDRMWriter::SetDRMAttribute
The SetDRMAttribute method sets DRM-header attributes as well as other DRM run-time properties.

Syntax

HRESULT SetDRMAttribute(
 WORD wStreamNum,
 LPCWSTR pszName,
 WMT_ATTR_DATATYPE Type,
 const BYTE* pValue,
 WORD cbLength
);

Parameters

wStreamNum

[in] WORD containing the stream number to which the attribute applies.

pszName

[in] Pointer to a null-terminated string containing the attribute name. See Remarks for supported attributes.

Type

[in] A value from the WMT_ATTR_DATATYPE enumeration type specifying the data type of the attribute
data.

Previous Next

Previous Next

pValue

[in] Pointer to an array of bytes containing the attribute data.

cbLength

[in] The size, in bytes, of the attribute data pointed to by pValue.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

This method is somewhat misnamed because it is used to set not only writable DRM file attributes (See DRM
Attribute List), but also certain DRM properties that are used by the DRM run-time components but are not
written to the DRM header in the file. (See DRM Properties.)

The properties Use_Advanced_DRM and Use_DRM may be specified before a profile is set. No other
properties can be set before a profile is set. The following code snippet shows how to call this function, using
the DRM_ContentID property as an example. Assume that pDRMWriter is a IWMDRMWriter interface
pointer, and wszContentID is an array of type WCHAR.

hr = pDRMWriter->SetDRMAttribute(0, g_wszWMDRM_ContentID,
 WMT_TYPE_STRING, (BYTE *)wszContentID,
 (wcslen(wszContentID) + 1) * sizeof(WCHAR));

See Also

DRM Attribute List
DRM Properties
IWMDRMWriter Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMHeaderInfo Interface
The IWMHeaderInfo interface sets and retrieves information in the header section of an ASF file. You can
manipulate three types of header information by using the methods of this interface: metadata attributes,
markers, and script commands.

Metadata attributes are name/value pairs that describe or relate to the contents of the file. Typical metadata

Previous Next

Previous Next

attributes contain information about the artist, title, and performance details of the content. The Windows Media
Format SDK includes a large selection of predefined metadata attributes that you can use in your files. See
Attributes for a complete listing of predefined attributes. Additionally, you can create your own attributes.

The methods of IWMHeaderInfo that deal with metadata are somewhat limited. They cannot be used to create
or access attributes containing more than 64 kilobytes of data. They are also limited to simple data types. Much
more robust metadata support is provided through the IWMHeaderInfo3 interface, which should be used for
all new files.

Markers enable you to name specific locations in the file for easy access. Typically, markers are used to create a
table of contents for a file, such as a list of scenes in a video file.

Script commands are name/value pairs containing information that your reading application will respond to
programmatically. There are no script commands that are directly supported by the reader or the synchronous
reader, but there are a few standard script commands supported by Windows Media Player. For more
information about script commands, see the Using Script Commands section of this documentation.

The IWMHeaderInfo interface is implemented by the metadata editor object, the writer object, the reader
object, and the synchronous reader object. To obtain a pointer to an instance, call the QueryInterface method
of any other interface in the desired object.

In addition to the methods inherited from IUnknown, the IWMHeaderInfo interface exposes the following
methods.

For information about which interfaces can be obtained by using the QueryInterface method of this interface,
see the topic for the object on which this interface is implemented.

Method Description

AddMarker Adds a marker, consisting of a name and a specific time, to the
ASF file header.

AddScript Adds a script, consisting of type and command strings, and a
specific time, to the ASF file header.

GetAttributeByIndex Returns a descriptive attribute that is stored in the ASF file
header.

GetAttributeByName Returns a descriptive attribute that is stored in the ASF file
header.

GetAttributeCount Returns the number of attributes defined in the ASF file header.

GetMarker Returns the name and time of a marker.

GetMarkerCount Returns the number of markers currently in the ASF file header.

GetScript Returns the type and command strings, and time of a script.

GetScriptCount Returns the number of scripts currently in the ASF file header.

RemoveMarker Removes a marker from the ASF file header.

RemoveScript Removes a script from the ASF file header.

SetAttribute Sets a descriptive attribute that is stored in the ASF file header.

Remarks

Although the IWMHeaderInfo interface is accessible from four different objects, not all of the features are
available in all cases. The following table summarizes the differences in implementation for the various objects.

For information about using the writer for metadata editing, see To Edit Metadata with the Writer.

See Also

Attributes
Interfaces
IWMHeaderInfo2 Interface
IWMHeaderInfo3 Interface
Metadata Editor Object
Reader Object
Synchronous Reader Object
Writer Object

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMHeaderInfo::AddMarker
The AddMarker method adds a marker, consisting of a name and a specific time, to the header section of the
ASF file.

Syntax

HRESULT AddMarker(
 WCHAR* pwszMarkerName,

Object Description

Metadata editor Full functionality is implemented.

Writer All methods that alter header items (those whose names begin with Add,
Set, or Remove) are supported only before the
IWMWriter::BeginWriting method is called.

All marker methods return E_NOTIMPL.

Reader and synchronous reader All methods that alter header items (those whose names begin with Add,
Set, or Remove) return E_NOTIMPL.

Previous Next

Previous Next

 QWORD cnsMarkerTime
);

Parameters

pwszMarkerName

[in] Pointer to a wide-character null-terminated string containing the marker name. Marker names are limited to
5120 wide characters.

cnsMarkerTime

[in] The marker time in 100-nanosecond increments.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

The writer does not support markers. When accessing IWMheaderInfo from the writer, calls to AddMarker
will return E_NOTIMPL.

See Also

IWMHeaderInfo Interface
IWMHeaderInfo::GetMarker
IWMHeaderInfo::RemoveMarker
Markers

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMHeaderInfo::AddScript

Return code Description

NS_E_INVALID_STATE The object cannot currently be configured.

E_POINTER pwszMarkerName is not a valid pointer.

E_UNEXPECTED The method failed for an unspecified reason.

Previous Next

Previous Next

The AddScript method adds a script, consisting of type and command strings, and a specific time, to the header
section of the ASF file.

Syntax

HRESULT AddScript(
 WCHAR* pwszType,
 WCHAR* pwszCommand,
 QWORD cnsScriptTime
);

Parameters

pwszType

[in] Pointer to a wide-character null-terminated string containing the type. Script types are limited to 1024 wide
characters.

pwszCommand

[in] Pointer to a wide-character null-terminated string containing the command. Script commands are limited to
10240 wide characters.

cnsScriptTime

[in] The script time in 100-nanosecond increments.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

Before BeginWriting has been called, the writer only supports AddScript. The reader does not support
AddScript, and always returns E_NOTIMPL.

When using DRM to encrypt a file, no script command can have a presentation time of 0.

See Also

IWMHeaderInfo Interface
IWMHeaderInfo::GetScript
IWMHeaderInfo::RemoveScript

Return code Description

NS_E_INVALID_STATE The object is not in a configurable state.

E_INVALIDARG No value was supplied in pwszType or pwszCommand.

E_POINTER A pointer parameter does not contain a valid pointer.

E_UNEXPECTED The method failed for an unspecified reason.

Using Script Commands

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMHeaderInfo::GetAttributeByIndex
The GetAttributeByIndex method returns a descriptive attribute that is stored in the header section of the ASF
file. This method is replaced by IWMHeaderInfo3::GetAttributeByIndexEx and should not be used.

Syntax

HRESULT GetAttributeByIndex(
 WORD wIndex,
 WORD* pwStreamNum,
 WCHAR* pwszName,
 WORD* pcchNameLen,
 WMT_ATTR_DATATYPE* pType,
 BYTE* pValue,
 WORD* pcbLength
);

Parameters

wIndex

[in] WORD containing the index.

pwStreamNum

[in] Pointer to a WORD containing the stream number. Although this parameter is a pointer, the method will
not change the value. For file-level attributes, use zero for the stream number.

pwszName

[out] Pointer to a wide-character null-terminated string containing the name. Pass NULL to this parameter to
retrieve the required length for the name. Attribute names are limited to 1024 wide characters.

pcchNameLen

[in, out] On input, a pointer to a variable containing the length of the pwszName array in wide characters (2
bytes). On output, if the method succeeds, the variable contains the actual length of the name, including the
terminating null character.

Previous Next

Previous Next

pType

[out] Pointer to a variable containing one value from the WMT_ATTR_DATATYPE enumeration type.

pValue

[out] Pointer to a byte array containing the value. Pass NULL to this parameter to retrieve the required length
for the value.

pcbLength

[in, out] On input, a pointer to a variable containing the length of the pValue array, in bytes. On output, if the
method succeeds, the variable contains the actual number of bytes written to pValue by the method.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

You should make two calls to GetAttributeByIndex for each attribute you want to retrieve. On the first call,
pass NULL for pwszName and pValue. On return, the value pointed to by pcchNameLen is set to the number of
wide characters, including the terminating null character, required to hold the attribute name, and the value
pointed to by pcbLength is set to the number of bytes required to hold the attribute value. You can then create
buffers of the appropriate size to receive pwszName and pValue and pass pointers to them on the second call.

Attributes in MP3 files cannot be stream-specific. When using this method with MP3 files, you must use zero
for the stream number.

For a list of all the predefined attributes, see Attributes.

The objects of the Windows Media Format SDK perform type checking on some supported metadata attributes,
but not all of them. You should ensure that any attributes you use are set using the data type specified in the
Attributes section of this documentation. Likewise, you cannot assume that an attribute set by another
application will use the correct data type.

See Also

Return code Description

NS_E_INVALID_STATE The object is not in a valid state, or no profile has been set.

E_INVALIDARG pwStreamNum does not point to a valid stream number, or no
data type was supplied.

E_POINTER A pointer supplied in a parameter was not valid.

E_UNEXPECTED The method failed for an unspecified reason.

ASF_E_BUFFERTOOSMALL The pValue array is too small to contain the attribute value.

ASF_E_NOTFOUND There is no attribute at wIndex.

Attributes
IWMHeaderInfo Interface
IWMHeaderInfo::SetAttribute
WMT_ATTR_DATATYPE

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMHeaderInfo::GetAttributeByName
The GetAttributeByName method returns a descriptive attribute that is stored in the header section of the ASF
file. Now that attribute names can be duplicated in a file, this method is obsolete. To find attributes of a
particular name, use IWMHeaderInfo3::GetAttributeIndices.

Syntax

HRESULT GetAttributeByName(
 WORD* pwStreamNum,
 LPCWSTR pszName,
 WMT_ATTR_DATATYPE* pType,
 BYTE* pValue,
 WORD* pcbLength
);

Parameters

pwStreamNum

[in, out] Pointer to a WORD containing the stream number, or zero to indicate any stream. Although this
parameter is a pointer, the method does not change the value.

pszName

[in] Pointer to a null-terminated string containing the name of the attribute. Attribute names are limited to 1024
wide characters.

pType

[out] Pointer to a variable that receives a value from the WMT_ATTR_DATATYPE enumeration type. The
returned value specifies the data type of the attribute.

pValue

[out] Pointer to a byte array that receives the value of the attribute. The caller must allocate the array. To

Previous Next

Previous Next

determine the required array size, set this parameter to NULL and check the value returned in the pcbLength
parameter.

pcbLength

[in, out] On input, the length of the pValue array, in bytes. On output, if the method succeeds, the actual
number of bytes that were written to pValue.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

Typically, an application should call this method twice for each attribute that it retrieves. On the first call, set
the pValue parameter to NULL. The pcbLength parameter receives the buffer size needed to hold the attribute
value. Then, allocate a sufficient byte array and call the method again, passing the address of the array in the
pType parameter. The method fills the buffer with the value of the attribute. Coerce the buffer to the data type
indicated by the value returned in pType.

If the file does not contain the specified attribute, the method might return ASF_E_NOTFOUND. The method
can also succeed but return the value zero for pcbLength.

The objects of the Windows Media Format SDK perform type checking on some supported metadata attributes,
but not all of them. You should ensure that any attributes you use are set using the data type specified in the
Attributes section of this documentation. Likewise, you cannot assume that an attribute set by another
application will use the correct data type.

Example Code

The following example code shows how to retrieve the "Title" attribute.

HRESULT hr;
IWMHeaderInfo *pInfo;
WORD wStreamNum = 0;
WMT_ATTR_DATATYPE Type;
WORD cbLength;
//
// First, retrieve the length of the string, and allocate memory.

Return code Description

ASF_E_NOTFOUND The specified attribute is not defined in this file.

E_INVALIDARG pwStreamNum is not a valid stream number, pszName does not
point to a wide-character string, or another parameter does not
contain a valid value.

E_POINTER A parameter is not a valid pointer.

E_UNEXPECTED The method failed for an unspecified reason.

NS_E_INVALID_STATE The object is not in a configurable state, or no profile has been
set.

//
hr = pInfo->GetAttributeByName(&wStreamNum, L"Title",
 &Type, NULL, &cbLength);
if(FAILED(hr))
{
 return(hr);
}
WCHAR *pwszTitle = (WCHAR *) new BYTE[cbLength];
if(!pwszTitle)
{
 return(E_OUTOFMEMORY);
}
//
// Now, retrieve the string itself.
//
hr = pInfo->GetAttributeByName(&wStreamNum, L"Title", &Type,
 (BYTE *) pwszTitle, &cbLength);
if(FAILED(hr))
{
 return(hr);
}

Remarks

Attributes in MP3 files cannot be specific to a particular stream. For MP3 files, always set the stream number to
zero.

For a list of all the predefined attributes, see Attributes.

See Also

Attributes
IWMHeaderInfo Interface
IWMHeaderInfo::SetAttribute
WMT_ATTR_DATATYPE

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMHeaderInfo::GetAttributeCount
The GetAttributeCount method returns the number of attributes defined in the header section of the ASF file.
This method is replaced by IWMHeaderInfo3::GetAttributeCountEx and
IWMHeaderInfo3::GetAttributeIndices, and should no longer be used.

Syntax

Previous Next

Previous Next

HRESULT GetAttributeCount(
 WORD wStreamNum,
 WORD* pcAttributes
);

Parameters

wStreamNum

[in] WORD containing the stream number. Pass zero for file-level attributes.

pcAttributes

[out] Pointer to a count of the attributes.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

Attributes in MP3 files cannot be specific to a particular stream. For MP3 files, always set the stream number to
zero.

See Also

Attributes
IWMHeaderInfo Interface
IWMHeaderInfo::SetAttribute

© 2000-2003 Microsoft Corporation. All rights reserved.

Return code Description

NS_E_INVALID_REQUEST The object is not in a configurable state, or no profile has been
set.

E_INVALIDARG wStreamNum is not a valid stream number, or pcAttributes is
NULL.

E_POINTER pcAttributes is not a valid pointer.

E_UNEXPECTED The method failed for an unspecified reason.

Previous Next

Previous Next

IWMHeaderInfo::GetMarker
The GetMarker method returns the name and time of a marker.

Syntax

HRESULT GetMarker(
 WORD wIndex,
 WCHAR* pwszMarkerName,
 WORD* pcchMarkerNameLen,
 QWORD* pcnsMarkerTime
);

Parameters

wIndex

[in] WORD containing the index.

pwszMarkerName

[out] Pointer to a wide-character null-terminated string containing the marker name.

pcchMarkerNameLen

[in] On input, a pointer to a variable containing the length of the pwszMarkerName array in wide characters (2
bytes). On output, if the method succeeds, the variable contains the actual length of the name, including the
terminating null character. To retrieve the length of the name, you must set this to zero and set
pwszMarkerName and pcnsMarkerTime to NULL.

pcnsMarkerTime

[out] Pointer to a variable specifying the marker time in 100-nanosecond increments.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

Return code Description

ASF_E_BUFFERTOOSMALL The size specified by pcchMarkerNameLen is too small to
receive the name.

NS_E_INVALID_STATE The object is not in a configurable state.

E_INVALIDARG pcchMarkerNameLen is NULL, or another parameter does not
contain a valid value.

E_UNEXPECTED The method failed for an unspecified reason.

The writer does not support markers, and returns E_NOTIMPL when this method is called.

See Also

IWMHeaderInfo Interface
IWMHeaderInfo::AddMarker
IWMHeaderInfo::GetMarkerCount
IWMHeaderInfo::RemoveMarker
Markers

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMHeaderInfo::GetMarkerCount
The GetMarkerCount method returns the number of markers currently in the header section of the ASF file.

Syntax

HRESULT GetMarkerCount(
 WORD* pcMarkers
);

Parameters

pcMarkers

[out] Pointer to a count of markers.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

See Also

IWMHeaderInfo Interface

Previous Next

Previous Next

Return code Description

NS_E_INVALID_STATE The object is not in a configurable state.

E_UNEXPECTED The method failed for an unspecified reason.

IWMHeaderInfo::GetMarker
Markers

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMHeaderInfo::GetScript
The GetScript method returns the type and command strings, and presentation time of a script.

Syntax

HRESULT GetScript(
 WORD wIndex,
 WCHAR* pwszType,
 WORD* pcchTypeLen,
 WCHAR* pwszCommand,
 WORD* pcchCommandLen,
 QWORD* pcnsScriptTime
);

Parameters

wIndex

[in] WORD containing the index.

pwszType

[out] Pointer to a wide-character null-terminated string containing the type.

pcchTypeLen

[in, out] On input, a pointer to a variable containing the length of the pwszType array in wide characters (2
bytes). On output, if the method succeeds, the variable contains the actual length of the string loaded into
pwszType, including the terminating null character. To retrieve the length of the type, you must set this to zero
and set pwszType to NULL.

pwszCommand

[out] Pointer to a wide-character null-terminated string containing the command.

pcchCommandLen

Previous Next

Previous Next

[in, out] On input, a pointer to a variable containing the length of the pwszCommand array in wide characters (2
bytes). On output, if the method succeeds, the variable contains the actual length of the command string,
including the terminating null character. To retrieve the length of the command, you must set this to zero and
set pwszCommand to NULL.

pcnsScriptTime

[out] Pointer to a QWORD specifying the presentation time of this script command in 100-nanosecond
increments.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

You should make two calls to GetScript for each script you want to retrieve. On the first call, pass NULL for
pwszType and pwszCommand. On return, the values pointed to by pcchTypeLen and pcchCommandLen are set
to the number of wide characters, including the terminating null character, required to hold the script type, and
the command respectively. You can then create buffers of the appropriate size to receive pwszType and
pwszCommand and pass pointers to them on the second call.

See Also

IWMHeaderInfo Interface
IWMHeaderInfo::AddScript
IWMHeaderInfo::GetScriptCount
IWMHeaderInfo::RemoveScript

© 2000-2003 Microsoft Corporation. All rights reserved.

Return code Description

ASF_E_BUFFERTOOSMALL The size specified by pcchCommandLen or pcchTypeLen is not
large enough to receive the value.

ASF_E_NOTFOUND A matching script command was not found.

NS_E_INVALID_STATE The object is not in a configurable state.

E_INVALIDARG A pointer is NULL where a value is required.

E_POINTER A pointer variable does not contain a valid pointer.

E_UNEXPECTED The method failed for an unspecified reason.

Previous Next

IWMHeaderInfo::GetScriptCount
The GetScriptCount method returns the number of scripts currently in the header section of the ASF file.

Syntax

HRESULT GetScriptCount(
 WORD* pcScripts
);

Parameters

pcScripts

[out] Pointer to a count of scripts.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

See Also

IWMHeaderInfo Interface
IWMHeaderInfo::GetScript

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Return code Description

NS_E_INVALID_STATE The object is not in a configurable state.

E_INVALIDARG pcScripts is NULL.

E_POINTER pcScripts is not a valid pointer.

E_UNEXPECTED The method failed for an unspecified reason.

Previous Next

Previous Next

IWMHeaderInfo::RemoveMarker
The RemoveMarker method removes a marker from the header section of the ASF file.

Syntax

HRESULT RemoveMarker(
 WORD wIndex
);

Parameters

wIndex

[in] WORD containing the index of the marker.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

This method is not supported by the writer.

See Also

IWMHeaderInfo Interface
IWMHeaderInfo::AddMarker
IWMHeaderInfo::GetMarker
Markers

© 2000-2003 Microsoft Corporation. All rights reserved.

Return code Description

ASF_E_NOTFOUND There is no marker at wIndex.

NS_E_INVALID_STATE The object is not in a configurable state.

E_UNEXPECTED The method failed for an unspecified reason.

Previous Next

Previous Next

IWMHeaderInfo::RemoveScript
The RemoveScript method enables the object to remove a script from the header section of the ASF file.

Syntax

HRESULT RemoveScript(
 WORD wIndex
);

Parameters

wIndex

[in] WORD containing the index of the script.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

The writer only supports this method before the BeginWriting method has been called. This method is not
supported by the reader.

See Also

IWMHeaderInfo Interface
IWMHeaderInfo::AddScript
IWMHeaderInfo::GetScript

© 2000-2003 Microsoft Corporation. All rights reserved.

Return code Description

NS_E_INVALID_STATE The object cannot be currently configured.

E_UNEXPECTED The method failed for an unspecified reason.

Previous Next

Previous Next

IWMHeaderInfo::SetAttribute
The SetAttribute method sets a descriptive attribute that is stored in the header section of the ASF file. This
method is replaced by IWMHeaderInfo3::AddAttribute, and should not be used.

Syntax

HRESULT SetAttribute(
 WORD wStreamNum,
 LPCWSTR pszName,
 WMT_ATTR_DATATYPE Type,
 const BYTE* pValue,
 WORD cbLength
);

Parameters

wStreamNum

[in] WORD containing the stream number. To set a file-level attribute, pass zero.

pszName

[in] Pointer to a wide-character null-terminated string containing the name of the attribute. Attribute names are
limited to 1024 wide characters.

Type

[in] A value from the WMT_ATTR_DATATYPE enumeration type.

pValue

[in] Pointer to a byte array containing the value of the attribute.

cbLength

[in] The size of pValue, in bytes.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Return code Description

E_INVALIDARG A parameter does not contain a valid value.

E_NOTIMPL Not implemented.

E_UNEXPECTED The method failed for an unspecified reason.

NS_E_INVALID_STATE The object is not in a configurable state, or no profile has been
set.

Remarks

Refer to the Attributes section for a list of predefined attributes. For predefined attributes, the Type parameter
must match the data type defined for that attribute. For custom attributes, you can specify any type except
WMT_TYPE_GUID, but the buffer size (given by cbLength) must match the type. See
WMT_ATTR_DATATYPE for more information.

The IWMHeaderInfo interface does not support the WMT_TYPE_GUID data type. To use this data type, you
must use the methods of the IWMHeaderInfo3 interface.

Attributes in MP3 files cannot be specific to a particular stream. For MP3 files, always set the stream number to
zero. When setting attributes for MP3 files, the metadata editor will automatically insert a byte-order mark in
accordance with the Unicode specification. If you manually insert a byte-order mark, this method will not fail,
but the value will then have two marks, which can cause problems when reading the attribute.

This method does not support attributes with values larger than 64 kilobytes. To include large attributes in your
file, use the methods of the IWMHeaderInfo3 interface.

The writer object supports this method only before the IWMWriter::BeginWriting method has been called.
The reader and synchronous reader objects do not support this method.

Before you can use this method through the IWMHeaderInfo interface of a writer object to set DRM attributes,
you must set a profile for the writer to use.

The objects of the Windows Media Format SDK perform type checking on some supported metadata attributes,
but not all of them. You should ensure that any attributes you use are set using the data type specified in the
Attributes section of this documentation. Likewise, you cannot assume that an attribute set by another
application will use the correct data type.

See Also

Attributes
IWMHeaderInfo Interface
IWMHeaderInfo::GetAttributeByIndex
IWMHeaderInfo::GetAttributeByName
IWMHeaderInfo::GetAttributeCount
IWMHeaderInfo3 Interface
WMT_ATTR_DATATYPE

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

IWMHeaderInfo2 Interface
The IWMHeaderInfo2 interface exposes information about the codecs used to create the content in a file.

The IWMHeaderInfo2 interface is implemented by the metadata editor object, the writer object, the reader
object, and the synchronous reader object. To obtain a pointer to an instance, call the QueryInterface method
of any other interface in the desired object.

In addition to the methods inherited from IWMHeaderInfo, the IWMHeaderInfo2 interface exposes the
following methods.

In addition to the methods of IUnknown, this interface inherits the following methods.

For information about which interfaces can be obtained by using the QueryInterface method of this interface,
see the topic for the object on which this interface is implemented.

Remarks

Method Description

GetCodecInfo Retrieves information about a codec.

GetCodecInfoCount Retrieves the number of codecs for which information is
available.

Method Description

AddMarker Adds a marker, consisting of a name and a specific time, to the
ASF file header.

AddScript Adds a script, consisting of type and command strings, and a
specific time, to the ASF file header.

GetAttributeByIndex Returns a descriptive attribute that is stored in the ASF file
header.

GetAttributeByName Returns a descriptive attribute that is stored in the ASF file
header.

GetAttributeCount Returns the number of attributes defined in the ASF file header.

GetMarker Returns the name and time of a marker.

GetMarkerCount Returns the number of markers currently in the ASF file header.

GetScript Returns the type and command strings, and time of a script.

GetScriptCount Returns the number of scripts currently in the ASF file header.

RemoveMarker Removes a marker from the ASF file header.

RemoveScript Removes a script from the ASF file header.

SetAttribute Sets a descriptive attribute that is stored in the ASF file header.

For information about using the writer for metadata editing, see To Edit Metadata with the Writer.

See Also

Interfaces
IWMHeaderInfo Interface
IWMHeaderInfo3 Interface
Metadata Editor Object
Reader Object
Synchronous Reader Object
Writer Object

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMHeaderInfo2::GetCodecInfo
The GetCodecInfo method retrieves information about a codec used to create the content of a file.

Syntax

HRESULT GetCodecInfo(
 DWORD wIndex,
 WORD* pcchName,
 WCHAR* pwszName,
 WORD* pcchDescription,
 WCHAR* pwszDescription,
 WMT_CODEC_INFO_TYPE* pCodecType,
 WORD* pcbCodecInfo,
 BYTE* pbCodecInfo
);

Parameters

wIndex

[in] WORD containing the codec index.

pcchName

[in, out] On input, pointer to the length of pwszName in wide characters. On output, pointer to a count of the
characters used in pwszName, including the terminating null character.

pwszName

Previous Next

Previous Next

[out] Pointer to a wide-character null-terminated string containing the name of the codec.

pcchDescription

[in, out] On input, pointer to the length of pwszDescription in wide characters. On output, pointer to a count of
the characters used in pwszDescription, including the terminating null character.

pwszDescription

[out] Pointer to a wide-character null-terminated string containing the description of the codec.

pCodecType

[out] Pointer to one member of the WMT_CODEC_INFO_TYPE enumeration type.

pcbCodecInfo

[in, out] On input, pointer to the length of pbCodecInfo, in bytes. On output, pointer to a count of the bytes
used in pbCodecInfo.

pbCodecInfo

[out] Pointer to a byte array.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

You should make two calls to GetCodecInfo. On the first call, pass NULL for pwszName, pwszDescription,
and pbCodecInfo. On return the values pointed to by pcchName and pcchDescription are set to the number of
characters, including the terminating null character, required to hold the name and description strings
respectively. The value pointed to by pcbCodecInfo is set to the buffer size required to hold the codec info.
With these sizes, you can allocate the required amount of memory to receive each value. Pass pointers to the
buffers are pwszName, pwszDescription, and pbCodecInfo on the second call.

Use this method, and the GetCodecInfoCount method, to enumerate through the codec information.

See Also

IWMHeaderInfo2 Interface
IWMHeaderInfo2::GetCodecInfoCount
WMT_CODEC_INFO_TYPE

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

IWMHeaderInfo2::GetCodecInfoCount
The GetCodecInfoCount method retrieves the number of codecs for which information is available. The
codecs counted are those that were used to encode the streams of the file loaded in the metadata editor, reader,
or synchronous reader object to which the IWMHeaderInfo2 interface belongs.

Syntax

HRESULT GetCodecInfoCount(
 DWORD* pcCodecInfos
);

Parameters

pcCodecInfos

[out] Pointer to a count of codecs for which information is available.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

Use this method, and GetCodecInfo, to enumerate through the codec information.

See Also

IWMHeaderInfo2 Interface
IWMHeaderInfo2::GetCodecInfo

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMHeaderInfo3 Interface

Previous Next

Previous Next

Previous Next

The IWMHeaderInfo3 interface supports the following new metadata features:

Attribute data in excess of 64 kilobytes.
Multiple attributes with the same name.
Attributes in multiple languages.

Because the attributes created using this interface can have duplicate names, the methods of this interface use
index values to identify attributes.

The IWMHeaderInfo3 interface is implemented by the metadata editor object, the writer object, the reader
object, and the synchronous reader object. To obtain a pointer to an instance, call the QueryInterface method
of any other interface in the desired object.

In addition to the methods inherited from IWMHeaderInfo2, the IWMHeaderInfo3 interface exposes the
following methods.

In addition to the methods of IUnknown, this interface inherits the following methods.

Method Description

AddAttribute Adds an attribute for a specified language.

DeleteAttribute Deletes an attribute using the attribute index.

GetAttributeByIndexEx Retrieves an attribute by its index.

GetAttributeCountEx Retrieves the total number of attributes in the file header.

GetAttributeIndices Retrieves a list of all the indices of attributes for a specified
language.

ModifyAttribute Changes the settings of an existing attribute.

Method Description

AddMarker Adds a marker, consisting of a name and a specific time, to the
ASF file header.

AddScript Adds a script, consisting of type and command strings, and a
specific time, to the ASF file header.

GetAttributeByIndex Returns a descriptive attribute that is stored in the ASF file
header.

GetAttributeByName Returns a descriptive attribute that is stored in the ASF file
header.

GetAttributeCount Returns the number of attributes defined in the ASF file header.

GetCodecInfo Retrieves information about a codec.

GetCodecInfoCount Retrieves the number of codecs for which information is
available.

GetMarker Returns the name and time of a marker.

For information about which interfaces can be obtained by using the QueryInterface method of this interface,
see the topic for the object on which this interface is implemented.

Remarks

For information about using the writer for metadata editing, see To Edit Metadata with the Writer.

See Also

Interfaces
IWMHeaderInfo Interface
IWMHeaderInfo2 Interface
Metadata Editor Object
Reader Object
Synchronous Reader Object
Writer Object

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMHeaderInfo3::AddAttribute
The AddAttribute method adds a metadata attribute. To change the value of an existing attribute, use the
IWMHeaderInfo3::ModifyAttribute method.

Syntax

HRESULT AddAttribute(
 WORD wStreamNum,
 LPCWSTR pszName,
 WORD* pwIndex,
 WMT_ATTR_DATATYPE Type,
 WORD wLangIndex,

GetMarkerCount Returns the number of markers currently in the ASF file header.

GetScript Returns the type and command strings, and time of a script.

GetScriptCount Returns the number of scripts currently in the ASF file header.

RemoveMarker Removes a marker from the ASF file header.

RemoveScript Removes a script from the ASF file header.

SetAttribute Sets a descriptive attribute that is stored in the ASF file header.

Previous Next

Previous Next

 const BYTE* pValue
 DWORD dwLength
);

Parameters

wStreamNum

[in] WORD containing the stream number of the stream to which the attribute applies. Setting this value to
zero indicates an attribute that applies to the entire file.

pszName

[in] Pointer to a wide-character null-terminated string containing the name of the attribute. Attribute names are
limited to 1024 wide characters.

pwIndex

[out] Pointer to a WORD. On successful completion of the method, this value is set to the index assigned to the
new attribute.

Type

[in] Type of data used for the new attribute. For more information about the types of data supported, see
WMT_ATTR_DATATYPE.

wLangIndex

[in] WORD containing the language index of the language to be associated with the new attribute. This is the
index of the language in the language list for the file. Setting this value to zero indicates that the default
language will be used. A default language is created and set according to the regional settings on the computer
running your application.

pValue

[in] Pointer to an array of bytes containing the attribute value.

dwLength

[in] DWORD containing the length of the attribute value, in bytes.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Return code Description

E_INVALIDARG An illegal parameter combination, data type, or
attribute name was used.

E_NOTIMPL The method is not implemented on a reader object.

E_POINTER A pointer is not valid.

Remarks

This method appends a null character to the end of the string passed in pwszName if one is not present. In this
case, the buffer needed to retrieve the attribute name will be two bytes larger than the input buffer.

When setting attributes for MP3 files, the metadata editor automatically inserts a byte-order mark in accordance
with the Unicode specification. If you manually insert a byte-order mark, this method will not fail, but the value
will then have two marks, which can cause problems when reading the attribute.

The objects of the Windows Media Format SDK perform type checking on some supported metadata attributes,
but not all of them. You should ensure that any attributes you use are set using the data type specified in the
Attributes section of this documentation. Likewise, you cannot assume that an attribute set by another
application will use the correct data type.

See Also

IWMHeaderInfo3 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMHeaderInfo3::AddCodecInfo
The AddCodecInfo method adds codec information to a file. When you copy a compressed stream from one
file to another, use this method to include the information about the encoding codec in the file header.

Syntax

HRESULT AddCodecInfo(
 WCHAR* pwszName,
 WCHAR* pwszDescription,
 WMT_CODEC_INFO_TYPE codecType,
 WORD cbCodecInfo,
 BYTE* pbCodecInfo
);

Parameters

NS_E_SDK_BUFFERTOOSMALL The size specified by dwLength is too small.

NS_E_INVALID_REQUEST wStreamNum is not a valid stream number.

S_OK The method succeeded.

Previous Next

Previous Next

pwszName

[in] Pointer to a wide-character null-terminated string containing the name.

pwszDescription

[in] Pointer to a wide-character null-terminated string containing the description.

codecType

[in] A value from the WMT_CODEC_INFO_TYPE enumeration specifying the codec type.

cbCodecInfo

[in] The size of the codec information, in bytes.

pbCodecInfo

[in] Pointer to a byte containing the codec information.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

The parameters passed to this method should be obtained from the original file with a call to
IWMHeaderInfo2::GetCodecInfo.

See Also

IWMHeaderInfo3 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMHeaderInfo3::DeleteAttribute

Return code Description

S_OK The method succeeded.

Previous Next

Previous Next

The DeleteAttribute method removes an attribute from the file header.

Syntax

HRESULT DeleteAttribute(
 WORD wStreamNum,
 WORD wIndex
);

Parameters

wStreamNum

[in] WORD containing the stream number for which the attribute applies. Setting this value to zero indicates a
file-level attribute.

wIndex

[in] WORD containing the index of the attribute to be deleted.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

You can use 0xFFFF for the stream number to specify an attribute using its global index. Global index values
range from 0 to one less than the count of attributes received from a call to
IWMHeaderInfo3::GetAttributeCountEx where the stream number was set to 0xFFFF.

See Also

IWMHeaderInfo3 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Return code Description

E_NOTIMPL The method is not implemented on a reader object.

NS_E_INVALIDREQUEST wStreamNum is not a valid stream number, or there is
not an attribute at wIndex.

S_OK The method succeeded.

Previous Next

IWMHeaderInfo3::GetAttributeByIndexEx
The GetAttributeByIndexEx method retrieves the value of an attribute specified by the attribute index. You
can use this method in conjunction with the GetAttributeCountEx method to retrieve all of the attributes
associated with a particular stream number.

Syntax

HRESULT GetAttributeByIndexEx(
 WORD wStreamNum,
 WORD wIndex,
 LPWSTR pwszName,
 WORD* pwNameLen,
 WMT_ATTR_DATATYPE* pType,
 WORD* pwLangIndex,
 BYTE* pValue
 DWORD* pdwDataLength,
);

Parameters

wStreamNum

[in] WORD containing the stream number to which the attribute applies. Set to zero to retrieve a file-level
attribute.

wIndex

[in] WORD containing the index of the attribute to be retrieved.

pwszName

[out] Pointer to a wide-character null-terminated string containing the attribute name. Pass NULL to retrieve
the size of the string, which will be returned in pwNameLen.

pwNameLen

[in, out] Pointer to a WORD containing the size of pwszName, in wide characters. This size includes the
terminating null character. Attribute names are limited to 1024 wide characters.

pType

[out] Type of data used for the attribute. For more information about the types of data supported, see
WMT_ATTR_DATATYPE.

pwLangIndex

[out] Pointer to a WORD containing the language index of the language associated with the attribute. This is
the index of the language in the language list for the file.

pValue

Previous Next

[out] Pointer to an array of bytes containing the attribute value. Pass NULL to retrieve the size of the attribute
value, which will be returned in pdwDataLength.

pdwDataLength

[in, out] Pointer to a DWORD containing the length, in bytes, of the attribute value pointed to by pValue.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

You can use 0xFFFF for the stream number to specify an attribute using its global index. Global index values
range from 0 to one less than the count of attributes received from a call to
IWMHeaderInfo3::GetAttributeCountEx where the stream number was set to 0xFFFF.

The objects of the Windows Media Format SDK perform type checking on some supported metadata attributes,
but not all of them. You should ensure that any attributes you use are set using the data type specified in the
Attributes section of this documentation. Likewise, you cannot assume that an attribute set by another
application will use the correct data type.

See Also

IWMHeaderInfo3 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMHeaderInfo3::GetAttributeCountEx
The GetAttributeCountEx method retrieves the total number of attributes associated with a specified stream

Return code Description

S_OK The method succeeded.

NS_E_SDK_BUFFERTOOSMALL The size specified for the name or value is too small.

NS_E_INVALID_REQUEST wStreamNum is not a valid stream number, or there is
no attribute at wIndex.

E_POINTER A pointer is not valid.

Previous Next

Previous Next

number. You can also use this method to get the number of attributes not associated with a specific stream (file-
level attributes), or to get the total number of attributes in the file, regardless of stream number.

Syntax

HRESULT GetAttributeCountEx(
 WORD wStreamNum,
 WORD* pcAttributes
);

Parameters

wStreamNum

[in] WORD containing the stream number for which to retrieve the attribute count. Pass zero to retrieve the
count of attributes that apply to the file rather than a specific stream. Pass 0xFFFF to retrieve the total count of
all attributes in the file, both stream-specific and file-level.

pcAttributes

[out] Pointer to a WORD containing the number of attributes that exist for the specified stream.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

The maximum number of attributes for a single stream is 65535, the capacity of the WORD parameter,
pcAttributes. If you pass 0xFFFF as wStreamNum, this method will return the total number of attributes for the
entire file. This number could potentially be greater than the capacity of pcAttributes. If the number of attributes
in the file is greater than 65535, this method will produce unpredictable results. In reality, no file should ever
have this many attributes. If your application makes use of an extremely large number of attributes, simply
make individual calls to GetAttributeCountEx for each stream and for the file-level attributes.

See Also

IWMHeaderInfo3 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Return code Description

S_OK The method succeeded.

E_POINTER pcAttributes is not a valid pointer.

NS_E_INVALIDREQUEST wStreamNum is not a valid stream number.

Previous Next

IWMHeaderInfo3::GetAttributeIndices
The GetAttributeIndices method retrieves a list of valid attribute indexes within specified parameters. You can
retrieve indexes for all attributes with the same name or for all attributes in a specified language. The indexes
found are for a single specific stream. Alternatively, you can retrieve the specified indexes for the entire file.

Syntax

HRESULT GetAttributeIndices(
 WORD wStreamNum,
 LPCWSTR pwszName,
 WORD* pwLangIndex,
 WORD* pwIndices,
 WORD* pwCount
);

Parameters

wStreamNum

[in] WORD containing the stream number for which to retrieve attribute indexes. Passing zero retrieves
indexes for file-level attributes. Passing 0xFFFF retrieves indexes for all appropriate attributes, regardless of
their association to streams.

pwszName

[in] Pointer to a wide-character null-terminated string containing the attribute name for which you want to
retrieve indexes. Pass NULL to retrieve indexes for attributes based on language. Attribute names are limited to
1024 wide characters.

pwLangIndex

[in] Pointer to a WORD containing the language index of the language for which to retrieve attribute indexes.
Pass NULL to retrieve indexes for attributes by name.

pwIndices

[out] Pointer to a WORD array containing the indexes that meet the criteria described by the input parameters.
Pass NULL to retrieve the size of the array, which will be returned in pwCount.

pwCount

[in, out] On output, pointer to a WORD containing the number of elements in the pwIndices array.

Return Values

Previous Next

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

You must make two calls to GetAttributeIndices for each set of indexes retrieved. On the first call, pass NULL
as pwIndices. On return, the variable pointed to by pwCount is set to the number of elements required for the
array if indexes. Then allocate memory for the array and make the second call, passing a pointer to the array as
pwIndices.

If you use 0xFFFF for the stream number, the index values returned will be global indexes. Only use a global
index for calls to other methods of the IWMHeaderInfo3 interface if you will also be suing 0xFFFF for the
stream number. The global index value for an attribute will be different than the value used when specifying a
specific stream number (or stream 0 for file-level attributes).

See Also

IWMHeaderInfo3 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMHeaderInfo3::ModifyAttribute
The ModifyAttribute method modifies the settings of an existing attribute.

Syntax

HRESULT ModifyAttribute(
 WORD wStreamNum,
 WORD wIndex,
 WMT_ATTR_DATATYPE Type,
 WORD wLangIndex,

Return code Description

S_OK The method succeeded.

NS_E_SDK_BUFFERTOOSMALL The size specified in pwCount is too small.

NS_E_INVALID_REQUEST wStreamNum is not a valid stream number,
pwLangIndex is not a valid language index, or
pwszName is not a valid name.

E_POINTER A pointer is not valid.

Previous Next

Previous Next

 const BYTE* pValue
 DWORD dwLength,
);

Parameters

wStreamNum

[in] WORD containing the stream number to which the attribute applies. Pass zero for file-level attributes.

wIndex

[in] WORD containing the index of the attribute to change.

Type

[in] Type of data used for the new attribute value. For more information about the types of data supported, see
WMT_ATTR_DATATYPE.

wLangIndex

[in] WORD containing the language index of the language to be associated with the new attribute. This is the
index of the language in the language list for the file.

pValue

[in] Pointer to an array of bytes containing the attribute value.

dwLength

[in] DWORD containing the length of the attribute value, in bytes.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

Return code Description

E_INVALIDARG An illegal parameter combination, data type, or
attribute name was used.

E_NOTIMPL The method is not implemented on a reader object.

E_POINTER A pointer is not valid.

NS_E_ATTRIBUTE_READ_ONLY The attribute cannot be changed.

NS_E_INVALID_REQUEST wStreamNum is not a valid stream number, or there is
no attribute at wIndex.

S_OK The method succeeded.

You can use 0xFFFF for the stream number to specify an attribute using its global index. Global index values
range from 0 to one less than the count of attributes received from a call to
IWMHeaderInfo3::GetAttributeCountEx where the stream number was set to 0xFFFF.

When setting attributes for MP3 files, the metadata editor will automatically insert a byte-order mark in
accordance with the Unicode specification. If you manually insert a byte-order mark, this method will not fail,
but the value will then have two marks, which can cause problems when reading the attribute.

The objects of the Windows Media Format SDK perform type checking on some supported metadata attributes,
but not all of them. You should ensure that any attributes you use are set using the data type specified in the
Attributes section of this documentation. Likewise, you cannot assume that an attribute set by another
application will use the correct data type.

See Also

IWMHeaderInfo3 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMImageInfo Interface
The IWMImageInfo interface retrieves images stored in ID3v2 "APIC" (attached picture) frames in a file. The
methods of this interface are superseded in the Windows Media Format 9 Series SDK by the WM/Picture
metadata attribute, which is supported by the methods of the new IWMHeaderInfo3 interface. If you are using
the Windows Media Format 9 Series SDK, you should avoid using this interface.

An IWMImageInfo interface exists for every reader, synchronous reader, and metadata editor object. You can
obtain a pointer to this interface by calling the QueryInterface method of any other interface in one of these
objects.

In addition to the methods inherited from IUnknown, the IWMImageInfo interface exposes the following
methods.

For information about which interfaces can be obtained by using the QueryInterface method of this interface,
see the topic for the object on which this interface is implemented.

Previous Next

Previous Next

Method Description

GetImage description

GetImageCount description

Remarks

If retrieving this interface from the metadata editor, you must wait until after the file has been opened to call
QueryInterface. If you try to QueryInterface for IWMImageInfo before receiving the WMT_OPENED
message in your IWMStatusCallback::OnStatus method, the call will fail.

See Also

Interfaces
Metadata Editor Object
Reader Object
Synchronous Reader Object

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMImageInfo::GetImage
The GetImage method retrieves an image stored in a file as an ID3v2 "APIC" metadata frame.

Syntax

HRESULT GetImage(
 DWORD wIndex,
 WORD* pcchMIMEType,
 WCHAR* pwszMIMEType,
 WORD* pcchDescription,
 WCHAR* pwszDescription,
 WORD* pImageType,
 DWORD* pcbImageData,
 BYTE* pbImageData
);

Parameters

wIndex

[in] WORD containing the image index. This is a number between zero, and one less than the image count
retrieved by IWMImageInfo::GetImageCount.

pcchMIMEType

[in, out] Pointer to a WORD containing the length, in wide characters, of pwszMIMEType, including the
terminating NULL character. On the first call to this method, pass NULL as pwszMIMEType to retrieve the

Previous Next

Previous Next

required number of characters.

pwszMIMEType

[out] Pointer to a wide-character null-terminated string containing the MIME Type associated with the image.
Set to NULL on the first call and pcchMIMEType will be set to the number of wide characters, including the
terminating NULL, in this string.

pcchDescription

[in, out] Pointer to a WORD containing the length, in wide characters, of pwszDescription, including the
terminating NULL character. On the first call to this method, pass NULL as pwszDescription to retrieve the
required number of characters.

pwszDescription

[out] Pointer to a wide-character null-terminated string containing the image description. Set to NULL on the
first call and pcchDescription will be set to the number of wide characters, including the terminating NULL, in
this string.

pImageType

[out] Pointer to a WORD value containing the image type, as defined by the ID3v2 specification. This will be
one of the following values.

Value Description

0 Picture of a type not specifically listed in this table

1 32-pixel-by-32-pixel file icon. Use only with portable network graphics (PNG)
format.

2 File icon not conforming to type 1 above.

3 Front album cover.

4 Back album cover.

5 Leaflet page.

6 Media. Typically this type of image is of the label side of a CD.

7 Picture of the lead artist, lead performer, or soloist.

8 Picture of one of the involved artists or performers.

9 Picture of the conductor.

10 Picture of the band or orchestra.

11 Picture of the composer.

12 Picture of the lyricist or writer.

13 Picture of the recording studio or location.

14 Picture taken during a recording session.

pcbImageData

[in, out] Pointer to a DWORD containing the length, in bytes, of the image pointed to by pbImageData. On the
first call to this method, pass NULL as pbImageData to retrieve the required number of bytes.

pbImageData

[out] Pointer to a BYTE buffer containing the image data. Set to NULL on the first call and pcbImageData will
be set to the number of bytes in the buffer.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

See Also

GetImageCount
IWMImageInfo Interface

15 Picture taken during a performance.

16 Screen capture from a movie or video.

17 A bright colored fish.

18 Illustration.

19 Logo of the band or artist.

20 Logo of the publisher or studio.

Return code Description

S_OK The method succeeded.

E_INVALIDARG One or more of the following parameters is NULL.

pcchMIMEType
pcchDescription
pcbImageData

E_UNEXPECTED One of the ID3 frames that should be in the file cannot be
accessed.

ASF_E_BUFFERTOOSMALL The value referenced by one of the following parameters is less
than the required buffer size for the corresponding output
parameter.

pcchMIMEType
pcchDescription
pcbImageData

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMImageInfo::GetImageCount
The GetImageCount method retrieves the number of images stored in a file using ID3v2 "APIC" frames.
Images stored in the file using attributes in the Windows Media namespace, or any images stored in custom
attributes, are not included in this count.

Syntax

HRESULT GetImageCount(
 DWORD* pcImages
);

Parameters

pcImages

[out] Pointer to the number of images.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

See Also

IWMImageInfo Interface
IWMImageInfo::GetImage

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Return code Description

S_OK The method succeeded.

E_INVALIDARG The pcImages parameter is NULL.

E_UNEXPECTED One of the ID3 frames that should be in the file
cannot be accessed.

Previous Next

IWMIndexer Interface
The IWMIndexer interface is used to create an index for ASF files to enable seeking. An index is created only
for a file that contains video, although the indexer can safely be used on files that do not contain any video.

An index is an object in the ASF file that equates video samples with presentation times. This is important
because the timing of video frames is not necessarily easily computed from the frame rate.

In addition to the standard temporal index, the indexer object can create indexes based on video frame number
and SMPTE time code. For more information about creating these indexes, see IWMIndexer2::Configure.

This interface can be obtained by using the WMCreateIndexer function.

In addition to the methods inherited from IUnknown, the IWMIndexer interface exposes the following
methods.

The following interface can be obtained by using the QueryInterface method of this interface.

See Also

Indexer Object
Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Method Description

Cancel Cancels indexing.

StartIndexing Initiates indexing.

Interface IID

IWMIndexer2 IID_IWMIndexer2

Previous Next

Previous Next

IWMIndexer::Cancel
The Cancel method cancels the current indexing operation.

Syntax

HRESULT Cancel();

Parameters

This method takes no parameters.

Return Values

This method always returns S_OK.

See Also

IWMIndexer Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMIndexer::StartIndexing
The StartIndexing method initiates indexing. If you configure the indexer using the
IWMIndexer2::Configure method, StartIndexing creates an index based upon your configuration. When you
use StartIndexing without first calling Configure, the indexer creates a default temporal index.

Syntax

HRESULT StartIndexing(
 const WCHAR* pwszURL,
 IWMStatusCallback* pCallback,
 void* pvContext
);

Parameters

pwszURL

[in] Pointer to a wide-character null-terminated string containing the URL or file name.

Previous Next

Previous Next

pCallback

[in] Pointer to an IWMStatusCallback interface.

pvContext

[in] Generic pointer, for use by the application.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

StartIndexing is an asynchronous call; it returns almost immediately and the application must wait for
appropriate OnStatus calls to be sent to the callback function.

If you call StartIndexing for a file that is already indexed, the old index is discarded.

When the indexer successfully indexes a file, it will set some of the reserved attribute values as described in the
following table.

See Also

IWMIndexer Interface
IWMStatusCallback::OnStatus

© 2000-2003 Microsoft Corporation. All rights reserved.

Return code Description

E_INVALIDARG The parameter pwszURL or pCallback is NULL.

NS_E_BUSY The method cannot start indexing in the current state.

Index type Attributes set

WMT_IT_PRESENTATION_TIME g_wszWMSeekable
g_wszWMStridable, if a video stream is present.

WMT_IT_FRAME_NUMBERS g_wszWMNumberOfFrames
g_wszWMSeekable
g_wszWMStridable

Previous Next

IWMIndexer2 Interface
The IWMIndexer2 interface enables you to change the settings of the indexer object to suit your needs.

This interface is implemented as part of the indexer object. To obtain a pointer to IWMIndexer2, call the
QueryInterface method of the IWMIndexer interface.

In addition to the methods inherited from IWMIndexer, the IWMIndexer2 interface exposes the following
method.

In addition to the methods of IUnknown, this interface inherits the following methods.

The following interface can be obtained by using the QueryInterface method of this interface.

See Also

Indexer Object
IWMIndexer Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Method Description

Configure Enables custom configuration of the indexer object.

Method Description

Cancel Cancels indexing.

StartIndexing Initiates indexing.

Interface IID

IWMIndexer IID_IWMIndexer

Previous Next

Previous Next

IWMIndexer2::Configure
The Configure method changes the internal settings of the indexer object. You can use Configure to activate
frame-based indexing or SMPTE time code indexing. Configure does not create an index, it just configures the
indexer object. After you have changed the desired settings, you must call IWMIndexer::StartIndexing to
create the index.

Syntax

HRESULT Configure(
 WORD wStreamNum,
 WMT_INDEXER_TYPE nIndexerType,
 void* pvInterval,
 void* pvIndexType
);

Parameters

wStreamNum

[in] WORD containing the stream number for which an index is to be made. If you pass 0, all streams will be
indexed.

nIndexerType

[in] A variable containing one member of the WMT_INDEXER_TYPE enumeration type.

pvInterval

[in] This void pointer must point to a DWORD containing the desired indexing interval. Intervals for temporal
indexing are in milliseconds. Frame-based index intervals are specified in frames.

If you pass NULL, Configure will use the default value. For temporal indexes, the default value is 3000
milliseconds, for frame-based indexes it is 10 frames.

pvIndexType

[in] This void pointer must point to a WORD value containing one member of the WMT_INDEX_TYPE
enumeration type. If you pass NULL, Configure will use the default value.

The default value is WMT_IT_NEAREST_CLEAN_POINT. Using another index type degrades seeking
performance.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Return code Description

E_OUTOFMEMORY The method is unable to add the stream number to its internal
list.

Remarks

You can call Configure as many times as needed to configure multiple streams in a file. You must make all
desired calls to Configure before you start indexing. If you configure and index a file that already has an index,
the existing index will be deleted.

If you configure the indexer to build a frame-based index, it will also create a temporal index. This is required
for synchronizing audio and video.

See Also

IWMIndexer2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMInputMediaProps Interface
The IWMInputMediaProps interface is used to retrieve the properties of digital media that will be passed to
the writer.

An input media properties object is created by a call to either the IWMWriter::GetInputProps or
IWMWriter::GetInputFormat method.

In addition to the methods inherited from IWMMediaProps, the IWMInputMediaProps interface exposes the
following methods.

In addition to the methods of IUnknown, this interface inherits the following methods.

Previous Next

Previous Next

Method Description

GetGroupName Not implemented in this release. Returns an empty string.

GetConnectionName Retrieves the connection name specified in the profile.

Method Description

GetMediaType Retrieves a WM_MEDIA_TYPE structure describing the
media type.

GetType Retrieves the major type of the media (audio, video, or script).

For information on which interfaces can be obtained by using the QueryInterface method of this interface, see
Input Media Properties Object.

See Also

Interfaces
IWMMediaProps Interface
IWMOutputMediaProps Interface
IWMWriter Interface
IWMWriter::GetInputFormat
IWMWriter::GetInputProps
IWMWriter::SetInputProps

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMInputMediaProps::GetGroupName
The GetGroupName method is not implemented, and returns an empty string.

Syntax

HRESULT GetGroupName(
 WCHAR* pwszName,
 WORD* pcchName
);

Parameters

pwszName

[out] Pointer to a wide-character null-terminated string containing the name. Pass NULL to retrieve the length
required for the name.

pcchName

[in, out] On input, a pointer to a variable containing the length of the pwszName array in wide characters (2
bytes). On output, if the method succeeds, the variable contains the length of the name, including the
terminating null character.

SetMediaType Specifies a WM_MEDIA_TYPE structure describing the
media type.

Previous Next

Previous Next

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

See Also

IWMInputMediaProps Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMInputMediaProps::GetConnectionName
The GetConnectionName method retrieves the connection name specified in the profile.

Syntax

HRESULT GetConnectionName(
 WCHAR* pwszName,
 WORD* pcchName
);

Parameters

pwszName

[out] Pointer to a wide-character null-terminated string containing the connection name. Pass NULL to retrieve
the length required for the name.

pcchName

[in, out] On input, a pointer to a variable containing the length of the pwszName array in wide characters (2
bytes). On output, if the method succeeds, the variable contains the length of the name, including the
terminating null character.

Return Values

Return code Description

E_INVALIDARG The pcchName parameter is NULL.

ASF_E_BUFFERTOOSMALL The pwszName parameter is not large enough.

Previous Next

Previous Next

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

You should make two calls to GetConnectionName. On the first call, pass NULL as pwszName. On return, the
value pointed to by pcchName is set to the number of wide characters, including the terminating null, required
to hold the connection name. Then you can allocate the required amount of memory for the string and pass a
pointer to it as pwszName on the second call.

The connection name is the same as the input name specified on one (or more) of the streams in the profile, so it
can be used to match writer inputs to profile streams.

See Also

IWMInputMediaProps Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMIStreamProps Interface
The IWMIStreamProps interface provides access to the properties of an IStream object.

To obtain a pointer to an IWMIStreamProps interface, call IStream::QueryInterface.

In addition to the methods inherited from IUnknown, the IWMIStreamProps interface exposes the following
method.

See Also

Interfaces

Return code Description

E_INVALIDARG The pcchName parameter is NULL.

ASF_E_BUFFERTOOSMALL The pwszName parameter is not large enough.

Previous Next

Previous Next

Method Description

GetProperty Retrieves a named property from the IStream.

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMIStreamProps::GetProperty
The GetProperty method retrieves a named property from the IStream.

Syntax

HRESULT GetProperty(
 LPCWSTR pszName,
 WMT_ATTR_DATATYPE* pType,
 BYTE* pValue,
 DWORD* pdwSize
);

Parameters

pszName

[in] Pointer to a null-terminated string containing the name of the property to retrieve. You should use the
global identifier to refer to properties so that any error will appear at compile time. The following table lists the
available IStream properties.

pType

[out] Pointer to a variable that will receive one member of the WMT_ATTR_DATATYPE enumeration type.
This value indicates the type of data in the buffer at pValue.

Previous Next

Previous Next

Property name Global identifier

ReloadIndexOnSeek g_wszReloadIndexOnSeek

StreamNumIndexObjects g_wszStreamNumIndexObjects

FailSeekOnError g_wszFailSeekOnError

PermitSeeksBeyondEndOfStream g_wszPermitSeeksBeyondEndOfStream

UsePacketAtSeekPoint g_wszUsePacketAtSeekPoint

SourceBufferTime g_wszSourceBufferTime

SourceMaxBytesAtOnce g_wszSourceMaxBytesAtOnce

pValue

[out] Pointer to a byte buffer that will receive the property value. The type of data returned to the buffer is
indicated by the value pointed to by pType.

pdwSize

[in, out] Pointer to a DWORD containing the size of the buffer at pValue. On return, this value will be set to
the correct size of the property value.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

You should make two calls to GetProperty for each property you want to retrieve. On the first call, pass NULL
as pValue. On return, the value pointed to by pdwSize will be set to the buffer size required to hold the property
value. Then you can allocate the required amount of memory for the buffer and pass a pointer to it as pValue on
the second call.

See Also

IWMIStreamProps Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMLanguageList Interface
The IWMLanguageList interface manages a list of languages supported by an ASF file. This interface

Return code Description

E_INVALIDARG pType, pValue, or pdwSize is NULL.

OR

The buffer is not big enough to hold the requested value.

E_FAIL pszName specifies an invalid property name.

Previous Next

Previous Next

supports both content and metadata in multiple languages.

The IWMLanguageList interface is supported in the profile, writer, metadata editor, reader, and synchronous
reader objects. A pointer to an instance of IWMLanguageList can be obtained by calling the QueryInterface
method of any interface in one of the listed objects.

Important Do not use this interface before opening the reader object.

In addition to the methods inherited from IUnknown, the IWMLanguageList interface exposes the following
methods.

For information about which interfaces can be obtained by using the QueryInterface method of this interface,
see the topic for the object on which this interface is implemented.

Remarks

This interface provides support for referencing languages by a string compliant with RFC1766. Other interfaces
in this SDK refer to the languages supported in an ASF file by language index. A language index is assigned to
every language added to the language list.

This interface manages the list of languages supported for the file. Individual features of the file may not
support all of the languages in the list. When selecting a language for playback of an output associated with a
set of streams that are mutually exclusive by language, you must get the languages that are supported in that
mutual exclusion object. You can retrieve the languages supported for a particular output by using the methods
of the IWMReaderAdvanced4 interface.

When using this interface to add metadata in multiple languages to an MP3 file, only the first half of the
language string is important. For example, the RFC1766 identifier "en-us" designates English in the region of
the United States. When written to an MP3 file, the identifier would be "en" without a regional designation.

For a list of common RFC1766-compliant language identifiers, see Language Strings.

See Also

Interfaces
Metadata Editor Object
Profile Object
Reader Object
Synchronous Reader Object
Writer Object

Method Description

AddLanguageByRFC1766String Adds an entry to the list of supported languages for a
file based upon a language tag compliant with
RFC1766.

GetLanguageCount Retrieves the total number of supported languages in
the language list.

GetLanguageDetails Retrieves the locale identifier (LCID) and RFC1766-
compliant tag for an entry in the list of supported
languages.

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMLanguageList::AddLanguageByRFC1766String
The AddLanguageByRFC1766String method adds an entry to the list of supported languages for a file based
upon a language tag compliant with RFC1766.

Syntax

HRESULT AddLanguageByRFC1766String(
 LPWSTR pwszLanguageString,
 WORD* pwIndex
);

Parameters

pwszLanguageString

[in] Pointer to a wide-character null-terminated string containing an RFC1766-compliant language tag.

pwIndex

[out] Pointer to a WORD. On output, this will be set to the index assigned to the added language entry.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

For a list of common RFC1766-compliant language identifiers, see Language Strings.

See Also

IWMLanguageList Interface

Previous Next

Previous Next

Return code Description

S_OK The method succeeded.

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMLanguageList::GetLanguageCount
The GetLanguageCount method retrieves the total number of supported languages in the language list.

Syntax

HRESULT GetLanguageCount(
 WORD* pwCount
);

Parameters

pwCount

[out] Pointer to a WORD containing the total number of languages present in the language list.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

For a list of common RFC1766-compliant language identifiers, see Language Strings.

See Also

IWMLanguageList Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Return code Description

S_OK The method succeeded.

Previous Next

IWMLanguageList::GetLanguageDetails
The GetLanguageDetails method retrieves the RFC1766-compliant language tag for an entry in the list of
supported languages.

Syntax

HRESULT GetLanguageDetails(
 WORD wIndex,
 WCHAR* pwszLanguageString
 WORD* pcchLanguageStringLength,
);

Parameters

wIndex

[in] WORD containing the index in the language list.

pwszLanguageString

[out] Pointer to the RFC1766-compliant language tag of the language list entry specified by wIndex. Pass
NULL to retrieve the length of the string, which will be returned in pcbLanguageStringLength.

pcchLanguageStringLength

[in, out] Pointer to a WORD containing the length of the language string, in wide characters. This length
includes the terminating null character.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

For a list of common RFC1766-compliant language identifiers, see Language Strings.

See Also

IWMLanguageList Interface

Previous Next

Return code Description

S_OK The method succeeded.

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMLicenseBackup Interface
The IWMLicenseBackup interface manages the backing up of licenses, typically so that they can be restored
onto another computer.

This interface is obtained by using the WMCreateBackupRestorer function.

In addition to the methods inherited from IUnknown, the IWMLicenseBackup interface exposes the following
methods.

The following interfaces can be obtained by using the QueryInterface method of this interface.

See Also

Backing up and Restoring Licenses
Backup Restorer Object
Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Method Description

BackupLicenses Saves copies of the licenses.

CancelLicenseBackup Cancels a current backup operation.

Interface IID

IWMBackupRestoreProps IID_IWMBackupRestoreProps

IWMLicenseRestore IID_IWMLicenseRestore

Previous Next

IWMLicenseBackup::BackupLicenses
The BackupLicenses method saves copies of the licenses.

Syntax

HRESULT BackupLicenses(
 DWORD dwFlags,
 IWMStatusCallback* pCallback
);

Parameters

dwFlags

[in] DWORD containing the flags.

pCallback

[in] Pointer to an object that implements the IWMStatusCallback interface.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

For more information on how to specify the location of the backup file (there are predefined properties for the
backup path and restore path for this purpose), see IWMBackupRestoreProps Interface.

This method operates asynchronously, and an IWMStatusCallback object can be used to track progress.

Previous Next

Flag Description

WM_BACKUP_OVERWRITE Indicates that any existing backup file should be overwritten. If
this is not set, and a backup file exists, the
NS_E_DRM_BACKUP_EXISTS error code is returned.

Return code Description

E_INVALIDARG The pCallback parameter is NULL.

E_OUTOFMEMORY Not enough memory available to perform the task.

See Also

IWMBackupRestoreProps Interface
IWMLicenseBackup Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMLicenseBackup::CancelLicenseBackup
The CancelLicenseBackup method cancels a current backup operation.

Syntax

HRESULT CancelLicenseBackup();

Parameters

This method takes no parameters.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

A backup operation is asynchronous, and a call to this method cancels a backup that is in progress.

See Also

IWMLicenseBackup Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Previous Next

IWMLicenseRestore Interface
The IWMLicenseRestore interface manages the restoring of licenses.

This interface is obtained from another interface on the backup restorer object.

In addition to the methods inherited from IUnknown, the IWMLicenseRestore interface exposes the following
methods.

The following interfaces can be obtained by using the QueryInterface method of this interface.

See Also

Backing up and Restoring Licenses
Backup Restorer Object
Interfaces
IWMBackupRestoreProps Interface
IWMLicenseBackup Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMLicenseRestore::CancelLicenseRestore
The CancelLicenseRestore method cancels a current restore operation.

Syntax

Method Description

CancelLicenseRestore Cancels a current restore operation.

RestoreLicenses Restores licenses that were previously backed up.

Interface IID

IWMBackupRestoreProps IID_IWMBackupRestoreProps

IWMLicenseBackup IID_IWMLicenseBackup

Previous Next

Previous Next

HRESULT CancelLicenseRestore();

Parameters

This method takes no parameters.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

This method operates asynchronously, and a call to this method cancels a restore operation that is in progress.

See Also

IWMLicenseRestore Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMLicenseRestore::RestoreLicenses
The RestoreLicenses method restores licenses that were previously backed up.

Syntax

HRESULT RestoreLicenses(
 DWORD dwFlags,
 IWMStatusCallback* pCallback
);

Parameters

dwFlags

[in] DWORD containing the flags.

Previous Next

Previous Next

Flag Description

WM_RESTORE_INDIVIDUALIZE Indicates that the application has received permission
from the user to individualize their computer. (See
Individualizing DRM Applications section.)

pCallback

[in] Pointer to an IWMStatusCallback interface.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

For more information on how to specify the location of the backup file (there are predefined properties for the
backup path and restore path for this purpose), see IWMBackupRestoreProps Interface.

The operation of this method is asynchronous, and an IWMStatusCallback interface can be used to track
progress.

See Also

IWMLicenseRestore Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMMediaProps Interface
The IWMMediaProps interface sets and retrieves the WM_MEDIA_TYPE structure for an input, stream, or
output.

In the case of inputs and streams, the contents of the media type structure determine what actions the writer
object will perform on the input data when writing the file. Typically, the input media type is an uncompressed
type and the stream is a compressed type, so that the contents of their respective media type structures will
determine the settings passed by the writer to the codec that will compress the stream.

In the case of outputs, the media type structure determines the settings used to decompress the contents of a
stream. The Windows Media codecs are capable of delivering output content in a variety of formats.

The methods of IWMMediaProps are inherited by IWMVideoMediaProps, which provides access to
additional settings for specifying video media types. The methods are also inherited by IWMInputMediaProps
and IWMOutputMediaProps.

An instance of the IWMMediaProps interface exists for every stream configuration object, input media

Previous Next

Previous Next

properties object, and output media properties object. You can retrieve a pointer to this interface by calling the
QueryInterface method of any other interface in one of those objects.

In addition to the methods inherited from IUnknown, the IWMMediaProps interface exposes the following
methods.

For information about which interfaces can be obtained by using the QueryInterface method of this interface,
see the topic for the object on which this interface is implemented.

See Also

Interfaces
Stream Configuration Object
Input Media Properties Object
Output Media Properties Object

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMMediaProps::GetMediaType
The GetMediaType method retrieves a structure describing the media type.

Syntax

HRESULT GetMediaType(
 WM_MEDIA_TYPE* pType,
 DWORD* pcbType
);

Parameters

pType

Method Description

GetMediaType Retrieves a WM_MEDIA_TYPE structure describing the
media type.

GetType Retrieves the major type of the media (audio, video, or script).

SetMediaType Specifies a WM_MEDIA_TYPE structure describing the
media type.

Previous Next

Previous Next

[out] Pointer to a WM_MEDIA_TYPE structure. If this parameter is set to NULL, this method returns the size
of the buffer required in the pcbType parameter.

pcbType

[in, out] On input, the size of the pType buffer. On output, if pType is set to NULL, the value this points to is set
to the size of the buffer needed to hold the media type structure.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

You must make two calls to GetMediaType. On the first call, pass NULL as pType. On return, the value of
pcbType will be set to the buffer size required to hold the WM_MEDIA_TYPE structure. Then you can
allocate a buffer of the required size and pass a pointer to it as pType on the second call.

See Also

IWMMediaProps Interface
IWMMediaProps::SetMediaType
Media Types

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMMediaProps::GetType
The GetType method retrieves the major type of the media in the stream, input, or output described by the
object to which the current IWMMediaProps interface belongs.

Syntax

HRESULT GetType(
 GUID* pguidType

Return code Description

E_INVALIDARG The pcbType parameter is NULL.

ASF_E_BUFFERTOOSMALL The pcbType parameter is not large enough.

Previous Next

Previous Next

);

Parameters

pguidType

[out] Pointer to a GUID specifying the media type.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

These media types are used by the writer, reader, and profile objects to identify the properties of a media stream
that are specific to the media type.

GetType is provided for convenience; it returns the same value as the majortype member of
WM_MEDIA_TYPE.

See Also

IWMMediaProps Interface
IWMMediaProps::GetMediaType
IWMVideoMediaProps Interface
Media Types

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMMediaProps::SetMediaType
The SetMediaType method specifies the media type.

Syntax

HRESULT SetMediaType(

Return code Description

E_INVALIDARG The pguidType parameter is NULL.

Previous Next

Previous Next

 WM_MEDIA_TYPE* pType
);

Parameters

pType

[in] Pointer to the WM_MEDIA_TYPE structure describing the input, stream, or output.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

See Also

IWMMediaProps Interface
IWMMediaProps::GetMediaType

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMMetadataEditor Interface
The IWMMetadataEditor interface is used to edit metadata information in ASF file headers. It is obtained by
calling the WMCreateEditor function.

In addition to the methods inherited from IUnknown, the IWMMetadataEditor interface exposes the
following methods.

Return code Description

E_INVALIDTYPE The pType parameter is NULL.

E_OUTOFMEMORY There is not enough available memory.

NS_E_INVALID_STREAM The structure pointed to by pType is invalid.

Previous Next

Previous Next

Method Description

Close Closes the currently open file without writing any changes to
the metadata back to the disk.

The following interfaces can be obtained by using the QueryInterface method of this interface.

See Also

Interfaces
Metadata Editor Object

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMMetadataEditor::Close
The Close method closes the open file without saving any changes.

Syntax

HRESULT Close();

Parameters

This method takes no parameters.

Return Values

This method always returns S_OK.

Flush Closes the currently open file, writing any changes to the
metadata back to the disk.

Open Opens an ASF file.

Interface IID

IWMDRMEditor IID_IWMDRMEditor

IWMHeaderInfo IID_IWMHeaderInfo

IWMHeaderInfo2 IID_IWMHeaderInfo2

IWMHeaderInfo3 IID_IWMHeaderInfo3

IWMMetadataEditor2 IID_IWMMetadataEditor2

Previous Next

Previous Next

See Also

IWMMetadataEditor Interface
IWMMetadataEditor::Flush
IWMMetadataEditor::Open

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMMetadataEditor::Flush
The Flush method closes the open file, saving any changes.

Syntax

HRESULT Flush();

Parameters

This method takes no parameters.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

See Also

IWMMetadataEditor Interface
IWMMetadataEditor::Close

Previous Next

Previous Next

Return code Description

ASF_E_INVALIDSTATE No file has been opened.

NS_E_FILE_WRITE Read-only file.

E_UNEXPECTED There is not enough available memory.

E_OUTOFMEMORY There is not enough available memory.

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMMetadataEditor::Open
The Open method opens an ASF file.

Syntax

HRESULT Open(
 const WCHAR* pwszFilename
);

Parameters

pwszFilename

[in] Pointer to a wide-character null-terminated string containing the file name.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

See Also

IWMMetadataEditor Interface
IWMMetadataEditor::Close
IWMMetadataEditor2::OpenEx

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Return code Description

NS_E_FILE_OPEN_FAILED The method failed to open the specified file.

E_POINTER The pwszFilename parameter is NULL.

E_OUTOFMEMORY There is not enough available memory.

Previous Next

IWMMetadataEditor2 Interface
The IWMMetadataEditor2 interface provides an improved method for opening files for metadata operations.

This interface is implemented as part of the metadata editor object. To obtain a pointer to
IWMMetadataEditor2, call the QueryInterface method of any other interface in an existing metadata editor
object.

In addition to the methods inherited from IWMMetadataEditor, the IWMMetadataEditor2 interface exposes
the following method.

In addition to the methods of IUnknown, this interface inherits the following methods.

The following interfaces can be obtained by using the QueryInterface method of this interface.

See Also

IWMMetadataEditor Interface
Metadata Editor Object

Previous Next

Method Description

OpenEx Opens a file so that the metadata can be accessed.

Method Description

Close Closes the currently open file without writing any changes to
the metadata back to the disk.

Flush Closes the currently open file, writing any changes to the
metadata back to the disk.

Open Opens an ASF file.

Interface IID

IWMDRMEditor IID_IWMDRMEditor

IWMHeaderInfo IID_IWMHeaderInfo

IWMHeaderInfo2 IID_IWMHeaderInfo2

IWMHeaderInfo3 IID_IWMHeaderInfo3

IWMMetadataEditor IID_IWMMetadataEditor

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMMetadataEditor2::OpenEx
The OpenEx method opens a file for use by the metadata editor object. OpenEx opens ASF files and MP3
files, though the metadata editor has limited capabilities when working with MP3 files.

Syntax

HRESULT OpenEx(
 const WCHAR* pwszFilename,
 DWORD dwDesiredAccess,
 DWORD dwShareMode
);

Parameters

pwszFilename

[in] Pointer to a wide-character null-terminated string containing the file name.

dwDesiredAccess

[in] DWORD containing the desired access type. This can be set to GENERIC_READ or GENERIC_WRITE.
For read/write access, pass both values combined with a bitwise OR. When using GENERIC_READ, you must
also pass a valid sharing mode as dwShareMode. Failure to do so will result in an error.

dwShareMode

[in] DWORD containing the sharing mode. This can be one of the values in the following table or a
combination of the two using a bitwise OR. A value of zero indicates no sharing. Sharing is not supported when
requesting read/write access. If you request read/write access and pass any value other than zero for the share
mode, an error is returned.

Previous Next

Previous Next

Value Description

FILE_SHARE_READ Subsequent open operations on the file will succeed only if read
access is requested.

FILE_SHARE_DELETE (NTFS only) Subsequent open operations on the file will
succeed only if it is being deleted.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

The parameters dwDesiredAccess and dwShareMode are identical to those used in the OpenFile function
defined in the Platform SDK. In the case of OpenEx, however, only a limited set of values are valid for
dwDesiredAccess. Using any value other than those specified will result in an error.

See Also

IWMMetadataEditor2 Interface
IWMMetadataEditor::Open

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMMutualExclusion Interface
The IWMMutualExclusion interface represents a group of streams, of which only one at a time can be played.

IWMMutualExclusion is the base interface for mutual exclusion objects. You can create a mutual exclusion
object only as part of a profile. Never use COM functions, such as CoCreateInstance, to create a mutual
exclusion object. Instead, you must already have a profile opened and make a call to its
IWMProfile::CreateNewMutualExclusion method. After a mutual exclusion object has been created, you can
change the type of mutual exclusion by using the methods in this interface.

Return code Description

E_INVALIDARG Read/write access has been requested using file sharing.

OR

Read access has been requested without indicating read-and-
delete file sharing.

OR

The access mode requested is not available with this method.

Previous Next

Previous Next

You can manage the streams in a mutual exclusion object using the methods of the IWMStreamList interface.
IWMMutualExclusion inherits from IWMStreamList, so those methods are directly available in this
interface.

In addition to the methods inherited from IWMStreamList, the IWMMutualExclusion interface exposes the
following methods.

In addition to the methods of IUnknown, this interface inherits the following methods.

The following interface can be obtained by using the QueryInterface method of this interface.

See Also

Interfaces
IWMProfileManager Interface
Profile Manager Object

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMMutualExclusion::GetType
The GetType method retrieves the GUID of the type of mutual exclusion required.

Method Description

GetType Retrieves the GUID of the type of mutual exclusion required.

SetType Specifies the GUID of the type of mutual exclusion required.

Method Description

AddStream Adds a stream to the list.

GetStreams Retrieves an array of stream numbers that make up the list.

RemoveStream Removes a stream from the list.

Interface IID

IWMStreamList IID_IWMStreamList

IWMMutualExclusion2 IID_IWMMutualExclusion2

Previous Next

Previous Next

Syntax

HRESULT GetType(
 GUID* pguidType
);

Parameters

pguidType

[out] Pointer to a GUID that specifies the type of mutual exclusion.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

The following constants represent the GUIDs supported by this SDK.

Note If you create a multiple bit rate audio file, you may encounter problems streaming the file from Windows
Media Services 4.1. To avoid problems, disable auto indexing with a call to
IWMWriterFileSink3::SetAutoIndexing before writing the file.

See Also

IWMMutualExclusion Interface
IWMMutualExclusion::SetType

Return code Description

E_POINTER The pguidType parameter is NULL.

Mutual exclusion type identifier Description

CLSID_WMMUTEX_Bitrate The mutual exclusion streams differ only in bit rate. On
playback, the stream that will best use the available
bandwidth is chosen. You must use this type of mutual
exclusion for multiple bit rate files.

CLSID_WMMUTEX_Language The mutual exclusion streams are the same content only in
a different language. A common use of this type of mutual
exclusion is for dubbing soundtracks into multiple
languages.

CLSID_WMMUTEX_Presentation The mutual exclusion streams are the same video in a
different presentation format. The presentation format is
usually defined by the aspect ratio of the video frame.

CLSID_WMMUTEX_Unknown The mutual exclusion streams are of a custom type. This
sort of mutual exclusion can contain streams of varying
types.

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMMutualExclusion::SetType
The SetType method specifies the GUID of the type of mutual exclusion required.

Syntax

HRESULT SetType(
 REFGUID guidType
);

Parameters

guidType

[in] GUID specifying the type of mutual exclusion. For a list of values, see IWMMutualExclusion::GetType

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

If you create a multiple bit rate audio file, you may encounter problems streaming the file from Windows Media
Services 4.1. To avoid problems, disable auto indexing by calling IWMWriterFileSink3::SetAutoIndexing
before writing the file.

See Also

IWMMutualExclusion Interface
IWMMutualExclusion::GetType

Previous Next

Previous Next

Return code Description

E_INVALIDARG Invalid type.

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMMutualExclusion2 Interface
The IWMMutualExclusion2 interface provides advanced configuration features for mutual exclusion objects.

This interface supports both multiple languages and advanced mutual exclusion.

An IWMMutualExclusion2 interface is created for each mutual exclusion object created. To retrieve a pointer
to an IWMMutualExclusion2 interface, call the QueryInterface method of the IWMMutualExclusion
interface returned by IWMProfile::CreateNewMutualExclusion.

In addition to the methods inherited from IWMMutualExclusion, the IWMMutualExclusion2 interface
exposes the following methods.

In addition to the methods of IUnknown, this interface inherits the following methods.

Previous Next

Method Description

AddRecord Adds a record to the mutual exclusion object. Records can hold
groups of streams.

AddStreamForRecord Adds a stream to the list in a record.

GetName Retrieves the name that has been assigned to the mutual
exclusion object through a call to SetName.

GetRecordCount Retrieves the number of records that exist for the mutual
exclusion object.

GetRecordName Retrieves the name that has been assigned to a record through a
call to SetName.

GetStreamsForRecord Retrieves the list of all streams in a record.

RemoveRecord Removes a record from the mutual exclusion object.

RemoveStreamForRecord Removes a stream from the list in a record.

SetName Assigns a name to the mutual exclusion object.

SetRecordName Assigns a name to a record.

Method Description

GetStreams Retrieves an array of stream numbers that make up the list.

The following interface can be obtained by using the QueryInterface method of this interface.

See Also

IWMMutualExclusion Interface
Mutual Exclusion Object

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMMutualExclusion2::AddRecord
The AddRecord method adds a record to the mutual exclusion object. Records can hold groups of streams. You
can add streams with calls to IWMMutualExclusion2::AddStreamForRecord. You can assign a name to a
record with a call to IWMMutualExclusion2::SetName.

Syntax

HRESULT AddRecord();

Parameters

This method takes no parameters.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

GetType Retrieves the GUID of the type of mutual exclusion required.

RemoveStream Removes a stream from the list.

SetType Specifies the GUID of the type of mutual exclusion required.

Interface IID

IWMStreamList IID_IWMStreamList

IWMMutualExclusion IID_IWMMutualExclusion

Previous Next

Previous Next

Return code Description

Remarks

Record numbers, which are used by other methods, are assigned to records sequentially.

See Also

IWMMutualExclusion2 Interface
IWMMutualExclusion2::AddStreamForRecord
IWMMutualExclusion2::RemoveRecord
IWMMutualExclusion2::SetName

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMMutualExclusion2::AddStreamForRecord
The AddStreamForRecord method adds a stream to a record created with
IWMMutualExclusion2::AddRecord.

Syntax

HRESULT AddStreamForRecord(
 WORD wRecordNumber,
 WORD wStreamNumber
);

Parameters

wRecordNumber

[in] WORD containing the number of the record to which to add the stream.

wStreamNumber

[in] WORD containing the stream number you want to add.

Return Values

E_OUTOFMEMORY The method was unable to allocate memory for the new record.

E_FAIL There was a problem adding the new record to the collection of
records for this mutual exclusion object.

Previous Next

Previous Next

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

Record numbers are assigned sequentially.

See Also

IWMMutualExclusion2 Interface
IWMMutualExclusion2::RemoveStreamForRecord

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMMutualExclusion2::GetName
The GetName method retrieves the name of the current mutual exclusion object. A mutual exclusion object has
a name only if a name has been assigned using the IWMMutualExclusion2::SetName method.

Syntax

HRESULT GetName(
 WCHAR* pwszName,
 WORD* pcchName
);

Parameters

pwszName

[out] Pointer to a wide-character null-terminated string containing the name of the mutual exclusion object.
Pass NULL to retrieve the length of the name.

Return code Description

E_OUTOFMEMORY The method is unable to allocate memory for the new stream
number.

E_INVALIDARG wRecordNumber contains an invalid record number.

E_FAIL The method is unable to access the record for an unspecified
reason.

Previous Next

Previous Next

pcchName

[in, out] On input, a pointer to a variable containing the length of the pwszName array in wide characters (2
bytes). On output, if the method succeeds, the variable contains the length of the name, including the
terminating null character.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

You can pass pwszName as NULL to retrieve the correct size of the name in pcchName and then make another
call to this method with a properly sized string. If you do, the value you pass as pcchName is irrelevant. It will
be replaced with the correct length of the name.

If you pass an address as pwszName, and the length you specified in pcchName is shorter than the number of
characters required to store the name, GetName ignores pwszName and returns the correct number of characters
in pcchName. In this case the method still returns S_OK.

See Also

IWMMutualExclusion2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMMutualExclusion2::GetRecordCount
The GetRecordCount method retrieves the number of records present in the mutual exclusion object.

Syntax

HRESULT GetRecordCount(
 WORD* pwRecordCount
);

Return code Description

E_INVALIDARG The pcchName parameter is NULL.

Previous Next

Previous Next

Parameters

pwRecordCount

[out] Pointer to a WORD containing the number of records that exist in the mutual exclusion object.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

Record numbers are assigned sequentially.

See Also

IWMMutualExclusion2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMMutualExclusion2::GetRecordName
The GetRecordName method retrieves the name of the specified record. A record has a name only if a name
has been assigned using the IWMMutualExclusion2::SetRecordName method.

Syntax

HRESULT GetRecordName(
 WORD wRecordNumber,
 WCHAR* pwszRecordName,
 WORD* pcchRecordName
);

Parameters

wRecordNumber

Return code Description

E_INVALIDARG The pwRecordCount parameter is NULL.

Previous Next

Previous Next

[in] WORD containing the number of the record for which you want to get the name.

pwszRecordName

[out] Pointer to a wide-character null-terminated string containing the record name. Pass NULL to retrieve the
length of the name.

pcchRecordName

[in, out] On input, a pointer to a variable containing the length of the pwszRecordName array in wide characters
(2 bytes). On output, if the method succeeds, the variable contains the length of the name, including the
terminating null character. However, if you pass NULL as pwszRecordName, this will be set to the required
length on output.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

You should make two calls to GetRecordName for each record name you want to retrieve. On the first call,
pass NULL as pwszRecordName. On return, the value pointed to by pcchRecordName will be set to the number
of wide characters, including the terminating null character, required to hold the record name. Then you can
allocate the required amount of memory for the string and pass a pointer to it as pwszRecordName on the
second call.

Records are assigned numbers sequentially in the order they are created.

See Also

IWMMutualExclusion2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Return code Description

E_INVALIDARG wRecordNumber does not contain a valid record number.

OR

pcchRecordName is NULL.

E_FAIL The method is unable to access the record for an unspecified
reason.

Previous Next

IWMMutualExclusion2::GetStreamsForRecord
The GetStreamsForRecord method retrieves the list of streams that are present in a record.

Syntax

HRESULT GetStreamsForRecord(
 WORD wRecordNumber,
 WORD* pwStreamNumArray,
 WORD* pcStreams
);

Parameters

wRecordNumber

[in] WORD containing the record number for which to retrieve the streams.

pwStreamNumArray

[out] Pointer to an array that will receive the stream numbers. If it is NULL, GetStreamsForRecord will
return the number of streams to pcStreams.

pcStreams

[in, out] Pointer to a WORD containing the number of streams in the record.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Previous Next

Return code Description

E_INVALIDARG pcStreams is NULL.

OR

wRecordNumber does not contain a valid record number.

ASF_E_BUFFERTOOSMALL The value passed as pcStreams is smaller than the number of
streams in the record. On exit with this error code, the value at
pcStreams will contain the correct number of streams.

E_FAIL The method is unable to access the record for an unspecified
reason.

Remarks

You should make two calls to GetStreamsForRecord. On the first call, pass NULL as pwStreamNumArray.
On return, the value of pcStreams is set to the number of streams. Then you can allocate the amount of memory
needed to hold the array and pass a pointer to it as pwStreamNumArray on the second call.

If you pass an array that is not large enough to contain all of the streams, an error code of
ASF_E_BUFFERTOOSMALL is returned. When returning this error code, the method still sets the value at
pcStreams to the correct number of streams.

See Also

IWMMutualExclusion2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMMutualExclusion2::RemoveRecord
The RemoveRecord method removes a record from the mutual exclusion object.

Syntax

HRESULT RemoveRecord(
 WORD wRecordNumber
);

Parameters

wRecordNumber

[in] WORD containing the number of the record to remove.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Previous Next

Previous Next

Return code Description

E_INVALIDARG The wRecordNumber parameter does not contain a valid record

Remarks

After you remove a record, it cannot be restored.

See Also

IWMMutualExclusion2 Interface
IWMMutualExclusion2::AddRecord

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMMutualExclusion2::RemoveStreamForRecord
The RemoveStreamForRecord method removes a stream from a record's list.

Syntax

HRESULT RemoveStreamForRecord(
 WORD wRecordNumber,
 WORD wStreamNumber
);

Parameters

wRecordNumber

[in] WORD containing the record number from which you want to remove a stream.

wStreamNumber

[in] WORD containing the stream number you want to remove from the record.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

number.

E_FAIL The method is unable to access the record for an unspecified
reason.

Previous Next

Previous Next

Remarks

Do not pass NULL for either argument. It will result in exception errors.

See Also

IWMMutualExclusion2 Interface
IWMMutualExclusion2::AddStreamForRecord

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMMutualExclusion2::SetName
The SetName method assigns a name to a mutual exclusion object.

Syntax

HRESULT SetName(
 WCHAR* pwszName
);

Parameters

pwszName

[in] Pointer to a wide-character null-terminated string containing the name you want to assign.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Return code Description

NS_E_NOMATCHING_ELEMENT The stream specified by wStreamNumber does not appear in the
record specified by wRecordNumber.

E_INVALIDARG wRecordNumber does not contain a valid record number.

E_FAIL The method is unable to access the record for an unspecified
reason.

Previous Next

Previous Next

See Also

IWMMutualExclusion2 Interface
IWMMutualExclusion2::GetName

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMMutualExclusion2::SetRecordName
The SetRecordName method assigns a name to a record. You should assign a name to every record so that you
can easily identify the records in the future.

Syntax

HRESULT SetRecordName(
 WORD wRecordNumber,
 WCHAR* pwszRecordName
);

Parameters

wRecordNumber

[in] WORD containing the record number to which you want to assign a name.

pwszRecordName

[in] Pointer to a wide-character null-terminated string containing the name you want to assign to the record.
Record names are limited to 256 wide characters.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Return code Description

E_OUTOFMEMORY The method was unable to allocate memory to hold the name.

Previous Next

Previous Next

Return code Description

Remarks

If you pass an empty string as pwszRecordName, the method returns S_OK, but nothing is done.

See Also

IWMMutualExclusion2 Interface
IWMMutualExclusion2::GetRecordName

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMOutputMediaProps Interface
The IWMOutputMediaProps interface is used to retrieve the properties of an output stream.

An IWMOutputMediaProps object is created by a call to IWMReader::GetOutputFormat or
IWMReader::GetOutputProps.

In addition to the methods inherited from IWMMediaProps, the IWMOutputMediaProps interface exposes
the following methods.

In addition to the methods of IUnknown, this interface inherits the following methods.

E_OUTOFMEMORY The method was unable to allocate memory for the name.

Previous Next

Previous Next

Method Description

GetStreamGroupName Returns an empty string.

GetConnectionName Retrieves the name of the connection to be used for output.

Method Description

GetMediaType Retrieves a WM_MEDIA_TYPE structure describing the
media type.

GetType Retrieves the major type of the media (audio, video, or script).

SetMediaType Specifies a WM_MEDIA_TYPE structure describing the
media type.

For information on which interfaces can be obtained by using the QueryInterface method of this interface, see
Output Media Properties Object.

See Also

Interfaces
IWMInputMediaProps Interface
IWMMediaProps
IWMReader::SetOutputProps
IWMReaderTypeNegotiation::TryOutputProps

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMOutputMediaProps::GetConnectionName
The GetConnectionName method retrieves the name of the connection to be used for output.

Syntax

HRESULT GetConnectionName(
 WCHAR* pwszName,
 WORD* pcchName
);

Parameters

pwszName

[out] Pointer to a wide-character null-terminated string containing the name. Pass NULL to retrieve the length
of the name.

pcchName

[in, out] On input, a pointer to a variable containing the length of the pwszName array in wide characters. On
output, if the method succeeds, it specifies a pointer to the length of the connection name, including the
terminating null character.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Previous Next

Previous Next

Remarks

The reader creates a default connection name for each output that is simply a string representation of the output
number, for example "1", "2", "3" and so on.

You should make two calls to GetConnectionName. On the first call, pass NULL as pwszName. On return, the
value pointed to by pcchName is set to the number of wide characters, including the terminating null character,
required to hold the connection name. Then you can allocate the required amount of memory for the string and
pass a pointer to it as pwszName on the second call.

This connection name is used to match stream numbers to output numbers. All streams in the file are associated
with an IWMStreamConfig object whose connection name matches this one (which can be obtained by a call
to IWMStreamConfig::GetConnectionName).

See Also

Inputs, Streams and Outputs
IWMOutputMediaProps Interface
IWMStreamConfig Interface
IWMStreamConfig::GetConnectionName

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMOutputMediaProps::GetStreamGroupName
The GetStreamGroupName method is not implemented in this release, and returns the empty string.

Syntax

HRESULT GetStreamGroupName(
 WCHAR* pwszName,
 WORD* pcchName
);

Parameters

Return code Description

E_INVALIDARG The pwszName parameter is NULL.

ASF_E_BUFFERTOOSMALL The buffer pointed to by pcchName is not large enough for the
requested name.

Previous Next

Previous Next

pwszName

[out] Pointer to a wide-character null-terminated string containing the name. Pass NULL to retrieve the length
of the name.

pcchName

[in, out] On input, a pointer to a variable containing the length of the pwszName array in wide characters (2
bytes). On output, and if the method succeeds, the variable contains the length of the name, including the
terminating null character.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

You should make two calls to GetStreamGroupName. On the first call, pass NULL as pwszName. On return,
the value pointed to by pcchName is set to the number of wide characters, including the terminating null
character, required to hold the stream group name. Then you can allocate the required amount of memory for
the string and pass a pointer to it as pwszName on the second call.

See Also

IWMOutputMediaProps Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPacketSize Interface
The IWMPacketSize interface controls the maximum size of packets in an ASF file. Its methods are used to
control the size of UDP datagrams when the content, live or on-demand, is streamed across a network.

Return code Description

E_INVALIDARG The pcchName parameter is NULL.

ASF_E_BUFFERTOOSMALL The buffer pointed to by the pwszName parameter is not large
enough.

Previous Next

Previous Next

An IWMPacketSize interface can be obtained for either a profile object, a reader object, or a synchronous
reader object. You can obtain a pointer to IWMPacketSize by calling the QueryInterface method of any of the
other interfaces in one of the supported objects.

In addition to the methods inherited from IUnknown, the IWMPacketSize interface exposes the following
methods.

See Also

Interfaces
IWMProfileManager Interface
Profile Manager Object

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPacketSize::GetMaxPacketSize
The GetMaxPacketSize method retrieves the maximum size of a packet in an ASF file.

Syntax

HRESULT GetMaxPacketSize(
 DWORD* pdwMaxPacketSize
);

Parameters

pdwMaxPacketSize

[out] Pointer to a DWORD containing the maximum packet size, in bytes.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Method Description

GetMaxPacketSize Retrieves the maximum size of a packet in an ASF file.

SetMaxPacketSize Specifies the maximum size of a packet in an ASF file.

Previous Next

Previous Next

Remarks

For more information, see the Remarks section of SetMaxPacketSize.

See Also

IWMPacketSize Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPacketSize::SetMaxPacketSize
The SetMaxPacketSize method specifies the maximum size of a packet in an ASF file.

Syntax

HRESULT SetMaxPacketSize(
 DWORD dwMaxPacketSize
);

Parameters

dwMaxPacketSize

[in] DWORD containing the maximum packet size, in bytes. Set this to zero if the writer is to generate packets
of various sizes. Otherwise, it must be a value between 100 bytes and 64 kilobytes.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Return code Description

E_INVALIDARG The pdwMaxPacketSize parameter is NULL.

Previous Next

Previous Next

Return code Description

E_INVALIDARG The dwMaxPacketSize parameter contains an invalid value for
the maximum packet size.

Remarks

By default, the maximum packet size is 1400 bytes (chosen because it is below the 1500-byte Ethernet
maximum transition unit (MTU) plus the generic routing encapsulation (GRE) tunneling header size). The
writer attempts to send 10 packets per second up to but not exceeding the value of the defined maximum packet
size.

This method is designed for use with only single bit rate video; it should not be applied to a multiple bit rate
stream. Note also that the maximum value applies only to the data; a small amount will be added for the header.
For this reason there will be a small variance between the setting specified by this method and the actual
maximum packet size reported by other tools for the stream.

See Also

IWMPacketSize Interface
IWMPacketSize::GetMaxPacketSize

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPacketSize2 Interface
The IWMPacketSize2 interface provides methods to set and retrieve the minimum packet size for a profile.

An IWMPacketSize2 interface can be obtained for either a profile object, a reader object, or a synchronous
reader object. You can obtain a pointer to IWMPacketSize2 by calling the QueryInterface method of any of
the other interfaces in one of the supported objects.

In addition to the methods inherited from IWMPacketSize, the IWMPacketSize2 interface exposes the
following methods.

In addition to the methods of IUnknown, this interface inherits the following methods.

Previous Next

Previous Next

Method Description

GetMinPacketSize Retrieves the minimum packet size for files created with the
profile.

SetMinPacketSize Sets the minimum packet size for files created with the profile.

Method Description

See Also

Interfaces
IWMPacketSize Interface
Profile Object
Reader Object
Synchronous Reader Object

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPacketSize2::GetMinPacketSize
The GetMinPacketSize method retrieves the minimum packet size for files created with the profile. If you use
this method from an interface belonging to a reader or synchronous reader object, the retrieved minimum packet
size will always be zero.

Syntax

HRESULT GetMinPacketSize(
 DWORD* pdwMinPacketSize
);

Parameters

pdwMinPacketSize

[out] Pointer to a DWORD that will receive the minimum packet size.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

GetMaxPacketSize Retrieves the maximum size of a packet in an ASF file.

SetMaxPacketSize Specifies the maximum size of a packet in an ASF file.

Previous Next

Previous Next

Return code Description

E_INVALIDARG NULL pointer argument.

S_OK The method succeeded.

See Also

IWMPacketSize2 Interface
IWMPacketSize2::SetMinPacketSize

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPacketSize2::SetMinPacketSize
The SetMinPacketSize method sets the minimum packet size for files created with the profile. This method
cannot be called from an interface belonging to a reader or synchronous reader object.

Syntax

HRESULT SetMinPacketSize(
 DWORD dwMinPacketSize
);

Parameters

dwMinPacketSize

[in] DWORD specifying the new minimum packet size for files created with the profile.

Return Values

This method always returns S_OK.

Remarks

This method is used to force the writer to create packet sizes that are larger than the default size. The writer
object, by default, selects an optimal packet size based on the bit rate. At bit rates below 350 kbps, it is
approximately 1440 bytes. Below 100 kbps, the default packet size is calculated to provide approximately 10
packets per second, or ((bit_rate / 8) / 10).

Although larger packets result in a smaller file, they can also make the file more difficult to stream over a
network. Use this method with caution if you are creating files that will be streamed. It is recommended that the
packet size never be set to a value greater than 8000 bytes, which is the default packet size above 350 kbps.

See Also

Previous Next

Previous Next

IWMPacketSize2 Interface
IWMPacketSize2::GetMinPacketSize

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPlayerTimestampHook Interface
The IWMPlayerTimestampHook interface is implemented on a player's source filter. It enables the filter to
modify the time stamps on the samples before sending them to the renderer.

This method is provided to provide the filter with a greater degree of control over the streaming process than
would otherwise be possible. Specifically, the method enables changing video time stamps to allow playback at
higher rates than normal.

When DirectX video acceleration is enabled, the OnSample method is never called. Therefore, if you plan to
play video on a different timeline than a media timeline, this is the only chance to update the time stamp on the
media sample to match the timeline.

In addition to the methods inherited from IUnknown, the IWMPlayerTimestampHook interface exposes the
following method.

See Also

Enabling DirectX Video Acceleration

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Method Description

MapTimestamp Provides the decoder with a time stamp that it will
apply to the sample before delivering it to the video
renderer.

Previous Next

IWMPlayerTimestampHook::MapTimestamp
The MapTimestamp method is called by the WMV Decoder DMO to enable the source filter to provide the
decoder with a time stamp. The decoder applies the time stamp to the sample before delivering the sample to the
video renderer.

Syntax

HRESULT MapTimestamp(
 REFERENCE_TIME rtIn,
 REFERENCE_TIME* prtOut
);

Parameters

rtIn

[in] Time stamp previously applied by the DMO.

prtOut

[out] Time stamp to be applied to the sample.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code .

See Also

Enabling DirectX Video Acceleration
IWMPlayerTimestampHook Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMProfile Interface
The IWMProfile interface is the primary interface for a profile object. A profile object is used to configure
custom profiles. You can use IWMProfile to create, delete, or modify stream configuration objects and mutual
exclusion objects. You can also set and retrieve general information about the profile. To access all the features

Previous Next

Previous Next

Previous Next

of the profile object, you should use IWMProfile3, which inherits from IWMProfile and IWMProfile2.

IWMProfile is also accessible through the reader object, where you can use it to get information about the
streams of a file that is loaded in the reader. When accessing IWMProfile from the reader, you can make
changes to the profile, but none of the changes can be saved to the file. It is often handy to use the profile of an
existing file as the foundation of a new profile. The synchronous reader supports IWMProfile in the same way
as the reader.

The profile information obtained through the reader or synchronous reader does not come from a .prx file. The
reader uses the information in the ASF file to assemble the stream configurations. Thus certain profile
information, like the name and description, are not available through the reader.

There are several ways to obtain a pointer to an IWMProfile interface. The profile manager has methods to
create a new profile and to access existing profiles. All of these methods set an IWMProfile pointer. When
reading a file, a pointer to IWMProfile can be obtained by calling the QueryInterface method of any reader
interface. Likewise, any interface of the synchronous reader object can obtain a pointer with a call to
QueryInterface.

In addition to the methods inherited from IUnknown, the IWMProfile interface exposes the following
methods.

Method Description

AddMutualExclusion Adds a mutual exclusion object to the profile.

AddStream Adds a stream to the profile.

CreateNewMutualExclusion Creates a mutual exclusion object for the profile.

CreateNewStream Creates a stream configuration object for the profile.

GetDescription Retrieves the description of the profile.

GetMutualExclusion Retrieves a mutual exclusion object from the profile.

GetMutualExclusionCount Retrieves the number of mutual exclusion objects in the
profile.

GetName Retrieves the name of the profile.

GetStream Retrieves a stream, using an index number, from the
profile.

GetStreamByNumber Retrieves a stream, using the number of the stream, from
the profile.

GetStreamCount Retrieves the number of streams in the profile.

GetVersion Retrieves the version number of Microsoft Windows Media
Services in the profile.

ReconfigStream Enables changes made to a stream configuration to be
included in the profile.

RemoveMutualExclusion Removes a mutual exclusion object from the profile.

RemoveStream Removes a stream from the profile.

For information about which interfaces can be obtained by using the QueryInterface method of this interface,
see the topic for the object on which this interface is implemented.

See Also

Interfaces
IWMProfileManager Interface
Profile Manager Object
Reader Object
Synchronous Reader Object
Working With Profiles

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMProfile::AddMutualExclusion
The AddMutualExclusion method adds a mutual exclusion object to the profile. Mutual exclusion objects are
used to specify a set of streams, only one of which can be output at a time.

Syntax

HRESULT AddMutualExclusion(
 IWMMutualExclusion* pME
);

Parameters

pME

[in] Pointer to the IWMMutualExclusion interface of the mutual exclusion object to include in the profile.
You must configure the mutual exclusion object by using the methods of the IWMMutualExclusion interface
prior to using this method to add the mutual exclusion object to the profile.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the

RemoveStreamByNumber Removes a stream from the profile.

SetDescription Specifies the description of the profile.

SetName Specifies the name of the profile.

Previous Next

Previous Next

values shown in the following table.

See Also

IWMProfile Interface
IWMProfile::GetMutualExclusion
IWMProfile::RemoveMutualExclusion
Mutual Exclusion

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMProfile::AddStream
The AddStream method adds a stream to the profile by copying the stream configuration details into the
profile.

Use AddStream only to include a stream that is new to the profile. New streams can be created by calling
IWMProfile::CreateNewStream, but will not be added to the profile until AddStream is called.

If you edit an existing stream using IWMProfile::GetStream or IWMProfile::GetStreamByNumber, you
should not call AddStream to include the changes. To include changes made to an existing stream, call
IWMProfile::ReconfigStream.

Syntax

HRESULT AddStream(
 IWMStreamConfig* pConfig
);

Parameters

Return code Description

E_INVALIDARG The parameter pME is NULL, or the mutual exclusion type is
not CLSID_WMMUTEX_Bitrate.

E_OUTOFMEMORY There is not enough available memory to complete this
operation.

NS_E_INVALID_STREAM A stream number in the mutual exclusion object being added is
not part of the profile.

Previous Next

Previous Next

pConfig

[in] Pointer to the IWMStreamConfig interface of the stream configuration object to be added to the profile.
The stream must be configured by using the methods of the IWMStreamConfig interface before this method is
used to add the stream to the profile.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

When a stream is added, its configuration is copied into the profile. A maximum of 63 streams can exist in a
profile.

See Also

IWMProfile Interface
IWMProfile::GetStream
IWMProfile::RemoveStream
IWMStreamConfig Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMProfile::CreateNewMutualExclusion
The CreateNewMutualExclusion method creates a mutual exclusion object. Mutual exclusion objects are used
to specify a set of streams, only one of which can be output at a time.

Syntax

Return code Description

E_INVALIDARG The pConfig parameter is NULL.

E_OUTOFMEMORY There is not enough available memory.

E_FAIL The method failed for an unspecified reason.

NS_E_INVALID_STREAM The stream is not valid, possibly because it does not have a
valid stream number.

Previous Next

Previous Next

HRESULT CreateNewMutualExclusion(
 IWMMutualExclusion** ppME
);

Parameters

ppME

[out] Pointer to a pointer to the IWMMutualExclusion interface of the new mutual exclusion object.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

This creation method is included as a method to this interface, rather than as an independent function. For
clarity, it is not possible to have a mutual exclusion object other than as an element of a profile.

After the application has created the mutual exclusion object, it must be configured and then
AddMutualExclusion must be called to add the mutual exclusion to the profile.

See Also

IWMProfile Interface
IWMProfile::AddMutualExclusion

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMProfile::CreateNewStream
The CreateNewStream method creates a stream configuration object. You can use a stream configuration
object to define the characteristics of a media stream.

Syntax

HRESULT CreateNewStream(

Return code Description

E_INVALIDARG The ppME parameter is NULL.

Previous Next

Previous Next

 REFGUID guidStreamType,
 IWMStreamConfig** ppConfig
);

Parameters

guidStreamType

[in] GUID object specifying the major media type for the stream to be created (for example,
WMMEDIATYPE_Video). The supported major types are listed in Media Types.

ppConfig

[out] Pointer to a pointer to the IWMStreamConfig interface of the created stream configuration object.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

It is not possible to have a stream configuration object other than as an element of a profile. After the stream has
been configured, this object must be added to the profile by using the AddStream method.

When CreateNewStream is called, a valid stream number is specified for the new stream. Stream numbers are
in the range of 1 through 63.

See Also

IWMProfile Interface
Stream Configuration Object

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMProfile::GetDescription

Return code Description

E_INVALIDARG The ppConfig parameter is NULL.

E_OUTOFMEMORY There is not enough available memory.

Previous Next

Previous Next

The GetDescription method retrieves the profile description. The description is a string that contains an
explanation of what the profile should be used for.

Syntax

HRESULT GetDescription(
 WCHAR* pwszDescription,
 DWORD* pcchDescription
);

Parameters

pwszDescription

[out] Pointer to a wide-character null-terminated string containing the description. Pass NULL to retrieve the
required length for the description.

pcchDescription

[in, out] On input, specifies the length of the pwszDescription string. On output, if the method succeeds,
specifies a pointer to a count of the number of characters in the name, including the terminating null character.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

You should make two calls to GetDescription. On the first call, pass NULL as pwszDescription. On return, the
value pointed to by pcchDescription is set to the number of wide characters, including the terminating null
character, required to hold the profile description. Then you can allocate the required amount of memory for the
string and pass a pointer to it as pwszDescription on the second call.

See Also

IWMProfile Interface
IWMProfile::SetDescription

© 2000-2003 Microsoft Corporation. All rights reserved.

Return code Description

E_INVALIDARG The pcchName parameter is NULL.

ASF_E_BUFFERTOOSMALL The buffer pointed to by the pwszDescription parameter is not
large enough.

E_UNEXPECTED The method failed for an unspecified reason.

Previous Next

IWMProfile::GetMutualExclusion
The GetMutualExclusion method retrieves a mutual exclusion object from the profile.

Syntax

HRESULT GetMutualExclusion(
 DWORD dwMEIndex,
 IWMMutualExclusion** ppME
);

Parameters

dwMEIndex

[in] DWORD containing the index of the mutual exclusion object.

ppME

[out] Pointer to a pointer to the IWMMutualExclusion interface of the mutual exclusion object specified by
the index passed as dwMEIndex.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

You can use this method in conjunction with GetMutualExclusionCount to step through all of the mutual
exclusion objects in the profile.

See Also

IWMProfile Interface
IWMProfile::AddMutualExclusion
IWMProfile::RemoveMutualExclusion
Mutual Exclusion

Previous Next

Return code Description

E_OUTOFMEMORY Not enough memory for this operation.

E_INVALIDARG ppME is NULL, or dwMEIndex is outside the range of indexes
available.

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMProfile::GetMutualExclusionCount
The GetMutualExclusionCount method retrieves the number of mutual exclusion objects in the profile.

Syntax

HRESULT GetMutualExclusionCount(
 DWORD* pcME
);

Parameters

pcME

[out] Pointer to a count of mutual exclusions.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

See Also

IWMProfile Interface
IWMProfile::GetMutualExclusion
Mutual Exclusion

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Return code Description

E_INVALIDARG The pcME parameter is NULL.

Previous Next

IWMProfile::GetName
The GetName method retrieves the name of a profile.

Syntax

HRESULT GetName(
 WCHAR* pwszName,
 DWORD* pcchName
);

Parameters

pwszName

[out] Pointer to a wide-character null-terminated string containing the name. Pass NULL to retrieve the length
of the name.

pcchName

[in, out] On input, specifies the length of the pwszName buffer. On output, if the method succeeds, specifies a
pointer to the length of the name, including the terminating null character.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

You should make two calls to GetName. On the first call, pass NULL as pwszName. On return, the value
pointed to by pcchName is set to the number of wide characters, including the terminating null character,
required to hold the profile name. Then you can allocate the required amount of memory for the string and pass
a pointer to it as pwszName on the second call.

Profiles have names and descriptions that are used when displaying lists of profiles.

See Also

Previous Next

Return code Description

E_INVALIDARG The pcchName parameter is NULL.

ASF_E_BUFFERTOOSMALL The pwszName parameter is not large enough.

E_UNEXPECTED The method failed for an unspecified reason.

IWMProfile Interface
IWMProfile::SetName

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMProfile::GetStream
The GetStream method retrieves a stream from the profile.

Syntax

HRESULT GetStream(
 DWORD dwStreamIndex,
 IWMStreamConfig** ppConfig
);

Parameters

dwStreamIndex

[in] DWORD containing the stream index.

ppConfig

[out] Pointer to a pointer to the IWMStreamConfig interface of the stream configuration object that describes
the specified stream.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

You can use this method in conjunction with GetStreamCount to step through all of the streams in the profile.

Previous Next

Previous Next

Return code Description

E_FAIL The method failed for an unspecified reason.

E_INVALIDARG The ppConfig or dwStreamIndex parameter is not valid.

See Also

IWMProfile Interface
IWMProfile::GetStreamByNumber

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMProfile::GetStreamByNumber
The GetStreamByNumber method retrieves a stream from the profile.

Syntax

HRESULT GetStreamByNumber(
 WORD wStreamNum,
 IWMStreamConfig** ppConfig
);

Parameters

wStreamNum

[in] WORD containing the stream number.

ppConfig

[out] Pointer to a pointer to the IWMStreamConfig interface of the stream configuration object that describes
the specified stream.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Previous Next

Previous Next

Return code Description

E_INVALIDARG The ppConfig parameter is NULL.

NS_E_NO_STREAM The wStreamNum parameter is not valid.

E_FAIL The method failed for an unspecified reason.

Remarks

Stream numbers are in the range of 1 through 63.

See Also

IWMProfile Interface
IWMProfile::GetStream
IWMProfile::RemoveStreamByNumber

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMProfile::GetStreamCount
The GetStreamCount method retrieves the number of streams in a profile.

Syntax

HRESULT GetStreamCount(
 DWORD* pcStreams
);

Parameters

pcStreams

[out] Pointer to a count of streams.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

See Also

IWMProfile Interface

Previous Next

Previous Next

Return code Description

E_INVALIDARG The pcStreams parameter is NULL.

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMProfile::GetVersion
The GetVersion method retrieves the version number of the Windows Media Format SDK used to create the
profile.

Syntax

HRESULT GetVersion(
 WMT_VERSION* pdwVersion
);

Parameters

pdwVersion

[out] Pointer to a DWORD containing one member of the WMT_VERSION enumeration type. This value
specifies the version of the Windows Media Format SDK that was used to create the profile.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

The version number indicates the version of the Windows Media codecs used to encode content in the file. You
should always use the latest codecs unless you have a specific need for backward compatibility.

See Also

IWMProfile Interface

Previous Next

Previous Next

Return code Description

E_INVALIDARG The pdwVersion parameter is NULL.

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMProfile::ReconfigStream
The ReconfigStream method enables changes made to a stream configuration to be included in the profile. Use
this method when you have made changes to a stream that has already been included in the profile.

Syntax

HRESULT ReconfigStream(
 IWMStreamConfig* pConfig
);

Parameters

pConfig

[in] Pointer to the IWMStreamConfig interface of the stream configuration object for the stream you want to
reconfigure.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

You can call either IWMProfile::GetStream or IWMProfile::GetStreamByNumber to retrieve a stream
already added to a profile.

If you create a new stream by calling IWMProfile::CreateNewStream, you must call
IWMProfile::AddStream to include it in the profile. Calling ReconfigStream on a new stream will result in
an error.

Updating a stream configuration object has no effect on the profile until the application calls ReconfigStream.

See Also

IWMProfile Interface

Previous Next

Return code Description

E_UNEXPECTED The method failed for an unspecified reason.

NS_E_INVALIDSTREAM The method is working on a stream that is NULL or not valid.

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMProfile::RemoveMutualExclusion
The RemoveMutualExclusion method removes a mutual exclusion object from the profile.

Syntax

HRESULT RemoveMutualExclusion(
 IWMMutualExclusion* pME
);

Parameters

pME

[in] Pointer to the IWMMutualExclusion interface of the mutual exclusion object you want to remove.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

See Also

IWMProfile Interface
IWMProfile::AddMutualExclusion

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Return code Description

E_INVALIDARG The pcME parameter is NULL.

Previous Next

IWMProfile::RemoveStream
The RemoveStream method removes a stream from the profile.

Syntax

HRESULT RemoveStream(
 IWMStreamConfig* pConfig
);

Parameters

pConfig

[in] Pointer to the IWMStreamConfig interface of the stream configuration object that describes the stream
you want to remove.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

See Also

IWMProfile Interface
IWMProfile::AddStream
IWMProfile::RemoveStreamByNumber

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Return code Description

E_UNEXPECTED The method failed for an unspecified reason.

E_INVALIDARG The pConfig parameter is NULL or not valid.

Previous Next

Previous Next

IWMProfile::RemoveStreamByNumber
The RemoveStreamByNumber method removes a stream from the profile.

Syntax

HRESULT RemoveStreamByNumber(
 WORD wStreamNum
);

Parameters

wStreamNum

[in] WORD containing the stream number.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

A stream may be included in other objects within the profile, such as mutual exclusion objects. This method
will remove all references to the specified stream from all objects within the profile.

Stream numbers are in the range of 1 through 63.

See Also

IWMProfile Interface
IWMProfile::GetStreamByNumber
IWMProfile::RemoveStream

© 2000-2003 Microsoft Corporation. All rights reserved.

Return code Description

E_FAIL The method failed for an unspecified reason.

NS_E_NO_STREAM No stream was found to match wStreamNum value.

Previous Next

Previous Next

IWMProfile::SetDescription
The SetDescription method specifies the description of a profile. The description is a string that contains an
explanation of what the profile should be used for.

Syntax

HRESULT SetDescription(
 const WCHAR* pwszDescription
);

Parameters

pwszDescription

[in] Pointer to a wide-character null-terminated string containing the description. Profile descriptions are
limited to 1024 wide characters.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

See Also

IWMProfile Interface
IWMProfile::GetDescription

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMProfile::SetName
The SetName method specifies the name of a profile.

Syntax

HRESULT SetName(

Return code Description

E_INVALIDARG The pwszDescription parameter is NULL.

Previous Next

Previous Next

 const WCHAR* pwszName
);

Parameters

pwszName

[in] Pointer to a wide-character null-terminated string containing the name. Profile names are limited to 256
wide characters.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

Profiles have names and descriptions, for use when displaying lists of profiles.

See Also

IWMProfile Interface
IWMProfile::GetName

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMProfile2 Interface
The IWMProfile2 interface exposes the globally unique identifier for a system profile. System profiles have
associated identifiers, but custom profiles do not.

As with IWMProfile, IWMProfile2 is included in profile objects as well as in reader and synchronous reader
objects. To obtain a pointer to an IWMProfile2 interface, call the QueryInterface method of any interface in
one of these objects. For more information, see IWMProfile Interface.

In addition to the methods inherited from IWMProfile, the IWMProfile2 interface exposes the following
method.

Return code Description

E_INVALIDARG The pwszName parameter is NULL.

Previous Next

Previous Next

In addition to the methods of IUnknown, this interface inherits the following methods.

For information about which interfaces can be obtained by using the QueryInterface method of this interface,
see the topic for the object on which this interface is implemented.

See Also

Interfaces
IWMProfile Interface
IWMProfileManager Interface
Profile Manager Object

Method Description

GetProfileID Retrieves the globally unique identifier of the profile.

Method Description

AddMutualExclusion Adds a mutual exclusion object to the profile.

AddStream Adds a stream to the profile.

CreateNewMutualExclusion Creates a mutual exclusion object for the profile.

CreateNewStream Creates a stream configuration object for the profile.

GetDescription Retrieves the description of the profile.

GetMutualExclusion Retrieves a mutual exclusion object from the profile.

GetMutualExclusionCount Retrieves the number of mutual exclusion objects in the
profile.

GetName Retrieves the name of the profile.

GetStream Retrieves a stream, using an index number, from the
profile.

GetStreamByNumber Retrieves a stream, using the number of the stream, from
the profile.

GetStreamCount Retrieves the number of streams in the profile.

GetVersion Retrieves the version number of Microsoft Windows Media
Services in the profile.

ReconfigStream Enables changes made to a stream configuration to be
included in the profile.

RemoveMutualExclusion Removes a mutual exclusion object from the profile.

RemoveStream Removes a stream from the profile.

RemoveStreamByNumber Removes a stream from the profile.

SetDescription Specifies the description of the profile.

SetName Specifies the name of the profile.

Working With Profiles

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMProfile2::GetProfileID
The GetProfileID method retrieves the globally unique identifier of a system profile.

Syntax

HRESULT GetProfileID(
 GUID* pguidID
);

Parameters

pguidID

[out] Pointer to a GUID specifying the ID of the profile. It the profile is not a system profile, this is set to
GUID_NULL.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

System profiles have associated identifiers, but custom profiles do not, therefore this method cannot be used to
identify any profile that uses the Windows Media® 9 Series codecs. For more information, see Reusing Stream
Configurations.

See Also

IWMProfile2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

IWMProfile3 Interface
The IWMProfile3 interface provides enhanced features for profiles. This includes the ability to create two new
types of objects: bandwidth sharing objects and stream prioritization objects.

An IWMProfile3 interface is created for each profile object created. You can retrieve a pointer to an
IWMProfile3 interface by calling the QueryInterface method of any other interface of the profile. You can
also access IWMProfile3 from a reader or synchronous reader object by calling the QueryInterface method of
an existing interface in the object. For more information, see IWMProfile Interface.

In addition to the methods inherited from IWMProfile2, the IWMProfile3 interface exposes the following
methods.

In addition to the methods of IUnknown, this interface inherits the following methods.

Previous Next

Method Description

AddBandwidthSharing Adds an existing bandwidth sharing object to the
profile.

CreateNewBandwidthSharing Creates a new bandwidth sharing object.

CreateNewStreamPrioritization Creates a new stream prioritization object.

GetBandwidthSharing Obtains a pointer to the IWMBandwidthSharing
interface of an existing bandwidth sharing object.

GetBandwidthSharingCount Retrieves the number of bandwidth sharing objects
that exist in the profile.

GetExpectedPacketCount Retrieves the expected number of packets for a
specified duration.

GetStorageFormat Not implemented in this release.

GetStreamPrioritization Retrieves the stream prioritization object associated
with the profile.

RemoveBandwidthSharing Removes a bandwidth sharing object from the profile.

RemoveStreamPrioritization Removes a stream prioritization object from the
profile.

SetStorageFormat Not implemented in this release.

SetStreamPrioritization Assigns a stream prioritization object to the profile.

Method Description

For information about which interfaces can be obtained by using the QueryInterface method of this interface,
see the topic for the object on which this interface is implemented.

See Also

Bandwidth Sharing Object
Interfaces
IWMBandwidthSharing Interface
IWMProfile Interface
IWMProfile2 Interface
IWMStreamPrioritization Interface
Stream Prioritization Object

AddMutualExclusion Adds a mutual exclusion object to the profile.

AddStream Adds a stream to the profile.

CreateNewMutualExclusion Creates a mutual exclusion object for the profile.

CreateNewStream Creates a stream configuration object for the profile.

GetDescription Retrieves the description of the profile.

GetMutualExclusion Retrieves a mutual exclusion object from the profile.

GetMutualExclusionCount Retrieves the number of mutual exclusion objects in the
profile.

GetName Retrieves the name of the profile.

GetStream Retrieves a stream, using an index number, from the
profile.

GetProfileID Retrieves the globally unique identifier of the profile.

GetStreamByNumber Retrieves a stream, using the number of the stream, from
the profile.

GetStreamCount Retrieves the number of streams in the profile.

GetVersion Retrieves the version number of Microsoft Windows Media
Services in the profile.

ReconfigStream Enables changes made to a stream configuration to be
included in the profile.

RemoveMutualExclusion Removes a mutual exclusion object from the profile.

RemoveStream Removes a stream from the profile.

RemoveStreamByNumber Removes a stream from the profile.

SetDescription Specifies the description of the profile.

SetName Specifies the name of the profile.

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMProfile3::AddBandwidthSharing
The AddBandwidthSharing method adds an existing bandwidth sharing object to the profile. Bandwidth
sharing objects are created with a call to CreateNewBandwidthSharing. You must configure the bandwidth
sharing object before adding it to the profile.

Syntax

HRESULT AddBandwidthSharing(
 IWMBandwidthSharing* pBS
);

Parameters

pBS

[in] Pointer to the IWMBandwidthSharing interface of a bandwidth sharing object.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

Making a call to AddBandwidthSharing without first using the methods of IWMBandwidthSharing to
configure the bandwidth sharing object will result in an error.

Previous Next

Return code Description

E_INVALIDARG pBS is NULL.

OR

The bandwidth sharing object has a bandwidth sharing type
value that is not valid.

E_UNEXPECTED An unknown error occurred while adding the bandwidth
sharing object to the internal collection in the profile.

E_OUTOFMEMORY The method was unable to allocate memory.

NS_E_NO_STREAM The bandwidth sharing object contains no streams.

See Also

Bandwidth Sharing Object
IWMProfile3 Interface
IWMProfile3::GetBandwidthSharing
IWMProfile3::RemoveBandwidthSharing

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMProfile3::CreateNewBandwidthSharing
The CreateNewBandwidthSharing method creates a new bandwidth sharing object.

Syntax

HRESULT CreateNewBandwidthSharing(
 IWMBandwidthSharing** ppBS
);

Parameters

ppBS

[out] Pointer to a variable that receives the address of the IWMBandwidthSharing interface of the new object.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

To make use of the bandwidth sharing object, you must add it to the profile with a call to
AddBandwidthSharing. A bandwidth sharing object cannot exist on its own. If you release the profile object
without adding the bandwidth sharing object to the profile, you will lose the bandwidth sharing object.

Previous Next

Previous Next

Return code Description

E_INVALIDARG ppBS is NULL.

E_OUTOFMEMORY The method is unable to allocate memory for the new object.

You must configure the bandwidth sharing object before you use AddBandwidthSharing to include the
bandwidth sharing object in the profile. For more information about configuring bandwidth sharing objects, see
IWMBandwidthSharing Interface.

See Also

Bandwidth Sharing Object
IWMBandwidthSharing Interface
IWMProfile3 Interface
IWMProfile3::AddBandwidthSharing

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMProfile3::CreateNewStreamPrioritization
The CreateNewStreamPrioritization method creates a new stream prioritization object. After you create a
stream prioritization object, use the methods of the IWMStreamPrioritization interface to configure it. The
configured stream prioritization object can then be assigned to the profile with a call to
SetStreamPrioritization.

Syntax

HRESULT CreateNewStreamPrioritization(
 IWMStreamPrioritization** ppSP
);

Parameters

ppSP

[out] Pointer to receive the address of the IWMStreamPrioritization interface of the new object.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Previous Next

Previous Next

Return code Description

E_INVALIDARG NULL was passed as ppSP.

E_OUTOFMEMORY The method is unable to allocate memory for the new object.

Remarks

A profile can only contain one stream prioritization. When you assign a new stream prioritization to a profile,
the previous one will be lost.

See Also

IWMProfile3 Interface
Stream Prioritization Object

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMProfile3::GetBandwidthSharing
The GetBandwidthSharing method retrieves a bandwidth sharing object from a profile.

Syntax

HRESULT GetBandwidthSharing(
 DWORD dwBSIndex,
 IWMBandwidthSharing** ppBS
);

Parameters

dwBSIndex

[in] DWORD containing the index number of the bandwidth sharing object you want to retrieve.

ppBS

[out] Pointer to receive the address of the IWMBandwidthSharing interface of the object requested.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Previous Next

Previous Next

Return code Description

Remarks

Bandwidth sharing objects in a profile are assigned sequential index numbers in the order in which they were
added to the profile. When you create multiple bandwidth sharing objects for a profile, you should keep track of
the contents of each one. Otherwise you will have to examine each one to ascertain its settings.

See Also

Bandwidth Sharing Object
IWMProfile3 Interface
IWMProfile3::AddBandwidthSharing
IWMProfile3::GetBandwidthSharingCount
IWMProfile3::RemoveBandwidthSharing

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMProfile3::GetBandwidthSharingCount
The GetBandwidthSharingCount method retrieves the total number of bandwidth sharing objects that have
been added to the profile.

Syntax

HRESULT GetBandwidthSharingCount(
 DWORD* pcBS
);

Parameters

pcBS

[out] Pointer to receive the total number of bandwidth sharing objects.

E_INVALIDARG ppBS is NULL.

OR

dwBSIndex refers to an invalid index number.

E_OUTOFMEMORY The method is unable to allocate memory for the bandwidth
sharing object.

Previous Next

Previous Next

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

See Also

Bandwidth Sharing Object
IWMProfile3 Interface
IWMProfile3::GetBandwidthSharing

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMProfile3::GetExpectedPacketCount
The GetExpectedPacketCount method calculates the expected packet count for the specified duration. The
packet count returned is only an estimate, and it is based upon the settings of the profile at the time this call is
made.

Syntax

HRESULT GetExpectedPacketCount(
 QWORD msDuration,
 QWORD* pcPackets
);

Parameters

msDuration

[in] Specifies the duration in milliseconds.

pcPackets

[out] Pointer to receive the count of packets expected for msDuration milliseconds.

Return Values

Return code Description

E_INVALIDARG pcBS is NULL.

Previous Next

Previous Next

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

Problems will arise if the value passed in msDuration is not a positive number of milliseconds. The method will
return S_OK as normal, but the packet count returned will not be correct.

It is impossible for this method to give exact counts, because there is no way to account for interleaved data in
an encoded file. The packet count returned is most accurate for files with one audio stream. The more
complicated the profile, the less accurate the packet count will be.

See Also

IWMProfile3 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMProfile3::GetStorageFormat
The GetStorageFormat method is not implemented.

Syntax

HRESULT GetStorageFormat(
 WMT_STORAGE_FORMAT* pnStorageFormat
);

Parameters

pnStorageFormat

Return code Description

E_INVALIDARG pcPackets is NULL.

E_OUTOFMEMORY One of the internal objects required by the method could not be
initialized.

E_NOTIMPL The profile in the profile object is not compatible with this
method.

Previous Next

Previous Next

[out] Storage format.

Return Values

The method returns E_NOTIMPL.

Remarks

To retrieve the storage format, use the WM/ContainerFormat attribute.

See Also

IWMProfile3 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMProfile3::GetStreamPrioritization
The GetStreamPrioritization method retrieves the stream prioritization that exists in the profile.

Syntax

HRESULT GetStreamPrioritization(
 IWMStreamPrioritization** ppSP
);

Parameters

ppSP

[out] Pointer to receive the address of the IWMStreamPrioritization interface of the stream prioritization
object in the profile.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Previous Next

Previous Next

Return code Description

E_INVALIDARG ppSP is NULL.

Remarks

Many profiles do not have a stream prioritization assigned to them. If you call GetStreamPrioritization on
such a profile, no error is returned, but the retrieved address is NULL.

See Also

IWMProfile3 Interface
IWMProfile3::RemoveStreamPrioritization
IWMProfile3::SetStreamPrioritization
IWMStreamPrioritization Interface
Stream Prioritization Object

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMProfile3::RemoveBandwidthSharing
The RemoveBandwidthSharing method removes a bandwidth sharing object from the profile. If you do not
already have a pointer to the IWMBandwidthSharing interface of the object you want to remove, you must
obtain one with a call to IWMProfile3::GetBandwidthSharing.

Syntax

HRESULT RemoveBandwidthSharing(
 IWMBandwidthSharing* pBS
);

Parameters

pBS

[in] Pointer to a bandwidth sharing object.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

E_OUTOFMEMORY The method is unable to allocate memory for the stream
prioritization object

Previous Next

Previous Next

Remarks

This method does not release the bandwidth sharing object from memory. You must make a call to the Release
method.

See Also

IWMProfile3 Interface
IWMProfile3::AddBandwidthSharing

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMProfile3::RemoveStreamPrioritization
The RemoveStreamPrioritization method removes the stream prioritization object from the profile.

Syntax

HRESULT RemoveStreamPrioritization();

Parameters

This method takes no parameters.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Return code Description

E_INVALIDARG pBS is NULL.

OR

The bandwidth sharing object pointed to by pBS is not part of
the profile.

Previous Next

Previous Next

Return code Description

ASF_E_NOTFOUND No stream prioritization object exists in the profile.

See Also

IWMProfile3 Interface
IWMProfile3::GetStreamPrioritization
IWMProfile3::SetStreamPrioritization

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMProfile3::SetStorageFormat
The SetStorageFormat method is not implemented.

Syntax

HRESULT SetStorageFormat(
 WMT_STORAGE_FORMAT nStorageFormat
);

Parameters

nStorageFormat

[in] Storage format.

Return Values

The method returns E_NOTIMPL.

Remarks

To retrieve the storage format, use the WM/ContainerFormat attribute.

See Also

IWMProfile3 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

IWMProfile3::SetStreamPrioritization
The SetStreamPrioritization method assigns a stream prioritization object to the profile. A profile can contain
only one stream prioritization object at a time.

Syntax

HRESULT SetStreamPrioritization(
 IWMStreamPrioritization* pSP
);

Parameters

pSP

[in] Pointer to the IWMStreamPrioritization interface of the stream prioritization object you want to assign to
the profile.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

If there is already a stream prioritization object in the profile, it will be lost.

See Also

IWMProfile3 Interface
IWMProfile3::GetStreamPrioritization
IWMProfile3::RemoveStreamPrioritization

Previous Next

Return code Description

E_INVALID_ARG pSP is NULL.

OR

The method was unable to validate the stream prioritization
object.

E_OUTOFMEMORY The method was unable to allocate memory in the profile for
the object.

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMProfileManager Interface
The IWMProfileManager interface is used to create profiles, load existing profiles, and save profiles. It can be
used with both system profiles and application-defined custom profiles. To make changes to a profile, you must
load it into a profile object using one of the loading methods of this interface. You can then access the profile
data through the use of the interfaces of the profile object.

IWMProfileManager is the default interface of a profile manager object. When you create a new profile
manager object using the WMCreateProfileManager function, you obtain a pointer to IWMProfileManager.

Note When a profile manager object is created it parses all of the system profiles. Creating and releasing a
profile manager every time you need to use it will adversely affect performance. You should create a profile
manager once in your application and release it only when you no longer need to use it.

In addition to the methods inherited from IUnknown, the IWMProfileManager interface exposes the
following methods.

The following interfaces can be obtained by using the QueryInterface method of this interface.

Previous Next

Previous Next

Method Description

CreateEmptyProfile Creates an empty profile.

GetSystemProfileCount Retrieves the number of system profiles.

LoadProfileByData Creates a profile object and populates it with the data from an
existing profile that has been saved to a string.

LoadProfileByID Creates a profile object and populates it with the data from a
system profile. Uses the GUID to find the profile data.

LoadSystemProfile Creates a profile object and populates it with data from a
system profile. Uses the profile's index to find the profile data.

SaveProfile Saves a custom profile into a string. You can save the profile to
disk by copying the string into a .prx file.

Interface IID

IWMCodecInfo IID_IWMCodecInfo

See Also

Interfaces
IWMProfileManager2 Interface
Profile Manager Object
Profile Object
Using System Profiles
Working With Profiles

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMProfileManager::CreateEmptyProfile
The CreateEmptyProfile method creates an empty profile object. You can use the interfaces of the profile
object to configure the profile. When you are done configuring the profile, you can save it to a string using
IWMProfileManager::SaveProfile.

Syntax

HRESULT CreateEmptyProfile(
 WMT_VERSION dwVersion,
 IWMProfile** ppProfile
);

Parameters

dwVersion

[in] DWORD containing one member of the WMT_VERSION enumeration type.

ppProfile

[out] Pointer to a pointer to an IWMProfile interface.

IWMCodecInfo2 IID_IWMCodecInfo2

IWMCodecInfo3 IID_IWMCodecInfo3

IWMProfileManager2 IID_IWMProfileManager2

IWMProfileManagerLanguage IID_IWMProfileManagerLanguage

Previous Next

Previous Next

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

Use this method to create any profile that uses the Windows Media® Audio and Video 9 Series codecs. For
more information, see Reusing Stream Configurations.

See Also

IWMProfileManager Interface
WMT_VERSION

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMProfileManager::GetSystemProfileCount
The GetSystemProfileCount method retrieves the number of system profiles.

Syntax

HRESULT GetSystemProfileCount(
 DWORD* pcProfiles
);

Parameters

pcProfiles

[out] Pointer to a count of the system profiles.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the

Return code Description

E_OUTOFMEMORY There is not enough available memory.

E_INVALIDARG The ppProfile parameter is NULL.

Previous Next

Previous Next

values shown in the following table.

Remarks

Because there are no system profiles for the Windows Media 9 Series codecs, this method is primarily useful
for obtaining version 8 system profiles that you will convert to custom profiles using the Windows Media 9
Series codecs. For more information, see Reusing Stream Configurations.

This method can be used with LoadSystemProfile to iterate through the system profiles.

The IWMProfileManager2::SetSystemProfileVersion method determines which system files are enumerated.
Most applications should set the version to WMT_VER_8_0. Setting the version to WMT_VER_9_0 will return
zero profiles.

See Also

IWMProfileManager Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMProfileManager::LoadProfileByData
The LoadProfileByData method creates a profile object and populates it with data from a stored string. You
must use this method to manipulate custom profiles. System profiles should be accessed using either
LoadProfileByID or LoadSystemProfile.

Syntax

HRESULT LoadProfileByData(
 const WCHAR* pwszProfile,
 IWMProfile** ppProfile
);

Parameters

Return code Description

E_OUTOFMEMORY There is not enough available memory.

E_INVALIDARG The pcProfiles parameter is NULL.

NS_E_INVALIDPROFILE The system profiles could not be found.

Previous Next

Previous Next

pwszProfile

[in] Pointer to a wide-character null-terminated string containing the profile. Profile strings are limited to
153600 wide characters.

ppProfile

[out] Pointer to a pointer to an IWMProfile interface.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

This string must match an XML-formatted string created by IWMProfileManager::SaveProfile. By
convention, when such strings are saved to disk they are given the ".prx" extension.

See Also

IWMProfileManager Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMProfileManager::LoadProfileByID
The LoadProfileByID method loads a system profile identified by its globally unique identifier. To load a
custom profile, use IWMProfileManager::LoadProfileByData.

Syntax

HRESULT LoadProfileByID(
 REFGUID guidProfile,
 IWMProfile** ppProfile
);

Return code Description

E_OUTOFMEMORY There is not enough available memory.

E_INVALIDARG Either the ppProfile or pwszProfile parameter is NULL.

Previous Next

Previous Next

Parameters

guidProfile

[in] GUID identifying the profile. For more information, see the table of defined constants in Using System
Profiles.

ppProfile

[out] Pointer to a pointer to an IWMProfile interface.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

Only system profiles have IDs. Because there are no system profiles for the Windows Media® 9 Series codecs,
this method is primarily useful for obtaining version 8 system profiles that you will convert to custom profiles
using the Windows Media 9 Series codecs. For more information, see Reusing Stream Configurations.

See Also

IWMProfileManager Interface
Using System Profiles

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMProfileManager::LoadSystemProfile
The LoadSystemProfile method loads a system profile identified by its index. If you do not know the index of
the desired system profile, you must use IWMProfileManager::LoadProfileByID. To load a custom profile,
use IWMProfileManager::LoadProfileByData.

Return code Meaning

E_OUTOFMEMORY There is not enough available memory.

E_INVALIDARG The ppProfile parameter is NULL.

Previous Next

Previous Next

Syntax

HRESULT LoadSystemProfile(
 DWORD dwProfileIndex,
 IWMProfile** ppProfile
);

Parameters

dwProfileIndex

[in] DWORD containing the profile index.

ppProfile

[out] Pointer to a pointer to an IWMProfile interface.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

Because there are no system profiles for the Windows Media 9 Series codecs, this method is primarily useful
for obtaining version 8 system profiles that you will convert to custom profiles using the Windows Media 9
Series codecs. For more information, see Reusing Stream Configurations.

This method can be used with GetSystemProfileCount to iterate through the system profiles.

Applications must not rely on the index of a profile (used in this call and elsewhere in the SDK) being a
constant. Upgrades to the Windows Media Format components can cause these indexes to change. If an
application must maintain a fixed profile, it must call IWMProfile2::GetProfileID and
IWMProfileManager::LoadProfileByID.

See Also

IWMProfileManager Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Return code Description

E_OUTOFMEMORY There is not enough available memory.

E_INVALIDARG The ppProfile parameter is NULL.

Previous Next

IWMProfileManager::SaveProfile
The SaveProfile method saves a profile into an XML-formatted string.

Syntax

HRESULT SaveProfile(
 IWMProfile* pProfile,
 WCHAR* pwszProfile,
 DWORD* pdwLength
);

Parameters

pProfile

[in] Pointer to the IWMProfile interface of the object containing the profile data to be saved.

pwszProfile

[in] Pointer to a wide-character null-terminated string containing the profile. Set this to NULL to retrieve the
length of string required.

pdwLength

[in, out] On input, specifies the length of the pwszProfile string. On output, if the method succeeds, specifies a
pointer to a DWORD containing the number of characters, including the terminating null character, required to
hold the profile.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

You should make two calls to SaveProfile. On the first call, pass NULL as pwszProfile. On return, the value of
pdwLength is set to the length required to hold the profile in string form. Then you can allocate the required
amount of memory for the buffer and pass a pointer to it as pwszProfile on the second call.

Previous Next

Return code Description

E_OUTOFMEMORY There is not enough available memory.

E_INVALIDARG Either the pIWMProfile or pdwLength parameter is NULL.

This string contains all the profile information. It must not be displayed to users, and should not be altered. To
change the settings in a saved profile, load it using the profile manager and change the settings using the profile
object and related objects.

To save a custom profile for later use, you must save the content of the returned string in a .prx file. For more
information on .prx files, see Profiles.

To load a saved custom profile, copy the contents of the profile from the .prx file to a string and use
IWMProfileManager::LoadProfileByData.

See Also

IWMProfileManager Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMProfileManager2 Interface
The IWMProfileManager2 interface adds methods to specify and retrieve the version number of the system
profiles enumerated by the profile manager. Most applications should set the value to the latest version unless
they need to be backward-compatible with another application that was written using an earlier version of this
SDK.

In addition to the methods inherited from IWMProfileManager, the IWMProfileManager2 interface exposes
the following methods.

In addition to the methods of IUnknown, this interface inherits the following methods.

Previous Next

Previous Next

Method Description

GetSystemProfileVersion Retrieves the version number of the system profiles that the
profile manager enumerates.

SetSystemProfileVersion Specifies the version number of the system profiles that the
profile manager enumerates.

Method Description

CreateEmptyProfile Creates an empty profile.

GetSystemProfileCount Retrieves the number of system profiles.

The following interfaces can be obtained by using the QueryInterface method of this interface.

See Also

Interfaces
IWMProfileManager Interface
Profile Manager Object
Working With Profiles

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMProfileManager2::GetSystemProfileVersion
The GetSystemProfileVersion method retrieves the version number of the system profiles that the profile
manager enumerates.

Syntax

HRESULT GetSystemProfileVersion(

LoadProfileByData Creates a profile object and populates it with the data from an
existing profile that has been saved to a string.

LoadProfileByID Creates a profile object and populates it with the data from a
system profile. Uses the GUID to find the profile data.

LoadSystemProfile Creates a profile object and populates it with data from a
system profile. Uses the profile's index to find the profile data.

SaveProfile Saves a custom profile into a string. You can save the profile to
disk by copying the string into a .prx file.

Interface IID

IWMCodecInfo IID_IWMCodecInfo

IWMCodecInfo2 IID_IWMCodecInfo2

IWMCodecInfo3 IID_IWMCodecInfo3

IWMProfileManager IID_IWMProfileManager

IWMProfileManagerLanguage IID_IWMProfileManagerLanguage

Previous Next

Previous Next

 WMT_VERSION* pdwVersion
);

Parameters

pdwVersion

Pointer to one member of the WMT_VERSION enumeration type.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

Because there are no system profiles for the Windows Media 9 Series codecs, this method is primarily useful
for obtaining version 8 system profiles that you will convert to custom profiles using the Windows Media 9
Series codecs. For more information, see Reusing Stream Configurations.

See Also

IWMProfileManager2 Interface
IWMProfileManager2::SetSystemProfileVersion

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMProfileManager2::SetSystemProfileVersion
The SetSystemProfileVersion method specifies the version number of the system profiles that the profile
manager enumerates.

Syntax

HRESULT SetSystemProfileVersion(
 WMT_VERSION dwVersion
);

Parameters

dwVersion

One member of the WMT_VERSION enumeration type.

Previous Next

Previous Next

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

Because there are no system profiles for the Windows Media® 9 Series codecs, this method is primarily useful
for obtaining version 8 system profiles that you will convert to custom profiles using the Windows Media 9
Series codecs. For more information, see Reusing Stream Configurations.

WMT_VER_4_0 is the default for backward-compatibility only, so be sure to set this to a newer version if it is
required. Typically you should set this to WMT_VER_8_0 in order to retrieve the version 8 profiles to use as a
starting point for creating your own Windows Media 9 Series profile. If you set it to WMT_VER_9_0, zero
profiles will be enumerated.

See Also

IWMProfileManager2 Interface
IWMProfileManager2::GetSystemProfileVersion

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMProfileManagerLanguage Interface
The IWMProfileManagerLanguage interface controls the language of the system profiles parsed by the
profile manager.

An IWMProfileManagerLanguage interface exists for every profile manager object. You can obtain a pointer
to an instance of this method by calling the QueryInterface method of any other interface of the profile
manager object.

In addition to the methods inherited from IUnknown, the IWMProfileManagerLanguage interface exposes
the following methods.

Previous Next

Previous Next

Method Description

GetUserLanguageID Retrieves the language identifier of the system
profiles currently loaded.

SetUserLanguageID Specifies which set of system profiles to load based
upon language.

The following interfaces can be obtained by using the QueryInterface method of this interface.

See Also

Interfaces
IWMProfileManager Interface
Profile Manager Object

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMProfileManagerLanguage::GetUserLanguageID
The GetUserLanguageID method retrieves the language identifier for the system profiles loaded by the profile
manager object.

Syntax

HRESULT GetUserLanguageID(
 WORD* wLangID
);

Parameters

wLangID

[out] Pointer to a WORD that receives the language identifier (LANGID) of the language set in the profile
manager.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Interface IID

IWMCodecInfo IID_IWMCodecInfo

IWMCodecInfo2 IID_IWMCodecInfo2

IWMCodecInfo3 IID_IWMCodecInfo3

IWMProfileManager IID_IWMProfileManager

IWMProfileManager2 IID_IWMProfileManager2

Previous Next

Previous Next

Remarks

The default language is U.S. English (0x409).

See Also

IWMProfileManagerLanguage Interface
IWMProfileManagerLanguage::SetUserLanguageID
Localized System Profiles
Working with Localized System Profiles

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMProfileManagerLanguage::SetUserLanguageID
The SetUserLanguageID method sets the language of the system profiles that will be parsed by the profile
manager object.

Syntax

HRESULT SetUserLanguageID(
 WORD wLangID
);

Parameters

wLangID

[in] WORD containing the language identifier (LANGID) of the language you want to use.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Return code Description

S_OK The method succeeded.

Previous Next

Previous Next

Return code Description

S_OK The method succeeded.

Remarks

English – United States (0x0409) is the default language. This method will also return
NS_E_MOMATCHING_ELEMENT for all languages except US English if you have not moved the
correct .prx file into the system root directory.

See Also

IWMProfileManagerLanguage Interface
IWMProfileManagerLanguage::GetUserLanguageID
Localized System Profiles
Working with Localized System Profiles

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPropertyVault Interface
The IWMPropertyVault interface provides methods to store and retrieve properties. Currently, you can use
this interface to set properties associated with variable bit rate (VBR) encoding. The generic nature of
IWMPropertyVault allows for its use in other situations in future versions of the Format SDK.

IWMPropertyVault is exposed by stream configuration objects. To obtain a pointer to IWMPropertyVault,
you must call the QueryInterface method of one of the other interfaces of an existing stream configuration
object.

In addition to the methods inherited from IUnknown, the IWMPropertyVault interface exposes the following
methods.

NS_E_NOMATCHING_ELEMENT The specified LANGID represents a locality not
supported by a localized set of system profiles.

Previous Next

Previous Next

Method Description

Clear Removes all items from the property vault.

CopyPropertiesFrom Copies all of the properties from another property vault.

GetPropertyByIndex Retrieves a property from the vault by its index value.

GetPropertyByName Retrieves a property from the vault by its name.

GetPropertyCount Retrieves the total number of properties in the vault.

The following interfaces can be obtained by using the QueryInterface method of this interface.

See Also

Interfaces
Stream Configuration Object

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPropertyVault::Clear
The Clear method removes all items from the property vault.

Syntax

HRESULT Clear();

Parameters

This method takes no parameters.

Return Values

This method always returns S_OK.

See Also

SetProperty Adds a property to the vault, or changes the value of an existing
property.

Interface IID

IWMMediaProps IID_IWMMediaProps

IWMStreamConfig IID_IWMStreamConfig

IWMStreamConfig2 IID_IWMStreamConfig2

IWMStreamConfig3 IID_IWMStreamConfig3

IWMVideoMediaProps (on video streams only) IID_IWMVideoMediaProps

Previous Next

Previous Next

IWMPropertyVault Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPropertyVault::CopyPropertiesFrom
The CopyPropertiesFrom method copies all of the properties from another property vault to this one.

Syntax

HRESULT CopyPropertiesFrom(
 IWMPropertyVault* pIWMPropertyVault
);

Parameters

pIWMPropertyVault

[in] Pointer to an IWMPropertyVault interface.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

Passing NULL as pIWMPropertyVault will result in unpredictable errors.

CopyPropertiesFrom makes calls to other methods of IWMPropertyVault. Because all of the data is coming
from the objects themselves, no errors should be returned from the other methods. A return code that is not in
the table indicates the corruption of data in the property vault from which you are copying.

See Also

IWMPropertyVault Interface

Previous Next

Previous Next

Return code Description

E_OUTOFMEMORY The method is unable to allocate memory needed to copy.

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPropertyVault::GetPropertyByIndex
The GetPropertyByIndex method retrieves a property from the vault by its index value.

Syntax

HRESULT GetPropertyByIndex(
 DWORD dwIndex,
 LPWSTR pszName,
 DWORD* pdwNameLen,
 WMT_ATTR_DATATYPE* pType,
 BYTE* pValue,
 DWORD* pdwSize
);

Parameters

dwIndex

[in] DWORD containing the property index.

pszName

[out] Pointer to a wide-character null-terminated string containing the name of the property.

pdwNameLen

[in, out] On input, a pointer to a DWORD containing the length, in wide characters, of the string at pszName.
On output, specifies the number of characters, including the terminating null character, required to hold the
property name.

pType

[out] Pointer to a member of the WMT_ATTR_DATATYPE enumeration type. This parameter specifies the
type of data pointed to by pValue.

pValue

[out] Pointer to a data buffer containing the value of the property. This value can be one of several types. The
type of data that the buffer contains on output is specified by the value of pType.

Previous Next

Previous Next

pdwSize

[in, out] Pointer to a DWORD containing the size, in bytes, of the data at pValue.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

You must make two calls to GetPropertyByIndex to properly retrieve all of the information. On the first call,
pass NULL for both pszName and pValue. When the call returns, pdwNameLen and pdwSize point to the correct
sizes of their respective buffers. Then on the second call, pass properly sized buffers as pszName and pValue to
receive the data.

See Also

IWMPropertyVault Interface
IWMPropertyVault::GetPropertyByName
IWMPropertyVault::SetProperty

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPropertyVault::GetPropertyByName
The GetPropertyByName method retrieves a property from the vault by its name.

Syntax

Return code Description

E_INVALIDARG pdwNameLen or pdwSize or pType is NULL.

OR

The index specified is not valid.

ASF_E_BUFFERTOOSMALL One of the buffers (pszName or pValue) is not big enough to
hold the property information.

Previous Next

Previous Next

HRESULT GetPropertyByName(
 LPCWSTR pszName,
 WMT_ATTR_DATATYPE* pType,
 BYTE* pValue,
 DWORD* pdwSize
);

Parameters

pszName

[in] Pointer to a null-terminated string containing the name of the property to be retrieved.

pType

[out] Pointer to a member of the WMT_ATTR_DATATYPE enumeration type. This parameter specifies the
type of data pointed to by pValue.

pValue

[out] Pointer to a data buffer containing the value of the property. This value can be one of several types. The
type of data that the buffer contains on output is specified by the value of pType.

pdwSize

[in, out] Pointer to a DWORD containing the size, in bytes, of the data at pValue.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

You must make two calls to GetPropertyByName to properly retrieve the value of the property. On the first
call, pass NULL for pValue. When the call returns, pdwSize will point to the correct sizes of the buffer. Then on
the second call, pass a properly sized buffer as pValue to receive the data.

See Also

IWMPropertyVault Interface
IWMPropertyVault::GetPropertyByIndex

Return code Description

E_INVALIDARG pszName or pdwSize or pType is NULL.

OR

pszName contains an invalid property name.

ASF_E_BUFFERTOOSMALL pdwSize specifies a size for pValue that is not large enough to
hold the data.

IWMPropertyVault::SetProperty

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMPropertyVault::GetPropertyCount
The GetPropertyCount method retrieves a count of all the properties in the property vault.

Syntax

HRESULT GetPropertyCount(
 DWORD* pdwCount
);

Parameters

pdwCount

[out] Pointer to a DWORD that will receive the property count.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

See Also

IWMPropertyVault Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Return code Description

E_INVALIDARG pdwCount is NULL.

Previous Next

IWMPropertyVault::SetProperty
The SetProperty method sets the values for a property. If the property named already exists in the property
vault, SetProperty changes its value as specified. If the property named does not exist, SetProperty adds it to
the property vault.

Syntax

HRESULT SetProperty(
 LPCWSTR pszName,
 WMT_ATTR_DATATYPE pType,
 BYTE* pValue,
 DWORD dwSize
);

Parameters

pszName

[in] Pointer to a null-terminated string containing the name of the property to set.

The following table lists the property names supported by the IWMPropertyVault interface. The property used
dictates the data type and meaning of the data pointed to by pValue; these values are also in the table. All of
these values apply to stream configuration objects.

Previous Next

Global constant Data type Description

g_wszOriginalSourceFormatTag WMT_TYPE_WORD When transcoding with smart
recompression, set to the
WAVEFORMATEX.wFormatTag
used in the original encoding.

This value is now obsolete, use
g_wszOriginalWaveFormat instead.

g_wszOriginalWaveFormat WMT_TYPE_BINARY When transcoding with smart
recompression, set to the
WAVEFORMATEX structure used
in the original encoding.

g_wszEDL WMT_TYPE_STRING For Windows Media Audio 9 Voice
streams, use to manually specify
sections of the stream that contain
music. This property should only be
used if the automatic selection by the
codec is creating a poor quality
stream.

In addition to the values in the table, the settings for variable bit rate encoding are set using this method. For
more information, see Configuring VBR Streams.

pType

[in] Pointer to a member of the WMT_ATTR_DATATYPE enumeration type. This parameter specifies the
type of data pointed to by pValue.

pValue

[in] Pointer to a data buffer containing the value of the property. This value can be one of several types. The
type of data that the buffer contains on output is specified by the value of pType.

dwSize

[in] DWORD containing the size, in bytes, of the data at pValue.

g_wszComplexity WMT_TYPE_WORD Set to the complexity setting desired.
You can find the complexity levels
supported by a codec by calling
IWMCodecInfo3::GetCodecProp.

g_wszDecoderComplexityRequested WMT_TYPE_STRING Set to the string value of the device
conformance template that you would
like the stream to be encoded to. For
audio there is only one string value,
for video, us the two-letter
designation before the ampersand. For
more information, see Device
Conformance Template Parameters.

g_wszPeakValue WMT_TYPE_DWORD Set to the peak volume level by the
audio codec. Used for normalization.
Do not manually set.

g_wszAverageLevel WMT_TYPE_DWORD Set to the average volume level by the
audio codec. Used for normalization.
Do not manually set.

g_wszFold6To2Channels3 WMT_TYPE_STRING Set to the value for 6 to 2 channel fold
down. Use for multichannel audio.

g_wszFoldToChannelsTemplate WMT_TYPE_STRING Template string to create other fold
down values.

g_wszMusicSpeechClassMode WMT_TYPE_STRING Set to the type of encoding you want
to use with the Windows Media
Audio 9 Voice codec. Can be set to:

g_wszMusicClassMode

g_wszSpeechClassMode

g_wszMixedClassMode

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

SetProperty does not return the index of the property affected. New properties are assigned indexes
sequentially.

You can remove a property using SetProperty by passing either NULL as pValue or 0 as dwSize.

See Also

IWMPropertyVault Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReader Interface
The IWMReader interface is used to open, close, start, pause, resume, and unlock the WMReader object. It is

Return code Description

E_INVALIDARG pszName is NULL or points to a zero length string.

OR

The type specified at pValue does not agree with the size in
bytes specified by dwSize.

OR

You are trying to delete a property that does not exist in the
property vault.

E_OUTOFMEMORY The method cannot allocate memory for a new property.

OR

The method cannot allocate memory for a new value.

Previous Next

Previous Next

also used to stop reading files, and to get and set the output properties.

Many of the methods in this interface are asynchronous and send status notifications to the application through
an IWMStatusCallback::OnStatus method implemented in the application.

In addition to the methods inherited from IUnknown, the IWMReader interface exposes the following
methods.

For information about which interfaces can be obtained by using the QueryInterface method of this interface,
see Reader Object.

See Also

Interfaces
IWMReaderAdvanced Interface
IWMReaderAdvanced2 Interface
IWMReaderAdvanced3 Interface
IWMReaderAdvanced4 Interface
IWMReaderCallback Interface
IWMReaderCallbackAdvanced Interface
Reading ASF Files

© 2000-2003 Microsoft Corporation. All rights reserved.

Method Description

Close Deletes all outputs on the reader and releases the file resources.

GetOutputCount Retrieves the number of uncompressed media streams sent from
the reader.

GetOutputFormat Retrieves the supported formats for a specified output media
stream.

GetOutputFormatCount Retrieves the number of format types supported by this output
media stream on the reader.

GetOutputProps Retrieves the current properties of an uncompressed output
stream.

Open Opens an ASF file for reading.

Pause Pauses the current read operation.

Resume Restarts read operation from the current time offset.

SetOutputProps Specifies the properties of an uncompressed output stream.

Start Starts reading from the current time offset. Uncompressed data
is passed to IWMReaderCallback::OnSample.

Stop Stops reading, after which there is no current read position.

Previous Next

IWMReader::Close
The Close method deletes all outputs on the reader and releases the file resources.

Syntax

HRESULT Close();

Parameters

This method takes no parameters.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code. If the file is already
closed, the method returns NS_E_INVALID_REQUEST.

Remarks

This method sends a WMT_CLOSE status notification to the application's IWMStatusCallback::OnStatus
method.

See Also

IWMReader Interface
IWMReader::Open
IWMReader::Pause
IWMReader::Start
IWMReader::Stop

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReader::GetOutputCount

Previous Next

Previous Next

Previous Next

The GetOutputCount method retrieves the number of uncompressed media streams that will be delivered for
the file loaded in the reader.

Syntax

HRESULT GetOutputCount(
 DWORD* pcOutputs
);

Parameters

pcOutputs

[out] Pointer to a count of outputs.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

A file with mutually exclusive streams contains several streams that are delivered to the same output. But only
one of those streams can be delivered at a time during playback. When reading a file, you can identify its
outputs by looping through the outputs and getting the media properties of each by calling
IWMReader::GetOutputProps.

This method is synchronous and does not result in any messages being sent to the status callback.

See Also

IWMReader Interface
IWMReader::GetOutputProps

© 2000-2003 Microsoft Corporation. All rights reserved.

Return code Description

E_POINTER The pcOutputs parameter is NULL.

E_UNEXPECTED The method failed for an unspecified reason.

Previous Next

Previous Next

IWMReader::GetOutputFormat
The GetOutputFormat method retrieves the supported formats for a specified output media stream.

Syntax

HRESULT GetOutputFormat(
 DWORD dwOutputNumber,
 DWORD dwFormatNumber,
 IWMOutputMediaProps** ppProps
);

Parameters

dwOutputNumber

[in] DWORD containing the output number.

dwFormatNumber

[in] DWORD containing the format number.

ppProps

[out] Pointer to a pointer to an IWMOutputMediaProps interface. This interface belongs to an output media
properties object created by a successful call to this method. The properties exposed by this interface represent
formats than can be supported by the specified output; the current properties set for the output can be obtained
by calling IWMReader::GetOutputProps.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

The Windows Media codecs can deliver media samples for a stream in a number of formats. For example, the
Windows Media Video 9 codec can deliver samples in various RGB or YUV formats. You can use this method
in conjunction with IWMReader::GetOutputFormatCount to loop through the available formats and find the
one you need.

To use a format returned by this method, you must call IWMReader::SetOutputProps.

This method is synchronous and does not result in any messages being sent to the status callback.

See Also

IWMReader Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

IWMReader::GetOutputFormatCount
The GetOutputFormatCount method is used for determining all possible format types supported by this
output media stream on the reader.

Syntax

HRESULT GetOutputFormatCount(
 DWORD dwOutputNumber,
 DWORD* pcFormats
);

Parameters

dwOutputNumber

[in] DWORD containing the output number.

pcFormats

[out] Pointer to a count of formats.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

The number of formats that can be delivered on output is determined by the decoding codec. The Windows
Media codecs can deliver media samples for a stream in a number of formats. For example, the Windows Media
Video 9 codec can deliver samples as bitmapped images or as YUV images with varying properties to suit your
needs.

Every compressed media type has a default output format determined by the codec. You can obtain the
properties of the default output format by calling IWMReader::GetOutputProps.

This method is synchronous and does not result in any messages being sent to the status callback.

See Also

IWMReader Interface
IWMReader::GetOutputFormat

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReader::GetOutputProps
The GetOutputProps method retrieves the current properties of an uncompressed output stream.

Syntax

HRESULT GetOutputProps(
 DWORD dwOutputNum,
 IWMOutputMediaProps** ppOutput
);

Parameters

dwOutputNum

[in] DWORD containing the output number.

ppOutput

[out] Pointer to a pointer to an IWMOutputMediaProps interface. This interface belongs to an output media
properties object created by a successful call to this method. Any changes made to the output media properties
object will have no effect on the output of the reader unless you pass this interface in a call to
IWMReader::SetOutputProps.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

The Windows Media codecs can deliver media samples for a stream in a number of formats. For example, the
Windows Media Video 9 codec can deliver samples as bitmapped images or as YUV images with varying
properties to suit your needs. When you load a file the output properties are set to the default for compressed
media type in the stream associated with the output. You can examine the possible output formats by calling

Previous Next

Return code Description

E_POINTER The ppOutput parameter is NULL, or the dwOutputNum
parameter is greater than the number of outputs.

E_UNEXPECTED The method failed for an unspecified reason.

IWMReader::GetOutputFormatCount to get the total number of possible formats and then calling
IWMReader::GetOutputFormat for each.

This method is synchronous and does not result in any messages being sent to the status callback.

See Also

IWMReader Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReader::Open
The Open method opens an ASF file for reading.

Syntax

HRESULT Open(
 const WCHAR* pwszURL,
 IWMReaderCallback* pCallback,
 void* pvContext
);

Parameters

pwszURL

[in] Pointer to a wide-character null-terminated string containing the path and name of the file to be opened.
This method accepts a path to a folder on a local machine, a path to a network share, or a uniform resource
locator (URL).

pCallback

[in] Pointer to the object that implements the IWMReaderCallback interface.

pvContext

[in] Generic pointer, for use by the application. This is passed to the application in calls to OnStatus.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the

Previous Next

Previous Next

values shown in the following table.

Remarks

This method is asynchronous; it returns very quickly and sends a WMT_OPENED status notification to the
application's IWMStatusCallback::OnStatus method when the file is opened and ready for use.

Because the method returns before the file is opened, a return value of S_OK does not necessarily mean that the
file has been opened successfully. To ascertain the success of the call, you must check the value of of the hr
parameter of OnStatus when the WMT_OPENED notification is received.

If hr equals NS_E_NO_STREAM it means that the header is not yet available, and that a
WMT_SOURCE_SWITCH event will be sent as soon as the header becomes available. No WMT_EOF will be
sent before the WMT_SOURCE_SWITCH.

Applications that read files from behind a firewall will have better performance when opening files if the
address is specified using the domain name server (DNS) name instead of the IP address.

See Also

IWMReader Interface
IWMReader::Close
IWMReader::Start
IWMReader::Stop
IWMReaderAdvanced2::OpenStream
IWMStatusCallback::OnStatus

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReader::Pause
The Pause method pauses the current read operation.

Syntax

Return code Description

E_POINTER The pCallback parameter is NULL.

E_OUTOFMEMORY There is not enough available memory.

E_UNEXPECTED The method failed for an unspecified reason.

Previous Next

Previous Next

HRESULT Pause();

Parameters

This method takes no parameters.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

See Also

IWMReader Interface
IWMReader::Close

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReader::Resume
The Resume method starts the reader from the current position, after a Pause method call.

Syntax

HRESULT Resume();

Parameters

This method takes no parameters.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

Return code Description

E_OUTOFMEMORY There is not enough available memory.

E_UNEXPECTED The method failed for an unspecified reason.

Previous Next

Previous Next

IWMReader Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReader::SetOutputProps
The SetOutputProps method specifies the media properties of an uncompressed output stream.

Syntax

HRESULT SetOutputProps(
 DWORD dwOutputNum,
 IWMOutputMediaProps* pOutput
);

Parameters

dwOutputNum

[in] DWORD containing the output number.

pOutput

[in] Pointer to an IWMOutputMediaProps interface.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

Manipulating an object retrieved by a call to GetOutputProps has no effect on the output media stream unless
the application also calls SetOutputProps.

Previous Next

Previous Next

Return code Description

E_INVALIDARG The dwOutputNum parameter is greater than the number of
output streams.

E_UNEXPECTED The method failed for an unspecified reason.

DirectX VA formats can be returned from GetOutputFormat, but if they are passed in to SetOutputProps,
that method will fail because DirectX VA formats cannot be specified in this way. Therefore, your code should
either examine the format before passing it to SetOutputProps, or handle the case of that method failing by
attempting the next format enumerated from GetOutputFormat. For a code snippet showing how to identify a
DirectX VA format, see Enabling DirectX Video Acceleration

If this method is called while the reader is running, an
IWMReaderCallbackAdvanced::OnOutputPropsChanged call is generated.

See Also

IWMReader Interface
IWMReader::GetOutputProps

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReader::Start
The Start method causes the reader object to start reading from the specified starting time offset. As data is
read, it is passed to the application through the application's IWMReaderCallback::OnSample callback
method.

Syntax

HRESULT Start(
 QWORD cnsStart,
 QWORD cnsDuration,
 float fRate,
 void* pvContext
);

Parameters

cnsStart

[in] Time within the file at which to start reading, in 100-nanosecond units. If cnsStart is set to
WM_START_CURRENTPOSITION, playback starts from the current position.

cnsDuration

[in] Duration of the read in 100-nanosecond units, or zero to read to the end of the file.

Previous Next

Previous Next

fRate

[in] Playback speed. Normal speed is 1.0. Higher numbers cause faster playback, and numbers less than zero
indicate reverse rate (rewinding). The valid ranges are 1.0 through 10.0, and -1.0 through -10.0.

pvContext

[in] Generic pointer, for use by the application. This pointer is passed back to the OnSample method.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

This method sends a WMT_STARTED status notification to the application's
IWMReaderCallback::OnStatus function.

To change the rate but not the current file position, use the Start method with the
WM_START_CURRENTPOSITION value.

Any call to Start while paused is treated as a seek through the file, and incurs a buffering penalty from network
files. This is true even for calls to Start with the WM_START_CURRENTPOSITION value. To continue
playing from the current paused position with no buffering penalty, call Resume.

If the application is providing the clock (by calling IWMReaderAdvanced::SetUserProvidedClock), it
should usually set the cnsDuration parameter to zero. If the application specifies a non-zero value, then it must
call the IWMReaderAdvanced::DeliverTime method exactly once, and the value passed to DeliverTime must
be either the stop time or (QWORD)-1. The reader object will then deliver samples up to the specified duration.

This method is very similar to the IWMReaderAdvanced2::StartAtMarker method, but that method uses a
marker instead of a start time.

See Also

IWMReader Interface
IWMReader::Stop
IWMReaderCallback Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Return code Description

E_OUTOFMEMORY There is not enough available memory.

NS_E_INVALID_REQUEST The value for fRate is not within the valid ranges, or the file is
not seekable and a non-zero start position has been specified.

E_UNEXPECTED The method failed for an unspecified reason.

Previous Next

IWMReader::Stop
The Stop method stops reading the file.

Syntax

HRESULT Stop();

Parameters

This method takes no parameters.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

This method sends a WMT_STOPPED status notification to the application's
IWMReaderCallback::OnStatus function.

Calling Stop eliminates the current read position. If Start is called with a start time set at
WM_START_CURRENTPOSITION after calling Stop, an error is returned.

See Also

IWMReader Interface
IWMReader::Close
IWMReader::Open
IWMReader::Start
IWMReaderCallback Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Return code Description

E_OUTOFMEMORY There is not enough available memory.

E_UNEXPECTED The method failed for an unspecified reason.

Previous Next

IWMReaderAccelerator Interface
The IWMReaderAccelerator interface is implemented on the reader object only when it is in decoding mode.
It is called by a player or a player source filter to obtain interfaces from the decoder DMO.

In addition to the methods inherited from IUnknown, the IWMReaderAccelerator interface exposes the
following methods.

For information about which interfaces can be obtained by using the QueryInterface method of this interface,
see Reader Object.

See Also

Enabling DirectX Video Acceleration

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAccelerator::GetCodecInterface
The GetCodecInterface method is used to retrieve a pointer to the IWMCodecAMVideoAccelerator interface
exposed on the decoder DMO.

Syntax

HRESULT GetCodecInterface(
 DWORD dwOutputNum,

Previous Next

Method Description

GetCodecInterface Retrieves pointers to interfaces exposed on the
decoder DMO.

Notify Called by the source filter to pass in the negotiated
media type.

Previous Next

Previous Next

 REFIID riid,
 void** ppvCodecInterface
);

Parameters

dwOutputNum

[in] DWORD containing the output number.

riid

[in] Reference to the IID of the interface to obtain. The value must be IID_IWMCodecAMVideoAccelerator.

ppvCodecInterface

[out] Address of a pointer that receives the interface specified by riid.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

See Also

Enabling DirectX Video Acceleration
IWMReaderAccelerator Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAccelerator::Notify
The Notify method is called by the source filter to pass in the negotiated media type.

Syntax

HRESULT Notify(

Return code Description

S_OK The method succeeded.

E_UNEXPECTED The WM Reader has no pointer to the codec.

Previous Next

Previous Next

 DWORD dwOutputNum,
 WM_MEDIA_TYPE* pSubtype
);

Parameters

dwOutputNum

[in] DWORD that specifies the stream associated with the notification.

pSubtype

[in] Pointer to a media type that describes the current connection parameters for the stream.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code .

Remarks

This method enables the reader to update its internal variables and commit to the DirectX VA connection. This
is the last place the decoder or reader can fail.

See Also

Enabling DirectX Video Acceleration
IWMReaderAccelerator Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced Interface
A call to QueryInterface from a reader object exposes the advanced functionality described in this section.

In addition to the methods inherited from IUnknown, the IWMReaderAdvanced interface exposes the
following methods.

Previous Next

Previous Next

Method Description

DeliverTime Provides the reader with a clock time. This is used only
when the application is providing the clock.

For information about which interfaces can be obtained by using the QueryInterface method of this interface,
see Reader Object.

GetAllocateForOutput Ascertains whether the reader is configured to use the
IWMReaderCallbackAdvanced interface to allocate
buffers for a particular output.

GetAllocateForStream Ascertains whether the reader is configured to use the
IWMReaderCallbackAdvanced interface to allocate
buffers for a particular stream.

GetManualStreamSelection Ascertains whether manual stream selection has been
specified.

GetMaxOutputSampleSize Retrieves the maximum buffer size to be allocated for
output samples for a specified media stream.

GetMaxStreamSampleSize Retrieves the maximum buffer size to be allocated for
stream samples for a specified media stream.

GetReceiveSelectionCallbacks Retrieves a flag that indicates whether receiving stream
selection notifications has been specified.

GetReceiveStreamSamples Ascertains whether the reader is configured to deliver
stream samples (compressed samples).

GetStatistics Retrieves the current reader statistics.

GetStreamSelected Ascertains whether a particular stream is currently selected.
This can be used only when manual stream selection is
specified.

GetUserProvidedClock Ascertains whether a user-provided clock has been
specified.

NotifyLateDelivery Used to notify the reader that it is delivering data to the
application too slowly.

SetAllocateForOutput Specifies whether to allocate buffers from the user-supplied
callback, or internally, for output samples.

SetAllocateForStream Specifies whether to allocate buffers from the user-supplied
callback, or internally, for stream samples.

SetClientInfo Sets client-side information used for logging.

SetManualStreamSelection Specifies whether stream selection is to be controlled
manually.

SetReceiveSelectionCallbacks Specifies a flag indicating whether receiving selection
callbacks is to be activated.

SetReceiveStreamSamples Specifies whether the reader must deliver compressed
stream samples to the callback.

SetStreamsSelected Enables the selected state of a stream to be changed.

SetUserProvidedClock Specifies that a clock provided by the application is to be
used.

See Also

Interfaces
IWMReader Interface
IWMReaderAdvanced2 Interface
IWMReaderAdvanced3 Interface
IWMReaderAdvanced4 Interface
IWMReaderCallback Interface
IWMReaderCallbackAdvanced Interface
Reader Object
Reading ASF Files

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced::DeliverTime
The DeliverTime method provides the reader with a clock time. Use this method only when the application is
providing the clock.

Syntax

HRESULT DeliverTime(
 QWORD cnsTime
);

Parameters

cnsTime

[in] The time, in 100-nanosecond units.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

Previous Next

Previous Next

Return code Description

E_UNEXPECTED The method failed for an unspecified reason.

Before making the first call to this method, call the IWMReaderAdvanced::SetUserProvidedClock method
with the value TRUE, to specify that the application is providing the clock. Otherwise, the DeliverTime method
returns E_UNEXPECTED.

After DeliverTime is called, the reader reads data as fast as possible until it reaches the specified time. When
the reader reaches that time, it calls IWMReaderCallbackAdvanced::OnTime, and then sends samples to the
callback.

In general, the value of cnsTime should increase each time the method is called (that is, the clock should run
forward). However, sometimes it may be possible to pass a smaller value. The DeliverTime method is
asynchronous, meaning the reader object reads the data on another thread. The application can specify a smaller
time value only if the reader object has not reached that point in the file. For example, if the application calls
DeliverTime with the value 100 seconds, and immediately calls it again with the value 50 seconds, the call
would probably succeed, because the reader object will not reach the 50-second point in the file. However, you
cannot be sure the call will succeed in this case, because the application does not control the reader's thread.

See Also

Broadcasting ASF Data
IWMReaderAdvanced Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced::GetAllocateForOutput
The GetAllocateForOutput method ascertains whether the reader is configured to use the
IWMReaderCallbackAdvanced interface to allocate samples delivered by the
IWMReaderCallback::OnSample callback.

Syntax

HRESULT GetAllocateForOutput(
 DWORD dwOutputNum,
 BOOL* pfAllocate
);

Parameters

dwOutputNum

[in] DWORD containing the identifying number of the output media stream.

Previous Next

Previous Next

pfAllocate

[out] Pointer to a Boolean value that is set to True if the reader uses IWMReaderCallbackAdvanced to
allocate samples.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

IWMReaderAdvanced Interface
IWMReaderAdvanced::SetAllocateForOutput

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced::GetAllocateForStream
The GetAllocateForStream method ascertains whether the reader is configured to use
IWMReaderCallbackAdvanced to allocate stream samples delivered by the
IWMReaderCallbackAdvanced::OnStreamSample callback.

Syntax

HRESULT GetAllocateForStream(
 WORD wStreamNum,
 BOOL* pfAllocate
);

Parameters

wStreamNum

[in] WORD containing the stream number.

pfAllocate

[out] Pointer to a Boolean value that is set to True if the reader uses IWMReaderCallbackAdvanced to
allocate samples.

Return Values

Previous Next

Previous Next

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

Stream numbers are in the range of 1 through 63.

See Also

IWMReaderAdvanced Interface
IWMReaderAdvanced::SetAllocateForStream

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced::GetManualStreamSelection
The GetManualStreamSelection method ascertains whether manual stream selection has been specified.

Syntax

HRESULT GetManualStreamSelection(
 BOOL* pfSelection
);

Parameters

pfSelection

[out] Pointer to a Boolean value that is True if manual selection has been specified.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

See Also

Previous Next

Previous Next

Return code Description

E_POINTER The pfSelection parameter is NULL.

NS_E_INVALID_REQUEST The reader object has not opened a file yet.

IWMReaderAdvanced Interface
IWMReaderAdvanced::SetManualStreamSelection

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced::GetMaxOutputSampleSize
The GetMaxOutputSampleSize method retrieves the maximum buffer size to be allocated for output samples
for a specified media stream.

Syntax

HRESULT GetMaxOutputSampleSize(
 DWORD dwOutput,
 DWORD* pcbMax
);

Parameters

dwOutput

[in] DWORD specifying the output media stream.

pcbMax

[out] Pointer to the maximum buffer size to be allocated.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

See Also

IWMReaderAdvanced Interface

Previous Next

Previous Next

Return code Description

ASF_E_INVALIDSTATE No file has been opened for the sample.

E_INVALIDARG dwOutput specifies the wrong output or pcbMax is a NULL
pointer.

IWMReaderAdvanced::GetAllocateForOutput
IWMReaderAdvanced::GetMaxStreamSampleSize

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced::GetMaxStreamSampleSize
The GetMaxStreamSampleSize method retrieves the maximum buffer size to be allocated for stream samples
for a specified media stream.

Syntax

HRESULT GetMaxStreamSampleSize(
 WORD wStream,
 DWORD* pcbMax
);

Parameters

wStream

[in] Stream number.

pcbMax

[out] Pointer to the maximum buffer size to be allocated.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

See Also

IWMReaderAdvanced Interface

Previous Next

Previous Next

Return code Description

ASF_E_INVALIDSTATE No file open for stream sample.

E_INVALIDARG wStream specifies the wrong stream or pcbMax is a NULL
pointer.

IWMReaderAdvanced::GetAllocateForStream
IWMReaderAdvanced::GetMaxOutputSampleSize

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced::GetReceiveSelectionCallback
The GetReceiveSelectionCallbacks method ascertains whether the option to receive stream selection
notifications has been enabled.

Syntax

HRESULT GetReceiveSelectionCallbacks(
 BOOL* pfGetCallbacks
);

Parameters

pfGetCallbacks

[out] Pointer to a Boolean value that is set to True if stream selection notifications are sent to
IWMReaderCallbackAdvanced::OnStreamSelection.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

See Also

IWMReaderAdvanced Interface
IWMReaderAdvanced::SetReceiveSelectionCallbacks

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Return code Description

E_POINTER The pfGetCallbacks parameter is NULL.

Previous Next

IWMReaderAdvanced::GetReceiveStreamSamples
The GetReceiveStreamSamples method ascertains whether stream samples are delivered to the
IWMReaderCallbackAdvanced::OnStreamSample call.

Syntax

HRESULT GetReceiveStreamSamples(
 WORD wStreamNum,
 BOOL* pfReceiveStreamSamples
);

Parameters

wStreamNum

[in] WORD containing the stream number. Stream numbers are in the range of 1 through 63.

pfReceiveStreamSamples

[out] Pointer to a Boolean value that is set to True if stream samples are delivered to OnStreamSample.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

Stream samples are samples received directly from the source file, and are not decompressed. If you receive
compressed samples, you must either keep them compressed, or decompress them with your application. The
Windows Media Format SDK does not provide methods to decompress samples once they have been removed
from a file.

See Also

IWMReaderAdvanced Interface
IWMReaderAdvanced::SetReceiveStreamSamples

Previous Next

Return code Description

E_INVALIDARG The pfReceiveStreamSamples parameter is NULL, or the stream
number is not valid.

E_UNEXPECTED The method failed for an unspecified reason.

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced::GetStatistics
The GetStatistics method retrieves the current reader statistics.

Syntax

HRESULT GetStatistics(
 WM_READER_STATISTICS* pStatistics
);

Parameters

pStatistics

[in, out] Pointer to a WM_READER_STATISTICS structure.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

The WM_READER_STATISTICS structure must be supplied by the application. The cbSize data member
must be set before the structure is passed to the method. The rest of the members will be set by this method.

As with any method, too many calls can affect performance. The actual performance impact is machine-
dependent. Using the GetStatistics method for each sample is not recommended. The Microsoft Windows
Media Encoder pulls the data once per second, which results in a manageable amount of data being passed.

The GetStatistics method is not recommended for a callback method like IWMReaderCallback::OnSample.

Previous Next

Previous Next

Return code Description

E_INVALIDARG pStatistics is NULL, or the cbSize member of pStatistics is not
set to the size of WM_READER_STATISTICS.

E_OUTOFMEMORY The method is unable to allocate memory for an internal object.

NS_E_INVALID_REQUEST The reader object has not opened a file yet.

In general, such calls have the potential to lead to deadlocks.

To determine the connection bandwidth before receiving a sample, the
IWMReaderNetworkConfig::GetConnectionBandWidth method is the recommended method. The
GetStatistics method has more overhead.

See Also

IWMReaderAdvanced Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced::GetStreamSelected
The GetStreamSelected method ascertains whether a particular stream is currently selected. This method can
be used only when manual stream selection has been specified.

Syntax

HRESULT GetStreamSelected(
 WORD wStreamNum,
 WMT_STREAM_SELECTION* pSelection
);

Parameters

wStreamNum

[in] WORD containing the stream number. Stream numbers are in the range of 1 through 63.

pSelection

[out] Pointer to one member of the WMT_STREAM_SELECTION enumeration type.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Previous Next

Previous Next

Return code Description

E_INVALIDARG The pSelection parameter is NULL, or the stream number is

See Also

IWMReaderAdvanced Interface
IWMReaderAdvanced::SetStreamsSelected
To Use Manual Stream Selection
WMT_STREAM_SELECTION

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced::GetUserProvidedClock
The GetUserProvidedClock method ascertains whether a user-provided clock has been specified.

Syntax

HRESULT GetUserProvidedClock(
 BOOL* pfUserClock
);

Parameters

pfUserClock

[out] Pointer to a Boolean value that is set to True if a user-provided clock has been specified.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

See Also

invalid.

E_UNEXPECTED The method failed for an unspecified reason.

NS_E_INVALID_REQUEST The reader object has not opened a file yet.

Previous Next

Previous Next

Return code Description

E_POINTER The pfUserClock parameter is NULL.

IWMReaderAdvanced Interface
IWMReaderAdvanced::SetUserProvidedClock

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced::NotifyLateDelivery
The NotifyLateDelivery method is used to notify the reader that it is delivering data to the application too
slowly.

Syntax

HRESULT NotifyLateDelivery(
 QWORD cnsLateness
);

Parameters

cnsLateness

[in] QWORD indicating how late the data is, in 100-nanosecond units.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

IWMReaderAdvanced Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Previous Next

IWMReaderAdvanced::SetAllocateForOutput
The SetAllocateForOutput method specifies whether the reader allocates its own buffers for output samples or
gets buffers from your application.

Syntax

HRESULT SetAllocateForOutput(
 DWORD dwOutputNum,
 BOOL fAllocate
);

Parameters

dwOutputNum

[in] DWORD containing the output number.

fAllocate

[in] Boolean value that is True if the reader gets buffers from your application.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

You can allocate your own buffers for file reading to reduce the overhead required by the reader object to
allocate a new buffer for every sample. The reader object will make calls to the
IWMReaderCallbackAdvanced::AllocateForOutput method.

If the application's callback implements the IWMReaderAllocatorEx interface, the AllocateForOutputEx
method is called instead of AllocateForOutput.

See Also

IWMReaderAdvanced Interface
IWMReaderAdvanced::GetAllocateForOutput

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

IWMReaderAdvanced::SetAllocateForStream
The SetAllocateForStream method specifies whether the reader uses
IWMReaderCallbackAdvanced::AllocateForStream to allocate buffers for stream samples.

Syntax

HRESULT SetAllocateForStream(
 WORD wStreamNum,
 BOOL fAllocate
);

Parameters

wStreamNum

[in] WORD containing the stream number. Stream numbers are in the range of 1 through 63.

fAllocate

[in] Boolean value that is True if the reader uses IWMReaderCallbackAdvanced to allocate streams.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

If the application's callback implements the IWMReaderAllocatorEx interface interface, the
AllocateForStreamEx method is called instead of AllocateForStream.

See Also

IWMReaderAdvanced Interface
IWMReaderAdvanced::GetAllocateForStream
IWMReaderAllocatorEx::AllocateForStreamEx

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced::SetClientInfo

Previous Next

Previous Next

The SetClientInfo method sets client-side information used for logging. Use this method to specify information
about the client that the reader object sends to the server for logging. If the application does not call this
method, the reader object uses default values.

Syntax

HRESULT SetClientInfo(
 WM_READER_CLIENTINFO* pClientInfo
);

Parameters

pClientInfo

[in] Pointer to a WM_READER_CLIENTINFO structure allocated by the caller, which contains information
about the client.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code. Possible errors include
the following:

Remarks

Initialize the WM_READER_CLIENTINFO structure before calling this method. Always set the cbSize
member equal to the size of the structure, and set any unused fields to zero.

WM_READER_CLIENTINFO info;
ZeroMemory(&info, sizeof(WM_READER_CLIENTINFO));
info.cbSize = sizeof(WM_READER_CLIENTINFO);

// Set other fields (not shown).

hr = pReaderAdvanced->SetClientInfo(&info);

See Also

IWMReaderAdvanced Interface
Client Logging

© 2000-2003 Microsoft Corporation. All rights reserved.

Value Description

E_INVALIDARG Invalid argument. The cbSize member must be set,
and the string values must not exceed 1024
characters.

Previous Next

IWMReaderAdvanced::SetManualStreamSelection
The SetManualStreamSelection method specifies whether stream selection is to be controlled manually.
Stream selection applies to outputs associated with mutually exclusive streams. Under normal circumstances,
the reader will select the most appropriate stream for an output at time of playback.

Syntax

HRESULT SetManualStreamSelection(
 BOOL fSelection
);

Parameters

fSelection

[in] Boolean value that is True if manual selection is specified.

Return Values

This method always returns S_OK.

Remarks

When you call this method to enable manual stream selection, all streams in the file are selected. To select
specific streams, pass an array of the desired stream numbers to the
IWMReaderAdvanced::SetStreamsSelected method.

When manual stream selection is enabled, you can manage the selected streams using GetStreamSelected and
SetStreamsSelected.

Stream numbers are in the range of 1 through 63.

See Also

IWMProfile Interface
IWMReaderAdvanced Interface
IWMReaderAdvanced::GetManualStreamSelection
To Use Manual Stream Selection

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

IWMReaderAdvanced::SetReceiveSelectionCallback
The SetReceiveSelectionCallbacks method specifies whether stream selection notifications must be sent to
IWMReaderCallbackAdvanced::OnStreamSelection.

Syntax

HRESULT SetReceiveSelectionCallbacks(
 BOOL fGetCallbacks
);

Parameters

fGetCallbacks

[in] Boolean value that is True if stream selections must generate callbacks.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

See Also

IWMReaderAdvanced Interface
IWMReaderAdvanced::GetReceiveSelectionCallbacks

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced::SetReceiveStreamSamples

Previous Next

Return code Description

E_NOINTERFACE No callback interface has been specified.

Previous Next

Previous Next

The SetReceiveStreamSamples method specifies whether stream samples are delivered to the
IWMReaderCallbackAdvanced::OnStreamSample callback.

Syntax

HRESULT SetReceiveStreamSamples(
 WORD wStreamNum,
 BOOL fReceiveStreamSamples
);

Parameters

wStreamNum

[in] WORD containing the stream number. Stream numbers are in the range of 1 through 63.

fReceiveStreamSamples

[in] Boolean value that is True if stream samples are delivered.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

Stream samples are samples received directly from the source file, and are not decompressed. If you receive
compressed samples, you must either keep them compressed, or decompress them with your application. The
Windows Media Format SDK does not provide methods to decompress samples once they have been removed
from a file.

The application can register itself to receive samples directly from the Windows Media streams rather than
letting the reader decompress them first. To do this, the object implementing IWMReaderCallback (supplied
by the application) must support IWMReaderCallbackAdvanced. To determine which streams are in an ASF
file, and what their stream numbers are, call QueryInterface using the reader object to access the IWMProfile
interface, and examine the streams in the profile.

See Also

IWMReaderAdvanced Interface
IWMReaderAdvanced::GetReceiveStreamSamples

Return code Description

E_UNEXPECTED The method failed for an unspecified reason.

E_NOINTERFACE No callback interface has been specified.

NS_E_PROTECTED_CONTENT Attempted read on a file protected by DRM.

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced::SetStreamsSelected
The SetStreamsSelected method specifies which streams are selected when manual stream selection is enabled.

Syntax

HRESULT SetStreamsSelected(
 WORD cStreamCount,
 WORD* pwStreamNumbers,
 WMT_STREAM_SELECTION* pSelections
);

Parameters

cStreamCount

[in] WORD containing the count of stream numbers in the pwStreamNumbers array.

pwStreamNumbers

[in] Pointer to an array containing the stream numbers. Stream numbers are in the range of 1 through 63.

pSelections

[in] Pointer to an array, of equal length to pwStreamNumbers, with each entry containing one member of the
WMT_STREAM_SELECTION enumeration type.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

This method enables the selected state of multiple streams to be changed simultaneously. Multiple streams can
then be turned on or off at the exact time required. For this reason, the parameters of this method and the
GetStreamSelected method are not identical.

Previous Next

Return code Description

E_UNEXPECTED The method failed for an unspecified reason.

When selecting streams manually, you should select only one stream at a time from each set of mutually
exclusive streams in a file. The SDK does not prevent you from selecting multiple mutually exclusive streams,
but the samples for all mutually exclusive streams will be delivered to IWMReaderCallback::OnSample
using the same output number. This makes it difficult to differentiate between samples from the various
streams.

To deliver samples by stream number, you must receive uncompressed stream samples. You can receive stream
samples for a specific stream by calling IWMReaderAdvanced::SetReceiveStreamSamples. You must also
implement IWMReaderCallbackAdvanced::OnStreamSample.

See Also

IWMReaderAdvanced Interface
IWMReaderAdvanced::GetStreamSelected
To Use Manual Stream Selection

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced::SetUserProvidedClock
The SetUserProvidedClock method specifies whether a clock provided by the application is to be used.

Syntax

HRESULT SetUserProvidedClock(
 BOOL fUserClock
);

Parameters

fUserClock

[in] Boolean value that is True if an application-provided clock is to be used.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Previous Next

Previous Next

Return code Description

NS_E_INVALID_REQUEST The reader is not properly configured to handle this request.

Remarks

In some cases, an application built on this SDK requires the clock to be driven by the application rather than by
real time. This is true, for example, if the application reads from a file at a rate faster than it takes to play the
file. User-provided clocks are only supported when the source file is a local file.

This method can fail if the current source does not support user-provided clocks. To drive a clock, an
application must call DeliverTime, and then wait for IWMReaderCallbackAdvanced::OnTime to reach the
time specified.

See Also

IWMReaderAdvanced Interface
IWMReaderAdvanced::GetUserProvidedClock

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced2 Interface
The IWMReaderAdvanced2 interface provides additional advanced methods for a reader object.

In addition to the methods inherited from IWMReaderAdvanced, the IWMReaderAdvanced2 interface
exposes the following methods.

E_OUTOFMEMORY The method was unable to allocate memory.

E_FAIL Unable to set an internal event.

Previous Next

Previous Next

Method Description

GetBufferProgress Retrieves the percentage of data that has been buffered, and the
time remaining to completion.

GetDownloadProgress Retrieves the percentage and amount of data that has been
downloaded, and the time remaining to completion.

GetLogClientID Queries whether the reader logs the client's unique ID or an
anonymous session ID.

GetOutputSetting Retrieves a setting for a particular output by name.

GetPlayMode Retrieves the current play mode.

In addition to the methods of IUnknown, this interface inherits the following methods.

GetProtocolName Retrieves the name of the protocol that is currently being used.

GetSaveAsProgress Retrieves the percentage of data that has been saved.

OpenStream Opens a Windows Media stream for reading.

Preroll Begins prerolling the reader.

SaveFileAs Saves the current file.

SetLogClientID Specifies whether the reader logs the client's unique ID or an
anonymous session ID..

SetOutputSetting Specifies a named setting for a particular output.

SetPlayMode Specifies the current play mode.

StartAtMarker Starts the reader from a specified marker.

StopBuffering Requests that the reader stops buffering as soon as possible.

Method Description

DeliverTime Provides the reader with a clock time. This is used only
when a user-provided clock is specified.

GetAllocateForOutput Ascertains whether the reader is configured to use the
IWMReaderCallbackAdvanced interface to allocate
buffers for a particular output.

GetAllocateForStream Ascertains whether the reader is configured to use the
IWMReaderCallbackAdvanced interface to allocate
buffers for a particular stream.

GetManualStreamSelection Ascertains whether manual stream selection has been
specified.

GetMaxOutputSampleSize Retrieves the maximum buffer size to be allocated for
output samples for a specified media stream.

GetMaxStreamSampleSize Retrieves the maximum buffer size to be allocated for
stream samples for a specified media stream.

GetReceiveSelectionCallbacks Retrieves a flag that indicates whether receiving stream
selection notifications has been specified.

GetReceiveStreamSamples Ascertains whether the reader is configured to deliver
stream samples (compressed samples).

GetStatistics Retrieves the current reader statistics.

GetStreamSelected Ascertains whether a particular stream is currently selected.
This can be used only when manual stream selection is
specified.

GetUserProvidedClock Ascertains whether a user-provided clock has been

For information about which interfaces can be obtained by using the QueryInterface method of this interface,
see Reader Object.

See Also

Interfaces
IWMReader Interface
IWMReaderAdvanced Interface
IWMReaderAdvanced3 Interface
IWMReaderAdvanced4 Interface
Reader Object
Reading ASF Files

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced2::GetBufferProgress

specified.

NotifyLateDelivery Used to notify the reader that it is delivering data to the
application too slowly.

SetAllocateForOutput Specifies whether to allocate buffers from the user-supplied
callback, or internally, for output samples.

SetAllocateForStream Specifies whether to allocate buffers from the user-supplied
callback, or internally, for stream samples.

SetClientInfo Sets client-side information used for logging.

SetManualStreamSelection Specifies whether stream selection is to be controlled
manually.

SetReceiveSelectionCallbacks Specifies a flag indicating whether receiving selection
callbacks is to be activated.

SetReceiveStreamSamples Specifies whether the reader must deliver compressed
stream samples to the callback.

SetStreamsSelected Enables the selected state of a stream to be changed.

SetUserProvidedClock Specifies that a clock provided by the application is to be
used.

Previous Next

Previous Next

The GetBufferProgress method retrieves the percentage of data that has been buffered, and the time remaining
to completion.

Syntax

HRESULT GetBufferProgress(
 DWORD* pdwPercent,
 QWORD* pcnsBuffering
);

Parameters

pdwPercent

[out] Pointer to a DWORD containing the percentage of data that has been buffered.

pcnsBuffering

[out] Pointer to variable specifying the time remaining, in 100-nanosecond units, until all the buffering is
completed.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

To produce meaningful results, this method must be called between the events WMT_BUFFERING_START
and WMT_BUFFERING_STOP. If it is called before a WMT_BUFFERING_START event, then both
parameters return zero. If it is called after WMT_BUFFERING_STOP but before a subsequent
WMT_BUFFERING_START event, this method returns 100 for the percentage and zero for the buffering time,
in seconds. WMT_BUFFERING_START events reset the percentage and seconds remaining to zero.

See Also

IWMReaderAdvanced2 Interface
WMT_PLAY_MODE

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced2::GetDownloadProgress

Previous Next

Previous Next

The GetDownloadProgress method retrieves the percentage and amount of data that has been downloaded, and
the time remaining to completion.

Syntax

HRESULT GetDownloadProgress(
 DWORD* pdwPercent,
 QWORD* pqwBytesDownloaded,
 QWORD* pcnsDownload
);

Parameters

pdwPercent

[out] Pointer to a DWORD containing the percentage of data that has been downloaded.

pqwBytesDownloaded

[out] Pointer to a QWORD containing the number of bytes of data downloaded.

pcnsDownload

[out] Pointer to variable specifying the time remaining, in 100-nanosecond units, for data to be downloaded.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

This method can be called to monitor progress while content is being downloaded from a Web server.

Content can be downloaded from a Web server when either the play mode is
WMT_PLAY_MODE_AUDTOSELECT (in which case the reader automatically adjusts its play mode to
DOWNLOAD) or the play mode is explicitly set to WMT_PLAY_MODE_DOWNLOAD.

If one of these two play modes is not current, and this method is called, all parameters return zero.

Before the first WMT_BUFFERING_START event, all the parameters return zero. Between
WMT_BUFFERING_START and WMT_END_OF_STREAMING, the values for the percentage of
downloading completed and number of bytes downloaded always increase. The value for the number of seconds
of downloading remaining can go up or down depending on changing download rates. After
WMT_END_OF_STREAMING has been sent, the percentage returns 100, bytes downloaded remains at the
size of the download, and seconds remaining is zero.

See Also

IWMReaderAdvanced2 Interface
WMT_PLAY_MODE

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced2::GetLogClientID
The GetLogClientID method queries whether the reader logs the client's unique ID or an anonymous session
ID.

Syntax

HRESULT GetLogClientID(
 BOOL* pfLogClientID
);

Parameters

pfLogClientID

[out] Pointer Boolean value that is set to True if the client's log ID must be sent to the server.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

See the remarks for SetLogClientID.

See Also

Client Logging
IWMReaderAdvanced2 Interface
IWMReaderAdvanced2::SetLogClientID

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Return code Description

E_INVALIDARG NULL or invalid argument passed in.

Previous Next

IWMReaderAdvanced2::GetOutputSetting
The GetOutputSetting method retrieves a setting for a particular output by name.

Syntax

HRESULT GetOutputSetting(
 DWORD dwOutputNum,
 LPCWSTR pszName,
 WMT_ATTR_DATATYPE* pType,
 BYTE* pValue,
 WORD* pcbLength
);

Parameters

dwOutputNum

[in] DWORD containing the output number.

pszName

[in] Pointer to a wide-character null-terminated string containing the setting name. For a list of global constants
representing setting names, see Output Settings.

pType

[out] Pointer to a member of the WMT_ATTR_DATATYPE enumeration type that specifies the type of the
value.

pValue

[out] Pointer to a byte buffer containing the value. Pass NULL to retrieve the length of the buffer required.

pcbLength

[in, out] On input, pointer to a variable containing the length of pValue. On output, the variable contains the
number of bytes in pValue.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

You should make two calls to GetOutputSetting. On the first call, pass NULL for pValue. On return, the value

Previous Next

pointed to by pcbLength is set to the buffer size required to hold the setting value. Then you can allocate the
required amount of memory for the buffer and pass a pointer to it as pValue on the second call.

See Also

IWMReaderAdvanced2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced2::GetPlayMode
The GetPlayMode method retrieves the current play mode.

Syntax

HRESULT GetPlayMode(
 WMT_PLAY_MODE* pMode
);

Parameters

pMode

[out] Pointer to a variable that receives a member of the WMT_PLAY_MODE enumeration type.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

Before a file is opened, this method returns the play mode the reader will use to open a file. The default setting
is auto-select (the reader picks the mode). After a file is opened, this method returns the actual mode used to
play the file. For an asynchronous Open request, the actual mode can be obtained after receiving the
WMT_OPENED status message.

For more information, see the Remarks section of IWMReaderAdvanced2::SetPlayMode.

See Also

IWMReaderAdvanced2 Interface

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced2::GetProtocolName
The GetProtocolName method retrieves the name of the protocol that is being used.

Syntax

HRESULT GetProtocolName(
 WCHAR* pwszProtocol,
 DWORD* pcchProtocol
);

Parameters

pwszProtocol

[out] Pointer to a buffer that receives a string containing the protocol name. Pass NULL to retrieve the length
of the name.

pcchProtocol

[in, out] On input, pointer to a variable containing the length of pwszProtocol, in characters. On output, the
variable contains the length of the name, including the terminating null character.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code. Possible errors include
the following.

Remarks

You should make two calls to GetProtocolName. On the first call, pass NULL for pwszProtocol. On return, the

Previous Next

Previous Next

Value Description

ASF_E_BUFFERTOOSMALL The buffer is too small.

ASF_E_INVALIDSTATE The protocol has not been determined, or no file is
open.

E_INVALIDARG The pcchProtocol parameter is NULL.

value pointed to by pcchProtocol is set to the number of wide characters, including the terminating null,
required to hold the protocol name. Then you can allocate the required amount of memory for the string and
pass a pointer to it as pwszProtocol on the second call.

The protocol name is a URL scheme, such as mmsu, http, or file. However, the protocol name can differ from
the URL scheme specified in IWMReader::Open, because the reader object might use protocol rollover to find
the best protocol. Also, the returned string might be "File" for local file content, or "Cache" for content saved in
the cache.

This method can return an empty string if the protocol name cannot be determined.

See Also

IWMReaderAdvanced2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced2::GetSaveAsProgress
The GetSaveAsProgress method retrieves the percentage of data that has been saved.

Syntax

HRESULT GetSaveAsProgress(
 DWORD* pdwPercent
);

Parameters

pdwPercent

[out] Pointer to a DWORD containing the percentage of data that has been saved.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

This method must only be called after IWMReaderAdvanced2::SaveFileAs has been called.

When saving a file, the operation can take some time. This call must be made between the events

Previous Next

Previous Next

WMT_SAVEAS_START and WMT_SAVEAS_STOP. If it is called before WMT_SAVEAS_START, or there
is an error, this method returns zero. It returns 100 following a successful WMT_SAVEAS_STOP event.

See Also

IWMReaderAdvanced2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced2::OpenStream
The OpenStream method opens a Windows Media stream for reading.

Syntax

HRESULT OpenStream(
 IStream* pStream,
 IWMReaderCallback* pCallback,
 void* pvContext
);

Parameters

pStream

[in] Pointer to an IStream interface (see the Remarks section below).

pCallback

[in] Pointer to an IWMReaderCallback interface.

pvContext

[in] Generic pointer, for use by the application. This is passed to the application in calls to
IWMReaderCallback::OnStatus.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Previous Next

Previous Next

Remarks

This method is identical to IWMReader::Open, except that it takes an IStream interface pointer instead of a
URL. An IStream is a standard COM interface for providing data. This allows the application to provide its
own data, rather than just getting data from a file or a network. For example, if you have an IStream interface
pointer that represents the contents of a supported media file (Windows Media Audio, Windows Media Video,
MP3, for example) and, for performance reasons, you do not want to write a temporary file , this is a way you
can use the SDK to parse and decompress your content.

This method sends a WMT_OPENED status notification to the application's IWMReaderCallback::OnStatus
function. (OnStatus is inherited by IWMReaderCallback from IWMStatusCallback.)

See Also

IWMReaderAdvanced2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced2::Preroll
The Preroll method is used to begin prerolling (buffering data) for the reader.

Syntax

HRESULT Preroll(
 QWORD cnsStart,
 QWORD cnsDuration,
 float fRate
);

Parameters

cnsStart

[in] Specifies the start time in 100-nanosecond units.

Return code Description

E_POINTER The pCallback parameter is NULL.

E_OUTOFMEMORY There is not enough available memory.

E_UNEXPECTED The method failed for an unspecified reason.

Previous Next

Previous Next

cnsDuration

[in] Specifies the duration in 100-nanosecond units.

fRate

[in] Specifies the data rate.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

This method can be called before the application calls Start to begin buffering data in advance. The parameters
here must be set to the same values as those that are passed to Start when it is called. If the parameters are
different, Start will do rebuffering.

It is important to allow sufficient time for the prerolling (buffering data) for the reader to be completed before
calling Start. When prerolling local files, 6 seconds normally is sufficient. When prerolling files over the
Internet, allow more time before calling Start. If insufficient time is allowed, the effect will be a longer Start
time when Start is called.

See Also

IWMReaderAdvanced2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced2::SaveFileAs
The SaveFileAs method saves the current file.

Syntax

HRESULT SaveFileAs(
 const WCHAR* pwszFilename
);

Parameters

pwszFilename

Previous Next

Previous Next

[in] Pointer to a wide-character null-terminated string containing the file name.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

This method can be used to save the content downloaded from a Web server to the local hard disk. Files can be
saved when the reader is downloading from a Web server.

You can use this method to save a server-side playlist. When you do so, you specify the name to use for the
playlist, and each file in the playlist will be saved automatically.

This operation is asynchronous; WMT_SAVEAS_STOP indicates that all the data has been saved. Closing the
reader ends a save operation that has not been completed.

This method can take some time to complete, and a call can be made to GetSaveAsProgress to determine
progress.

Note It is possible to get the out of disk space error (STG_E_MEDIUMFULL) if the file being saved is
greater than 1Mbyte. This is because Microsoft Internet Explorer has a maximum cache size of 1Mbyte, and in
this case the error does not refer to the amount of free disk space. This effectively limits the sizes of files that
can be saved this way to those under 1Mbyte.

See Also

IWMReaderAdvanced2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Return code Description

ERROR_OPERATION_ABORTED The file was closed before the operation completed. A
WMT_SAVEAS_STOP event is also generated in this case.

ASF_E_INVALID_STATE The call to this method has been made before an Open call.

NS_E_BUSY A previous SaveFileAs operation has not yet been completed.
Saving files is sequential.

NS_E_INVALID_REQUEST The play mode is not WMT_PLAY_MODE_DOWNLOAD.

STG_E_MEDIUMFULL There is not enough free disk space. See the note in the
Remarks below.

Previous Next

IWMReaderAdvanced2::SetLogClientID
The SetLogClientID method specifies whether the reader logs the client's unique ID or an anonymous session
ID.

Syntax

HRESULT SetLogClientID(
 BOOL fLogClientID
);

Parameters

fLogClientID

[in] Specify one of the following values:

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

When the reader object streams content over the network, it sends logging data to the originating server. This
logging information includes a GUID that identifies the session. By default, the reader generates an anonymous
session ID. If the value of fLogClientID is TRUE, the reader sends an ID that uniquely identifies the current
user. The unique ID is stored in the registry under HKEY_CURRENT_USER. If the key does not exist, the
reader creates it dynamically.

Anonymous session IDs always have the following form:

3300AD50-2C39-46c0-AE0A-XXXXXXXXXXXX

where the last six bytes are randomly generated.

See Also

Client Logging
IWMReaderAdvanced2 Interface
IWMReaderAdvanced2::GetLogClientID

Previous Next

Value Description

TRUE Send the client's unique ID.

FALSE Send an anonymous session ID.

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced2::SetOutputSetting
The SetOutputSetting method specifies a named setting for a particular output.

Syntax

HRESULT SetOutputSetting(
 DWORD dwOutputNum,
 LPCWSTR pszName,
 WMT_ATTR_DATATYPE Type,
 const BYTE* pValue,
 WORD cbLength
);

Parameters

dwOutputNum

[in] DWORD containing the output number.

pszName

[in] Pointer to a wide-character null-terminated string containing the name. For a list of global constants that
represent setting names, see Output Settings.

Type

[in] Member of the WMT_ATTR_DATATYPE enumeration type that specifies the type of the value.

pValue

[in] Pointer to a byte array containing the value.

cbLength

[in] Size of pValue.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Previous Next

Previous Next

See Also

IWMReaderAdvanced2::GetOutputSetting
IWMReaderAdvanced2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced2::SetPlayMode
The SetPlayMode method specifies the play mode.

Syntax

HRESULT SetPlayMode(
 WMT_PLAY_MODE Mode
);

Parameters

Mode

[in] Variable containing one member of the WMT_PLAY_MODE enumeration type.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

The default play mode is WMT_PLAY_MODE_AUTOSELECT, which enables the reader to pick the mode. If
the application selects a play mode that is incompatible with the requested URL, an error is returned when the
URL is opened. After the asynchronous reply to the Open request is completed, the mode is changed from
WMT_PLAY_MODE_AUTOSELECT to the appropriately selected play mode. The play mode cannot be
changed after the content has been opened, and returns an error if this is attempted.

See Also

IWMReaderAdvanced2 Interface
IWMReaderAdvanced2::GetPlayMode

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced2::StartAtMarker
The StartAtMarker method starts the reader from a specified marker.

Syntax

HRESULT StartAtMarker(
 WORD wMarkerIndex,
 QWORD cnsDuration,
 float fRate,
 void* pvContext
);

Parameters

wMarkerIndex

[in] WORD containing the marker index.

cnsDuration

[in] Specifies the duration, in 100-nanosecond units.

fRate

[in] Floating point number indicating rate. Normal-speed playback is 1.0; higher numbers cause faster
playback. Numbers less than zero indicate reverse rate (rewinding). The valid range is 1.0 through 10.0, and -
1.0 through -10.0.

pvContext

[in] Generic pointer, for use by the application.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Previous Next

Return code Description

E_OUTOFMEMORY There is not enough available memory.

Remarks

This method is very similar to IWMReader::Start. The difference is that this method uses a marker index but
IWMReader::Start uses a start time.

See Also

IWMReaderAdvanced2 Interface
Markers
Using Markers

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced2::StopBuffering
The StopBuffering method requests that the reader send the WMT_BUFFERING_STOP message as soon as
possible.

Syntax

HRESULT StopBuffering();

Parameters

This method takes no parameters.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

The reader responds to the request to stop buffering only if it is currently buffering data. This means it has sent
a WMT_BUFFERING_START message, but not sent the corresponding WMT_BUFFERING_STOP. There is,
however, no guarantee of how quickly the reader responds to the request. This feature is particularly useful
when the play mode is set to WMT_PLAY_MODE_DOWNLOAD.

NS_E_INVALID_REQUEST The value for fRate is not within the valid ranges.

E_UNEXPECTED The method failed for an unspecified reason.

Previous Next

Previous Next

See Also

IWMReaderAdvanced2 Interface
WMT_PLAY_MODE

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced3 Interface
The IWMReaderAdvanced3 interface provides additional functionality to the reader object. It contains
methods that enhance the ability to playback a file.

IWMReaderAdvanced3 exists for each instance of the reader objects created with the WMCreateReader
function.

In addition to the methods inherited from IWMReaderAdvanced2, the IWMReaderAdvanced3 interface
exposes the following methods.

In addition to the methods of IUnknown, this interface inherits the following methods.

Previous Next

Previous Next

Method Description

StartAtPosition Provides the ability to specify a starting position using a variety
of offsets.

StopNetStreaming Stops network streaming while received packets continue to be
delivered.

Method Description

DeliverTime Provides the reader with a clock time. This is used only when a
user-provided clock is specified.

GetAllocateForOutput Ascertains whether the reader is configured to use the
IWMReaderCallbackAdvanced interface to allocate buffers for
a particular output.

GetAllocateForStream Ascertains whether the reader is configured to use the
IWMReaderCallbackAdvanced interface to allocate buffers for
a particular stream.

GetBufferProgress Retrieves the percentage of data that has been buffered, and the

time remaining to completion.

GetDownloadProgress Retrieves the percentage and amount of data that has been
downloaded, and the time remaining to completion.

GetLogClientID Queries whether the reader logs the client's unique ID or an
anonymous session ID

GetManualStreamSelection Ascertains whether manual stream selection has been specified.

GetMaxOutputSampleSize Retrieves the maximum buffer size to be allocated for output
samples for a specified media stream.

GetMaxStreamSampleSize Retrieves the maximum buffer size to be allocated for stream
samples for a specified media stream.

GetOutputSetting Retrieves a setting for a particular output by name.

GetPlayMode Retrieves the current play mode.

GetProtocolName Retrieves the name of the protocol that is currently being used.

GetReceiveSelectionCallbacks Retrieves a flag that indicates whether receiving stream selection
notifications has been specified.

GetReceiveStreamSamples Ascertains whether the reader is configured to deliver stream
samples (compressed samples).

GetSaveAsProgress Retrieves the percentage of data that has been saved.

GetStatistics Retrieves the current reader statistics.

GetStreamSelected Ascertains whether a particular stream is currently selected. This
can be used only when manual stream selection is specified.

GetUserProvidedClock Ascertains whether a user-provided clock has been specified.

NotifyLateDelivery Used to notify the reader that it is delivering data to the
application too slowly.

OpenStream Opens a Windows Media stream for reading.

Preroll Begins prerolling the reader.

SaveFileAs Saves the current file.

SetAllocateForOutput Specifies whether to allocate buffers from the user-supplied
callback, or internally, for output samples.

SetAllocateForStream Specifies whether to allocate buffers from the user-supplied
callback, or internally, for stream samples.

SetClientInfo Sets client-side information used for logging.

SetLogClientID Specifies whether the reader logs the client's unique ID or an
anonymous session ID.

SetManualStreamSelection Specifies whether stream selection is to be controlled manually.

SetOutputSetting Specifies a named setting for a particular output.

For information about which interfaces can be obtained by using the QueryInterface method of this interface,
see Reader Object.

See Also

Interfaces
IWMReader Interface
IWMReaderAdvanced Interface
IWMReaderAdvanced2 Interface
IWMReaderAdvanced4 Interface
Reader Object
Reading ASF Files

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced3::StartAtPosition
The StartAtPosition method enables you to specify a starting position for a file using one of several offset
formats. This method is very similar to IWMReader::Start, except that the starting position and duration can
be given for time, video frame number, SMPTE time code, or playlist position. If you only need to seek on
presentation time, use Start.

Syntax

HRESULT StartAtPosition(
 WORD wStreamNum,
 void* pvOffsetStart,
 void* pvDuration,

SetPlayMode Specifies the current play mode.

SetReceiveSelectionCallbacks Specifies a flag indicating whether receiving selection callbacks is
to be activated.

SetReceiveStreamSamples Specifies whether the reader must deliver compressed stream
samples to the callback.

SetStreamsSelected Enables the selected state of a stream to be changed.

SetUserProvidedClock Specifies that a clock provided by the application is to be used.

StartAtMarker Starts the reader from a specified marker.

StopBuffering Requests that the reader stops buffering as soon as possible.

Previous Next

Previous Next

 WMT_OFFSET_FORMAT dwOffsetFormat,
 float fRate,
 void* pvContext
);

Parameters

wStreamNum

[in] WORD containing the stream number for which pvOffsetStart and pvDuration apply. Passing zero
signifies that the offset start and duration apply for all streams in the file. If you pass zero, the only valid values
for dwOffsetFormat are WMT_OFFSET_FORMAT_100NS and
WMT_OFFSET_FORMAT_PLAYLIST_OFFSET.

pvOffsetStart

[in] Void pointer to the address containing the offset start. The unit of measurement for the offset is determined
by dwOffsetFormat. The unit of measurement also dictates the size of the variable pointed to. The possible
variable types are listed according to offset format in the following table.

pvDuration

[in] Void pointer to the address containing the duration of playback. If zero is passed, playback will continue
until the end of the file. The unit of measurement for the duration is determined by dwOffsetFormat. The unit of
measurement also dictates the size of the variable pointed to. The possible variable types are listed according to
offset format in the following table.

dwOffsetFormat

[in] DWORD containing one member of the WMT_OFFSET_FORMAT enumeration type. Valid values and
their meanings are as follows.

Offset format pvOffsetStart data type

WMT_OFFSET_FORMAT_100NS QWORD

WMT_OFFSET_FORMAT_FRAME_NUMBERS QWORD

WMT_OFFSET_FORMAT_PLAYLIST_OFFSET LONG

WMT_OFFSET_FORMAT_TIMECODE WMT_TIMECODE_EXTENSION_DATA

Offset format pvDuration data type

WMT_OFFSET_FORMAT_100NS QWORD

WMT_OFFSET_FORMAT_FRAME_NUMBERS QWORD

WMT_OFFSET_FORMAT_PLAYLIST_OFFSET QWORD

WMT_OFFSET_FORMAT_TIMECODE WMT_TIMECODE_EXTENSION_DATA

Value Description

fRate

[in] Floating point number indicating playback rate. Normal-speed playback is 1.0; higher numbers cause faster
playback, and lower numbers cause slower playback. Numbers less than zero indicate reverse rate (rewinding).
The valid range is 1.0 through 10.0, and -1.0 through -10.0.

pvContext

[in] Generic pointer, for use by the application. This pointer is passed back to the application on calls to
IWMReaderCallback.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

WMT_OFFSET_FORMAT_100NS The offset and duration are specified in 100-
nanosecond units. This is the same offset
format that is supported by the
IWMReader::Start method.

WMT_OFFSET_FORMAT_FRAME_NUMBERS The offset is specified by the video frame
number at which to start playback. The
duration is a number of video frames.

WMT_OFFSET_FORMAT_PLAYLIST_OFFSET The offset is specified by an offset into a
playlist. The duration is specified in 100-
nanosecond units.

WMT_OFFSET_FORMAT_TIMECODE The offset is specified by a SMPTE time code
value. The duration is not a count, but another
SMPTE time code value.

Return code Description

NS_E_INVALID_REQUEST dwOffsetFormat is
WMT_OFFSET_FORMAT_FRAME_NUMBERS and
wStreamNum is zero.

OR

pvOffsetStart is NULL, signifying a resume, and the reader is in
stop mode. You cannot resume playback when the player has
been stopped.

OR

pvOffsetStart is NULL, signifying a resume, and pvDuration is
not NULL. You cannot specify a duration for a resume.

OR

Remarks

Frame-based access is available only for local files. You cannot use StartAtPosition to specify starting frame
numbers for streamed content, even if the file is indexed by frame.

You can pass NULL for pvOffsetStart if you are making a call to resume paused playback. In this case you must
also pass NULL for pvDuration.

If an invalid duration is specified, StartAtPosition will not fail. As many samples as possible will be delivered.

See Also

IWMReaderAdvanced3 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

No file is open in the reader.

OR

fRate is out of bounds.

OR

The reader receiving broadcast streams. You cannot seek from
a broadcasting source.

OR

fRate is negative, indicating a rewind, and the duration would
rewind to before the beginning of the file.

OR

dwOffsetFormat is
WMT_OFFSET_FORMAT_FRAME_NUMBERS and the file
is not indexed and/or is not indexed by frame.

E_OUTOFMEMORY The method is unable to allocate memory for a message
structure required internally.

Previous Next

Previous Next

IWMReaderAdvanced3::StopNetStreaming
The StopNetStreaming method halts network streaming. Any samples that have already been received from
the network are delivered as usual.

Syntax

HRESULT StopNetStreaming();

Parameters

This method takes no parameters.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

When this method is finished, a WMT_END_OF_STREAMING message will be delivered to the OnStatus
method.

See Also

IWMReaderAdvanced3 Interface
IWMStatusCallback::OnStatus

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced4 Interface
The IWMReaderAdvanced4 interface provides additional functionality to the reader.

An IWMReaderAdvanced4 interface exists for every reader object. You can obtain a pointer to an instance of
this interface by calling the QueryInterface method of any other interface in the reader object.

In addition to the methods inherited from IWMReaderAdvanced3, the IWMReaderAdvanced4 interface
exposes the following methods.

Previous Next

Previous Next

Method Description

In addition to the methods of IUnknown, this interface inherits the following methods.

AddLogParam Adds a named value to the logging information that the reader
object will send to the server.

CancelSaveFileAs Cancels a file save in progress.

CanSaveFileAs Determines whether content being read by the reader object can
be saved using the IWMReaderAdvanced2::SaveFileAs
method.

GetLanguage Retrieves information about a language supported by an output.

GetLanguageCount Retrieves the total number of languages supported by an output.

GetMaxSpeedFactor Retrieves the maximum playback rate that can be delivered by
the source.

GetURL Retrieves the URL of the file being read.

IsUsingFastCache Queries whether the reader is using Fast Cache streaming.

SendLogParams Sends log entries to the originating server.

Method Description

DeliverTime Provides the reader with a clock time. This is used only when a
user-provided clock is specified.

GetAllocateForOutput Ascertains whether the reader is configured to use the
IWMReaderCallbackAdvanced interface to allocate buffers for
a particular output.

GetAllocateForStream Ascertains whether the reader is configured to use the
IWMReaderCallbackAdvanced interface to allocate buffers for
a particular stream.

GetBufferProgress Retrieves the percentage of data that has been buffered, and the
time remaining to completion.

GetDownloadProgress Retrieves the percentage and amount of data that has been
downloaded, and the time remaining to completion.

GetLogClientID Queries whether the reader logs the client's unique ID or an
anonymous session ID.

GetManualStreamSelection Ascertains whether manual stream selection has been specified.

GetMaxOutputSampleSize Retrieves the maximum buffer size to be allocated for output
samples for a specified media stream.

GetMaxStreamSampleSize Retrieves the maximum buffer size to be allocated for stream
samples for a specified media stream.

GetOutputSetting Retrieves a setting for a particular output by name.

GetPlayMode Retrieves the current play mode.

GetProtocolName Retrieves the name of the protocol that is currently being used.

GetReceiveSelectionCallbacks Retrieves a flag that indicates whether receiving stream selection
notifications has been specified.

GetReceiveStreamSamples Ascertains whether the reader is configured to deliver stream
samples (compressed samples).

GetSaveAsProgress Retrieves the percentage of data that has been saved.

GetStatistics Retrieves the current reader statistics.

GetStreamSelected Ascertains whether a particular stream is currently selected. This
can be used only when manual stream selection is specified.

GetUserProvidedClock Ascertains whether a user-provided clock has been specified.

NotifyLateDelivery Used to notify the reader that it is delivering data to the
application too slowly.

OpenStream Opens a Windows Media stream for reading.

Preroll Begins prerolling the reader.

SaveFileAs Saves the current file.

SetAllocateForOutput Specifies whether to allocate buffers from the user-supplied
callback, or internally, for output samples.

SetAllocateForStream Specifies whether to allocate buffers from the user-supplied
callback, or internally, for stream samples.

SetClientInfo Sets client-side information used for logging.

SetLogClientID Specifies whether the reader logs the client's unique ID or an
anonymous session ID.

SetManualStreamSelection Specifies whether stream selection is to be controlled manually.

SetOutputSetting Specifies a named setting for a particular output.

SetPlayMode Specifies the current play mode.

SetReceiveSelectionCallbacks Specifies a flag indicating whether receiving selection callbacks is
to be activated.

SetReceiveStreamSamples Specifies whether the reader must deliver compressed stream
samples to the callback.

SetStreamsSelected Enables the selected state of a stream to be changed.

SetUserProvidedClock Specifies that a clock provided by the application is to be used.

StartAtMarker Starts the reader from a specified marker.

StartAtPosition Provides the ability to specify a starting position using a variety of
offsets.

StopBuffering Requests that the reader stops buffering as soon as possible.

StopNetStreaming Stops network streaming while received packets continue to be

For information about which interfaces can be obtained by using the QueryInterface method of this interface,
see Reader Object.

See Also

Interfaces
IWMReader Interface
IWMReaderAdvanced Interface
IWMReaderAdvanced2 Interface
IWMReaderAdvanced3 Interface
Reader Object
Reading ASF Files

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced4::AddLogParam
The AddLogParam method adds a named value to the logging information that the reader object will send to
the sever.

Syntax

HRESULT AddLogParam(
 LPCWSTR wszNameSpace,
 LPCWSTR wszName,
 LPCWSTR wszValue
);

Parameters

wszNameSpace

[in] Optional wide-character string that contains the namespace for the log entry. This parameter can be NULL.
Namespace names are limited to 1024 wide characters.

wszName

[in] Wide-character string that contains the name of the log entry. Log entry names are limited to 1024 wide
characters.

delivered.

Previous Next

Previous Next

wszValue

[in] Wide-character string that contains the value of the log entry. Log entry values are limited to 1024 wide
characters.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

The reader object sends logging data to the server in the form of an XML stream. The AddLogParam method
enables the client to specify additional logging entries. The wszNameSpace parameter can be used to specify an
XML namespace for the new entry. If you do not specify a namespace, the default namespace is used. However,
the reader will not override log entries already defined by the server, with the following exception: If the server
specifies an empty string ("") for the cs-media-role or cs-media-name entry, you can overwrite these entries. By
default, a server running Windows Media Services 9 Series sends an empty string for cs-media-role, and the
name of the file for cs-media-name.

To send the logging information to the server, call the SendLogParams method. To retrieve the log entries on
the server, you must provide a custom logging plug-in, using the Windows Media Services 9 Series SDK. The
default logging plug-in writes just the W3C-compliant log summary, so custom log entries are not included in
the log.

See Also

IWMReaderAdvanced4 Interface
IWMReaderAdvanced4::SendLogParams

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced4::CancelSaveFileAs

Return code Description

E_INVALIDARG One of the parameters exceeded the allowed string
length.

E_OUTOFMEMORY Insufficient memory.

S_OK The method succeeded.

Previous Next

Previous Next

The CancelSaveFileAs method cancels a file save resulting from a call to
IWMReaderAdvanced2::SaveFileAs.

Syntax

HRESULT CancelSaveFileAs();

Parameters

This method takes no parameters.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

See Also

IWMReaderAdvanced4 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced4::CanSaveFileAs
The CanSaveFileAs method ascertains whether the content being played by the reader can be saved using the
IWMReaderAdvanced2::SaveFileAs method.

Syntax

HRESULT CanSaveFileAs(
 BOOL* pfCanSave
);

Parameters

pfCanSave

[out] Pointer to a Boolean value that is set to True if that the content being read can be saved.

Return code Description

S_OK The method succeeded.

Previous Next

Previous Next

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

See Also

IWMReaderAdvanced4 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced4::GetLanguage
The GetLanguage method retrieves information about a language supported by an output. You must specify an
output number and a language index, and this method will supply the RFC1766-compliant language string.

Syntax

HRESULT GetLanguage(
 DWORD dwOutputNum,
 WORD wLanguage,
 WCHAR* pwszLanguageString
 WORD* pcchLanguageStringLength
);

Parameters

dwOutputNum

[in] DWORD containing the output number for which you want to identify the language.

wLanguage

[in] WORD containing the language index of the supported language for which you want the details.

pwszLanguageString

[out] Pointer to a wide-character null-terminated string containing the RFC1766-compliant language string.
Pass NULL to retrieve the size of the string, which will be returned in pcbLanguageStringLength.

Return code Description

S_OK The method succeeded.

Previous Next

Previous Next

pcchLanguageStringLength

[in, out] Pointer to a WORD containing the size of pwszLanguageString in wide characters. This size includes
the terminating null character.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

When setting the language to use for an output, you must set the value of the g_wszLanguage setting to the
language index passed to this method as wLanguage. Do not use the language index assigned by the language
list, which will be different.

See Also

IWMReaderAdvanced4 Interface
IWMReaderAdvanced4::GetLanguageCount

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced4::GetLanguageCount
The GetLanguageCount method retrieves the total number of languages supported by an output. Only outputs
associated with streams mutually exclusive by language will have more than one supported language.

Syntax

HRESULT GetLanguageCount(
 DWORD dwOutputNum,
 WORD* pwLanguageCount
);

Parameters

dwOutputNum

Return code Description

S_OK The method succeeded.

Previous Next

Previous Next

[in] DWORD containing the output number.

pwLanguageCount

[out] Pointer to a WORD containing the language count.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

This method should not be confused with IWMLanguageList::GetLanguageCount. This method retrieves
supported languages for a specific output. The methods of the IWMLanguageList interface manipulate a list of
languages at the file level. An individual output might not support all of the languages in the language list.

See Also

IWMReaderAdvanced4 Interface
IWMReaderAdvanced4::GetLanguage

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced4::GetMaxSpeedFactor
The GetMaxSpeedFactor method retrieves the maximum playback rate that can be delivered by the source.
For network content, this value reflects the available bandwidth relative to the maximum bit rate of the content.

Syntax

HRESULT GetMaxSpeedFactor(
 double* pdblFactor
);

Parameters

pdblFactor

Return code Description

S_OK The method succeeded.

Previous Next

Previous Next

[out] Pointer to a variable that receives the maximum playback rate.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

If the server is using Fast Cache streaming, this method returns 1.0. For local files, including cached content,
the method returns DBL_MAX. If no file is open, the method returns 0.0.

See Also

IWMReaderAdvanced4 Interface
IWMReaderAdvanced4::IsUsingFastCache

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced4::GetURL
The GetURL method retrieves the URL of the file being read. This URL might be different from the URL that
was passed to IWMReader::Open, because the reader might have been redirected.

Syntax

HRESULT GetURL(
 WCHAR *pwszURL,
 DWORD *pcchURL
);

Parameters

pwszURL

[out] Pointer to a wide-character null-terminated string containing the URL of the file.

Return code Description

E_INVALIDARG NULL pointer argument.

S_OK The method succeeded.

Previous Next

Previous Next

pcchURL

[in, out] Pointer to a variable containing the number of wide characters in pwszURL.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

Call this method twice. The first time, pass NULL as the value for pwszURL. The method returns the size of the
string in the pcchURL parameter. Allocate the required amount of memory for the string and call the method
again. This time, pass a pointer to the allocated buffer in the pwszURL parameter.

See Also

IWMReaderAdvanced4 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced4::IsUsingFastCache
The IsUsingFastCache method queries whether the reader is using Fast Cache streaming.

Syntax

HRESULT IsUsingFastCache(
 BOOL* pfUsingFastCache
);

Parameters

pfUsingFastCache

[out] Pointer to a variable that receives a Boolean value. The value is True if the reader is currently using Fast
Cache streaming, or False otherwise.

Return code Description

E_INVALIDARG NULL pointer argument.

S_OK The method succeeded.

Previous Next

Previous Next

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

See Also

Enabling Fast Cache Streaming from the Client
IWMReaderAdvanced4 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAdvanced4::SendLogParams
The SendLogParams method sends log entries to the originating server. Call this method after calling
AddLogParam.

Syntax

HRESULT SendLogParams();

Parameters

This method takes no parameters.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Return code Description

E_INVALIDARG NULL pointer argument.

S_OK The method succeeded.

Previous Next

Previous Next

Return code Description

S_FALSE The reader is not streaming content from a remote
server.

S_OK The method succeeded.

See Also

IWMReaderAdvanced4 Interface
IWMReaderAdvanced4::AddLogParam

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAllocatorEx Interface
The IWMReaderAllocatorEx interface provides expanded alternatives to the AllocateForOutput and
AllocateForStream methods of the IWMReaderCallbackAdvanced interface. This interface is implemented
by the application, which passes this interface pointer to the synchronous reader object by calling
IWMSyncReader2::SetAllocateForStream or SetAllocateForOutput.

In addition to the methods inherited from IUnknown, the IWMReaderAllocatorEx interface exposes the
following methods.

See Also

Allocating Buffers for File Reading
Interfaces
IWMReaderAdvanced Interface
IWMReaderCallback Interface
Reader Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Method Description

AllocateForOutputEx Allocates a buffer for samples delivered to the
IWMReaderCallback::OnSample method.

AllocateForStreamEx Allocates a buffer for samples delivered to the
IWMReaderCallbackAdvanced::OnStreamSample method.

Previous Next

IWMReaderAllocatorEx::AllocateForOutputEx
The AllocateForOutputEx method allocates a user-created buffer for samples delivered to the
IWMReaderCallback::OnSample method.

Syntax

HRESULT AllocateForOutputEx(
 DWORD dwOutputNum,
 DWORD cbBuffer,
 INSSBuffer** ppBuffer,
 DWORD dwFlags,
 QWORD cnsSampleTime,
 QWORD cnsSampleDuration,
 void* pvContext
);

Parameters

dwOutputNum

[in] DWORD containing the output number.

cbBuffer

[in] Size of ppBuffer, in bytes.

ppBuffer

[out] Pointer to a pointer to an INSSBuffer object.

dwFlags

[in] DWORD containing the relevant flags.

cnsSampleTime

Previous Next

Flag Description

WM_SFEX_NOTASYNCPOINT This flag is the opposite of the WM_SF_CLEANPOINT flag
used in other methods of this SDK. It indicates that the point is
not a key frame, or is not a good point to go to during a seek.
This inverse definition is used for compatibility with
DirectShow.

WM_SFEX_DATALOSS Some data has been lost between the previous sample and the
sample with the flag set.

[in] Specifies the sample time, in 100-nanosecond units.

cnsSampleDuration

[in] Specifies the sample duration, in 100-nanosecond units.

pvContext

[in] Generic pointer, for use by the application. This pointer is the context pointer given to the
IWMReader::Start method.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

This method differs from IWMReaderCallbackAdvanced::AllocateForOutput in that sample time and
duration values can be passed.

See Also

INSSBuffer Interface
IWMReaderAllocatorEx Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderAllocatorEx::AllocateForStreamEx
The AllocateForStreamEx method allocates a user-created buffer for samples delivered to the
IWMReaderCallbackAdvanced::OnStreamSample method.

Syntax

HRESULT AllocateForStreamEx(
 WORD wStreamNum,
 DWORD cbBuffer,
 INSSBuffer** ppBuffer,
 DWORD dwFlags,
 QWORD cnsSampleTime,
 QWORD cnsSampleDuration,
 void* pvContext
);

Previous Next

Previous Next

Parameters

wStreamNum

[in] WORD containing the stream number.

cbBuffer

[in] Size of ppBuffer, in bytes.

ppBuffer

[out] Pointer to a pointer to an INSSBuffer object.

dwFlags

[in] DWORD containing the relevant flags.

cnsSampleTime

[in] Specifies the sample time, in 100-nanosecond units.

cnsSampleDuration

[in] Specifies the sample duration, in 100-nanosecond units.

pvContext

[in] Generic pointer, for use by the application. This pointer is the context pointer given to the
IWMReader::Start method.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

This method differs from IWMReaderCallbackAdvanced::AllocateForStream in that sample time and
duration values can be passed.

See Also

Flag Description

WM_SFEX_NOTASYNCPOINT This flag is the opposite of the WM_SF_CLEANPOINT flag
used in other methods of this SDK. It indicates that the point is
not a key frame, or is not a good point to go to during a seek.
This inverse definition is used for compatibility with Direct
Show.

WM_SFEX_DATALOSS Some data has been lost between the previous sample and the
sample with the flag set.

INSSBuffer Interface
IWMReaderAllocatorEx Interface
IWMReaderCallbackAdvanced Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderCallback Interface
The IWMReaderCallback is implemented by the application to handle data being read from a file. A pointer to
the interface is passed to IWMReader::Open.

In addition to the methods inherited from IWMStatusCallback, the IWMReaderCallback interface exposes
the following method.

See Also

Interfaces
IWMReader Interface
IWMReaderAdvanced Interface
IWMReaderCallbackAdvanced Interface
Reader Object
Reading ASF Files

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Method Description

OnSample Called during the reading of a file (due to a Start call)
indicating that new uncompressed data is available.

Previous Next

Previous Next

IWMReaderCallback::OnSample
The OnSample method is called during the reading of a file (due to a Start call) indicating that new data is
available.

Syntax

HRESULT OnSample(
 DWORD dwOutputNum,
 QWORD cnsSampleTime,
 QWORD cnsSampleDuration,
 DWORD dwFlags,
 INSSBuffer* pSample,
 void* pvContext

);

Parameters

dwOutputNum

[in] DWORD containing the number of the output to which the sample belongs.

cnsSampleTime

[in] QWORD containing the sample time, in 100-nanosecond units.

cnsSampleDuration

[in] QWORD containing the sample duration, in 100-nanosecond units. For video streams, if the
SampleDuration data unit extension was set on this sample when the file was created, then this parameter will
contain that value. For more information on SampleDuration , see INSSBuffer3::GetProperty.

dwFlags

[in] The flags that can be specified in dwFlags have the following uses.

Flag Description

No flag set None of the conditions for the other flags applies. For example,
a delta frame in most cases would not have any flags set for it.

WM_SF_CLEANPOINT This is the same as a key frame. It indicates a good point to go
to during a seek, for example.

WM_SF_DISCONTINUITY The data stream has a gap in it, which could be due to a seek, a
network loss, or other reason. This can be useful extra
information for an application such as a codec or renderer. The
flag is set on the first piece of data following the gap.

WM_SF_DATALOSS Some data has been lost between the previous sample and the
sample with this flag set.

pSample

[in] Pointer to the INSSBuffer interface of an object containing the sample. The reader calls
SAFE_RELEASE on this pointer after your OnSample method returns. You can call AddRef on this pointer if
you need to keep a reference count on the buffer. Do not call Release on this pointer unless you have called
AddRef.

pvContext

[in] Generic pointer, for use by the application. This pointer is the context pointer given to the
IWMReader::Start method.

Return Values

To use this method, you must implement it in your application. The method should always return S_OK.

Remarks

This method is for receipt of uncompressed samples by output number only. If you need to receive samples for
multiple streams in a single output (as in the case of mutually exclusive streams), you must use
IWMReaderCallbackAdvanced::OnStreamSample. In this case, you will receive compressed samples.
There is no way to use the reader to receive uncompressed samples by stream number.

See Also

IWMReaderCallback Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderCallbackAdvanced Interface
The IWMReaderCallback interface is implemented by the application to handle data being read from a file.

In addition to the methods inherited from IUnknown, the IWMReaderCallbackAdvanced interface exposes
the following methods.

Previous Next

Previous Next

Method Description

AllocateForOutput Allocates a buffer for samples delivered to the
IWMReaderCallback::OnSample method.

See Also

Interfaces
IWMReader Interface
IWMReaderAdvanced Interface
IWMReaderCallback Interface
Reader Object
Reading ASF Files

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderCallbackAdvanced::AllocateForOutput
The AllocateForOutput method allocates user-created buffers for samples delivered to
IWMReaderCallback::OnSample. For more information about allocating your own buffers, see User
Allocated Sample Support.

Syntax

HRESULT AllocateForOutput(
 DWORD dwOutputNum,
 DWORD cbBuffer,
 INSSBuffer** ppBuffer,
 void* pvContext
);

Parameters

AllocateForStream Allocates a buffer for samples delivered to the
OnStreamSample method.

OnOutputPropsChanged Called when the output media properties change because of an
IWMReader::SetOutputProps call.

OnStreamSample Delivers stream samples from the source file without
decompressing them first.

OnStreamSelection Notifies the application of stream changes made due to
bandwidth restrictions.

OnTime Notifies the application of the clock time the reader is working
to. This is used when a user-provided clock has been specified.

Previous Next

Previous Next

dwOutputNum

[in] DWORD containing the output number.

cbBuffer

[in] Size of the buffer, in bytes.

ppBuffer

[out] If the method succeeds, returns a pointer to a pointer to an INSSBuffer interface.

pvContext

[in] Generic pointer, for use by the application. This pointer is the context pointer given to the
IWMReader::Start method.

Return Values

To use this method, you must implement it in your application. You can return whatever HRESULT error
codes are appropriate to your implementation. For more information about the HRESULT error codes included
for use by the Windows Media Format SDK, see Error Codes.

Remarks

An extended version of this method called AllocateForOutputEx exists in the IWMReaderAllocatorEx
interface.

When allocating buffers, you can use whatever logic suits your application. Typically, applications initialize a
pool of buffers for the file or a pool of buffers for each stream or output. When the application is done with a
sample, the buffer is put back into the pool for use.

You can determine the size needed to hold the largest sample of an output by calling
IWMReaderAdvanced::GetMaxOutputSampleSize. This is the size you should make the samples in the pool
used for the output.

See Also

IWMReaderCallbackAdvanced Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

IWMReaderCallbackAdvanced::AllocateForStream
The AllocateForStream method allocates user-created buffers for stream samples delivered to
IWMReaderCallbackAdvanced::OnStreamSample. For more information about allocating your own
buffers, see User Allocated Sample Support.

Syntax

HRESULT AllocateForStream(
 WORD wStreamNum,
 DWORD cbBuffer,
 INSSBuffer** ppBuffer,
 void* pvContext
);

Parameters

wStreamNum

[in] WORD containing the stream number.

cbBuffer

[in] Size of the buffer, in bytes.

ppBuffer

[out] If the method succeeds, returns a pointer to a pointer to an INSSBuffer interface.

pvContext

[in] Generic pointer, for use by the application. This pointer is the context pointer given to the
IWMReader::Start method.

Return Values

To use this method, you must implement it in your application. You can return whatever HRESULT error
codes are appropriate to your implementation. For more information about the HRESULT error codes included
for use by the Windows Media Format SDK, see Error Codes.

Remarks

Stream numbers are in the range of 1 through 63.

An extended version of this method called AllocateForStreamEx exists in the IWMReaderAllocatorEx
interface.

When allocating buffers, you can use whatever logic suits your application. Typically, applications initialize a
pool of buffers for the file or a pool of buffers for each stream or output. When the application is done with a
sample, the buffer is put back into the pool for use.

You can determine the size needed to hold the largest sample of an stream by calling

IWMReaderAdvanced::GetMaxStreamSampleSize. This is the size you should make the samples in the pool
used for the output.

See Also

IWMReaderCallbackAdvanced Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderCallbackAdvanced::OnStreamSample
The OnStreamSample method delivers stream samples from the source file without decompressing them first.

Syntax

HRESULT OnStreamSample(
 WORD wStreamNum,
 QWORD cnsSampleTime,
 QWORD cnsSampleDuration,
 DWORD dwFlags,
 INSSBuffer* pSample,
 void* pvContext
);

Parameters

wStreamNum

[in] WORD containing the stream number.

cnsSampleTime

[in] QWORD containing the sample time, in 100-nanosecond units.

cnsSampleDuration

[in] QWORD containing the sample duration, in 100-nanosecond units.

dwFlags

[in] The flags that can be specified have the following uses.

Previous Next

Previous Next

pSample

[in] Pointer to a sample stored in an INSSBuffer interface. The reader calls SAFE_RELEASE on this pointer
after your OnStreamSample method returns. You can call AddRef on this pointer if you need to keep a
reference count on the buffer. Do not call Release on this pointer unless you have called AddRef.

pvContext

[in] Generic pointer, for use by the application.

Return Values

To use this method, you must implement it in your application. You can return whatever HRESULT error
codes are appropriate to your implementation. For more information about the HRESULT error codes included
for use by the Windows Media Format SDK, see Error Codes.

Remarks

When using the asynchronous reader, only compressed samples can be delivered for a stream number. If you
want to retrieve uncompressed samples by stream number, you should use the synchronous reader.

There are many reasons why you might want to retrieve compressed samples. The most common use is to
transfer a stream from one ASF file to another.

If you receive compressed samples, you must either keep them compressed, or decompress them with your
application. The Windows Media Format SDK does not provide methods to decompress samples once they
have been removed from a file.

This method is not able to deliver secure content. If protected content is used, the method will return
NS_E_PROTECTEDCONTENT.

The samples delivered by this method are compressed, but are in all other ways exactly the same as samples
delivered through IWMReaderCallback::OnSample.

To get samples for a particular stream, call IWMReaderAdvanced::SetReceiveStreamSamples.

See Also

Flag Description

No flag set None of the conditions for the other flags applies. For example,
a delta frame in most cases would not have any flags set for it.

WM_SF_CLEANPOINT This is the same as a key frame. It indicates a good point to go
to during a seek, for example.

WM_SF_DISCONTINUITY The data stream has a gap in it, which could be due to a seek, a
network loss, or other reason. This can be useful extra
information for an application such as a codec or renderer. The
flag is set on the first piece of data following the gap.

WM_SF_DATALOSS Some data has been lost between the previous sample, and the
sample with this flag set.

IWMReaderCallbackAdvanced Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderCallbackAdvanced::OnStreamSelection
The OnStreamSelection method notifies the application of stream changes made due to bandwidth restrictions.
To have this method called, call IWMReaderAdvanced::SetReceiveSelectionCallbacks.

Syntax

HRESULT OnStreamSelection(
 WORD wStreamCount,
 WORD* pStreamNumbers,
 WMT_STREAM_SELECTION* pSelections,
 void* pvContext
);

Parameters

wStreamCount

[in] WORD containing the number of entries in the pStreamNumbers array.

pStreamNumbers

[in] Pointer to an array of stream numbers.

pSelections

[in] Pointer to one member of the WMT_STREAM_SELECTION enumeration type.

pvContext

[in] Generic pointer, for use by the application. This pointer is the context pointer given to the
IWMReader::Start method.

Return Values

To use this method, you must implement it in your application. You can return whatever HRESULT error
codes are appropriate to your implementation. For more information about the HRESULT error codes included
for use by the Windows Media Format SDK, see Error Codes.

Previous Next

Previous Next

Remarks

Stream numbers are in the range of 1 through 63.

The application can also get callbacks when stream changes due to bandwidth restrictions occur.

See Also

IWMReaderCallbackAdvanced Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderCallbackAdvanced::OnTime
The OnTime method notifies the application of the clock time the reader is working to. This method is used
when a user-provided clock has been specified.

Syntax

HRESULT OnTime(
 QWORD cnsCurrentTime,
 void* pvContext
);

Parameters

cnsCurrentTime

[in] QWORD containing the current time in 100-nanosecond units.

pvContext

[in] Generic pointer, for use by the application. This pointer is the context pointer given to the
IWMReader::Start method.

Return Values

To use this method, you must implement it in your application. You can return whatever HRESULT error
codes are appropriate to your implementation. For more information about the HRESULT error codes included
for use by the Windows Media Format SDK, see Error Codes.

Remarks

Previous Next

Previous Next

There are two cases in which callbacks indicating what the reader registers as the current elapsed time must be
received by an application. The first case occurs when there are gaps in an ASF file (for example, no audio for
10 seconds). The OnTime method continues to be called, while OnSample does not. In the second case, if the
application is driving the clock, the reader calls OnTime after it has delivered all the data up to the point
requested by the application in a call to IWMReaderAdvanced::DeliverTime.

See Also

IWMReaderCallbackAdvanced Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderCallbackAdvanced::OnOutputPropsCha
The OnOutputPropsChanged method indicates that the media properties for the specified output have
changed. This change occurs as a result of a call to the IWMReader::SetOutputProps method.

Syntax

HRESULT OnOutputPropsChanged(
 DWORD dwOutputNum,
 WM_MEDIA_TYPE* pMediaType,
 void* pvContext
);

Parameters

dwOutputNum

[in] DWORD containing the output number.

pMediaType

[in] Pointer to a WM_MEDIA_TYPE structure.

pvContext

[in] Generic pointer, for use by the application. This pointer is the context pointer given to the
IWMReader::Start method.

Return Values

Previous Next

Previous Next

To use this method, you must implement it in your application. You can return whatever HRESULT error
codes are appropriate to your implementation. For more information about the HRESULT error codes included
for use by the Windows Media Format SDK, see Error Codes.

Remarks

This method is called by the reader if the caller gets an asynchronous result from the SetOutputProps method
call. The next sample received for this output has these properties. After a call to SetOutputProps and before
OnOutputPropsChanged is called, the contents of the media type are undefined.

See Also

IWMReaderCallbackAdvanced Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig Interface
The IWMReaderNetworkConfig interface is used to set and test network configuration settings. By using this
interface, the application can configure which protocols must be used to receive the stream as well as other
advanced network settings, such as proxy specification and buffering time.

An IWMReaderNetworkConfig interface exists for every reader object. You can obtain a pointer to an
instance of this interface by calling the QueryInterface method of any other interface of the reader object.

In addition to the methods inherited from IUnknown, the IWMReaderNetworkConfig interface exposes the
following methods.

Previous Next

Previous Next

Method Description

AddLoggingUrl Adds the specified URL to the list of URLs to receive logging
data.

GetBufferingTime Retrieves the amount of time required by the network source to
buffer data before rendering it.

GetConnectionBandwidth Retrieves the connection bandwidth for the client.

GetEnableHTTP Ascertains whether Hypertext Transfer Protocol (HTTP) is
enabled.

GetEnableMulticast Ascertains whether multicast is enabled.

GetEnableTCP Ascertains whether TCP is enabled.

GetEnableUDP Ascertains whether UDP is enabled.

GetForceRerunAutoProxyDetection Ascertains whether forced rerun detection is enabled.

GetLoggingUrlCount Retrieves the number of URLs in the current list of logging
URLs.

GetLoggingUrl Retrieves the URL corresponding to the specified index.

GetNumProtocolsSupported Retrieves the number of supported protocols.

GetProxyBypassForLocal Retrieves the configuration setting for bypassing the proxy for
local hosts.

GetProxyExceptionList Retrieves the proxy exception list.

GetProxyHostName Retrieves the name of the host to be used as the proxy.

GetProxyPort Retrieves the port to be used as the proxy.

GetProxySettings Retrieves the current proxy settings.

GetSupportedProtocolName Retrieves a protocol name by index.

GetUDPPortRanges Retrieves the UDP port number ranges that are used for
receiving data.

ResetLoggingUrlList Clears the list of logging URLs.

ResetProtocolRollover Forces the reader object to use the normal protocol rollover
algorithm.

SetBufferingTime Specifies how long the network source buffers data before
rendering it.

SetConnectionBandwidth Specifies the connection bandwidth for the client.

SetEnableHTTP Enables or disables HTTP.

SetEnableMulticast Enables or disables multicast.

SetEnableTCP Enables or disables TCP.

SetEnableUDP Enables or disables UDP.

SetForceRerunAutoProxyDetection Enables or disables forced rerun detection.

SetProxyBypassForLocal Specifies the configuration setting for bypassing the proxy for
local hosts.

SetProxyExceptionList Specifies the proxy exception list.

SetProxyHostName Specifies the name of the host to be used as the proxy.

SetProxyPort Specifies the port to be used as the proxy.

SetProxySettings Specifies the proxy settings.

SetUDPPortRanges Specifies the UDP port number ranges that are used for
receiving data.

For information about which interfaces can be obtained by using the QueryInterface method of this interface,
see Reader Object.

See Also

Interfaces
Reader Object

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig::AddLoggingUrl
The AddLoggingUrl method specifies a server that receive logging information from the reader object.

Syntax

HRESULT AddLoggingUrl(
 LPCWSTR pwszUrl
);

Parameters

pwszUrl

[in] Specifies a string containing the URL.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

When the reader streams content from a server, it automatically sends logging information to that server. Use
the AddLoggingUrl method to specify additional servers that will receive the logging information.

Previous Next

Previous Next

Return code Description

E_INVALIDARG Null value passed in to pwszUrl

E_OUTOFMEMORY Unable to create or add the URL.

See Also

Client Logging
IWMReaderNetworkConfig Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig::GetBufferingTime
The GetBufferingTime method retrieves the amount of time that the network source buffers data before
rendering it.

Syntax

HRESULT GetBufferingTime(
 QWORD* pcnsBufferingTime
);

Parameters

pcnsBufferingTime

[out] Pointer to a variable that receives the buffering time, in 100-nanosecond units.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

See the Remarks for SetBufferingTime.

See Also

IWMReaderNetworkConfig Interface
IWMReaderNetworkConfig::SetBufferingTime

Previous Next

Previous Next

Return code Description

E_INVALIDARG NULL passed in to pcnsBufferingTime

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig::GetConnectionBandwid
The GetConnectionBandwidth method retrieves the connection bandwidth for the client.

Syntax

HRESULT GetConnectionBandwidth(
 DWORD* pdwConnectionBandwidth
);

Parameters

pdwConnectionBandwidth

[out] Pointer to a DWORD containing the connection bandwidth, in bits per second.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

If this method returns zero, the bandwidth could not be detected. If the application has not called
SetConnectionBandwidth (or called it with a zero parameter), the return value is the connection rate detected
by the reader.

If you want to determine the connection bandwidth before receiving a sample, use this method.

See Also

IWMReaderNetworkConfig Interface
IWMReaderNetworkConfig::SetConnectionBandwidth

Previous Next

Previous Next

Return code Description

E_INVALIDARG NULL or invalid argument passed in.

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig::GetEnableHTTP
The GetEnableHTTP method queries whether HTTP is enabled for protocol rollover.

Syntax

HRESULT GetEnableHTTP(
 BOOL* pfEnableHTTP
);

Parameters

pfEnableHTTP

[out] Pointer to a variable that receives a Boolean value. If the value is TRUE, the reader object includes HTTP
when it performs protocol rollover. If the value is FALSE, the reader does not use HTTP for protocol rollover.
However, the reader will still use HTTP if it is explicitly specified in the URL.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

See Also

IWMReaderNetworkConfig Interface
IWMReaderNetworkConfig::SetEnableHTTP

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Return code Description

E_INVALIDARG NULL or invalid argument passed in.

Previous Next

IWMReaderNetworkConfig::GetEnableMulticast
The GetEnableMulticast method ascertains whether multicast is enabled.

Syntax

HRESULT GetEnableMulticast(
 BOOL* pfEnableMulticast
);

Parameters

pfEnableMulticast

[out] Pointer to a Boolean value that is set to True if multicast has been enabled.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

See Also

IWMReaderNetworkConfig Interface
IWMReaderNetworkConfig::SetEnableMulticast

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig::GetEnableTCP

Previous Next

Return code Description

E_INVALIDARG NULL or invalid argument passed in.

Previous Next

Previous Next

The GetEnableTCP method queries whether TCP is enabled for protocol rollover.

Syntax

HRESULT GetEnableTCP(
 BOOL* pfEnableTCP
);

Parameters

pfEnableTCP

[out] Pointer to a variable that receives a Boolean value. If the value is TRUE, the reader object includes TCP
when it performs protocol rollover. If the value is FALSE, the reader does not use TCP for protocol rollover.
However, the reader will still use TCP if the URL explicitly specifies a TCP-based protocol, such as MMST or
RTSPT.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

See Also

IWMReaderNetworkConfig Interface
IWMReaderNetworkConfig::GetEnableUDP
IWMReaderNetworkConfig::SetEnableTCP
IWMReaderNetworkConfig::SetEnableUDP

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig::GetEnableUDP
The GetEnableUDP method queries whether UDP is enabled for protocol rollover.

Syntax

HRESULT GetEnableUDP(

Return code Description

E_INVALIDARG NULL or invalid argument passed in.

Previous Next

Previous Next

 BOOL* pfEnableUDP
);

Parameters

pfEnableUDP

[out] Pointer to a variable that receives a Boolean value. If the value is TRUE, the reader object includes UDP
when it performs protocol rollover. If the value is FASLE, the reader does not use UDP for protocol rollover.
However, the reader will still use UDP if the URL explicitly specifies a UDP-based protocol, such as MMSU or
RTSPU.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

See Also

IWMReaderNetworkConfig Interface
IWMReaderNetworkConfig::GetEnableTCP
IWMReaderNetworkConfig::SetEnableTCP
IWMReaderNetworkConfig::SetEnableUDP

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig::GetForceRerunAutoPr
The GetForceRerunAutoProxyDetection method ascertains whether forced rerun detection is enabled.

Syntax

HRESULT GetForceRerunAutoProxyDetection(
 BOOL* pfForceRerunDetection
);

Parameters

Return code Description

E_INVALIDARG NULL or invalid argument passed in.

Previous Next

Previous Next

pfForceRerunDetection

[out] Pointer to a Boolean value that is set to True if forced rerun detection has been enabled.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

See the Remarks for SetForceRerunAutoProxyDetection.

See Also

IWMReaderNetworkConfig Interface
IWMReaderNetworkConfig::SetForceRerunAutoProxyDetection

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig::GetLoggingUrl
The GetLoggingUrl method retrieves a URL from the list of servers that receive logging information from the
reader object. Use the IWMReaderNetworkConfig::GetLoggingUrl method to add servers to the list.

Syntax

HRESULT GetLoggingUrl(
 DWORD dwIndex,
 LPWSTR pwszUrl,
 DWORD* pcchUrl
);

Parameters

dwIndex

[in] Specifies which URL to retrieve, indexed from zero. To get the number of URLs, call the

Return code Description

E_INVALIDARG NULL or invalid argument passed in.

Previous Next

Previous Next

IWMReaderNetworkConfig::GetLoggingUrlCount method.

pwszUrl

[out] Pointer to a buffer that receives a string containing the URL. The caller must allocate the buffer.

pcchUrl

[in, out] On input, specifies the length of the pwszUrl buffer, in characters. On output, receives the length of the
URL, including the terminating null character.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

You should make two calls to GetLoggingUrl. On the first call, pass NULL for pwszUrl. On return, the value
pointed to by pcchUrl is set to the number of wide characters, including the terminating null, required to hold
the URL. Then you can allocate the required amount of memory for the string and pass a pointer to it as
pwszUrl on the second call.

See Also

Client Logging
IWMReaderNetworkConfig Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig::GetLoggingUrlCount
The GetLoggingUrlCount method retrieves the number of URLs in the current list of logging URLs.

Syntax

Return code Description

E_INVALIDARG NULL or invalid argument passed in.

ASF_E_BUFFERTOOSMALL Size passed in to pcchUrl is too small.

Previous Next

Previous Next

HRESULT GetLoggingUrlCount(
 DWORD* pdwUrlCount
);

Parameters

pdwUrlCount

[out] Pointer to a DWORD containing the URL count.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

Client Logging
IWMReaderNetworkConfig Interface
IWMReaderNetworkConfig::GetLoggingUrl

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig::GetNumProtocolsSupp
The GetNumProtocolsSupported method retrieves the number of supported protocols.

Syntax

HRESULT GetNumProtocolsSupported(
 DWORD* pcProtocols
);

Parameters

pcProtocols

[out] Pointer to a count of the protocols.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Previous Next

Previous Next

Remarks

Use this method along with IWMReaderAdvanced2::GetProtocolName to iterate through the network
protocols supported by the reader.

This method counts the number of protocols that the reader can use when receiving a stream. It does not
indicate the protocols that are available for sending a stream.

See Also

IWMReaderNetworkConfig Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig::GetProxyBypassForLo
The GetProxyBypassForLocal method queries whether the reader object bypasses the proxy server for local
URLs.

Syntax

HRESULT GetProxyBypassForLocal(
 LPCWSTR pwszProtocol,
 BOOL* pfBypassForLocal
);

Parameters

pwszProtocol

[in] Pointer to a string that contains a protocol name, such as "http" or "mms". The string is not case-sensitive.

pfBypassForLocal

[out] Pointer to a variable that receives a Boolean value. If the value is TRUE, the reader bypasses the proxy
server when it retrieves a URL from a local host. If the value is FALSE, the reader always goes through the
proxy server (if any). The returned value applies only to the protocol specified in pwszProtocol; the reader
object supports separate settings for each protocol.

Return code Description

E_INVALIDARG NULL or invalid argument passed in.

Previous Next

Previous Next

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

See Also

IWMReaderNetworkConfig Interface
IWMReaderNetworkConfig::SetProxyBypassForLocal

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig::GetProxyExceptionList
The GetProxyExceptionList method retrieves the list of computers, domains, or addresses for which the reader
object bypasses the proxy server.

Syntax

HRESULT GetProxyExceptionList(
 LPCWSTR pwszProtocol,
 WCHAR* pwszExceptionList,
 DWORD* pcchExceptionList
);

Parameters

pwszProtocol

[in] Pointer to a string that contains a protocol name, such as "http" or "mms". The string is not case-sensitive.

pwszExceptionList

[out] Pointer to a buffer that receives a string containing the exception list. The returned string is a comma-
separated list. For more information, see SetProxyExceptionList. The list applies only to the protocol specified
in pwszProtocol; the reader object supports separate settings for each protocol.

Return code Description

E_INVALIDARG NULL or invalid argument passed in.

E_OUTOFMEMORY Insufficient memory to complete task

Previous Next

Previous Next

pcchExceptionList

[in, out] On input, pointer to a variable specifying the size of the pwszExceptionList buffer, in characters. On
output, the variable contains the length of the string, including the terminating null character.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

Call this method twice. The first time, pass NULL as the value for pwszExceptionList. The method returns the
size of the string in the pcchExceptionList parameter. Allocate the required amount of memory for the string and
call the method again. This time, pass a pointer to the allocated buffer in the pwszExceptionList parameter.

For more information, see the Remarks for SetProxyExceptionList.

See Also

IWMReaderNetworkConfig Interface
IWMReaderNetworkConfig::SetProxyExceptionList

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig::GetProxyHostName
The GetProxyHostName method retrieves the name of the host to use as the proxy.

Syntax

HRESULT GetProxyHostName(
 LPCWSTR pwszProtocol,
 WCHAR* pwszHostName,
 DWORD* pcchHostName

Return code Description

E_INVALIDARG NULL or invalid argument passed in.

ASF_E_BUFFERTOOSMALL The size of the buffer passed in is not large enough to hold the
return string.

Previous Next

Previous Next

);

Parameters

pwszProtocol

[in] Pointer to a string that contains a protocol name, such as "http" or "mms". The string is not case-sensitive.

pwszHostName

[out] Pointer to a buffer that receives the name of the proxy server host. The returned value applies only to the
protocol specified in pwszProtocol; the reader object supports separate settings for each protocol.

pcchHostName

[in, out] On input, pointer to a variable specifying the size of pwszHostName, in characters. On output, the
variable contains the length of the string, including the terminating null character.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

Call this method twice. The first time, pass NULL as the value for pwszHostName. The method returns the size
of the string in the pcchHostName parameter. Allocate the required amount of memory for the string and call
the method again. This time, pass a pointer to the allocated buffer in the pwszHostName parameter.

The host name is ignored if the proxy setting is WMT_PROXY_SETTING_AUTO or
WMT_PROXY_SETTING_BROWSER.

See Also

IWMReaderNetworkConfig Interface
IWMReaderNetworkConfig::SetProxyHostName
IWMReaderNetworkConfig::SetProxySettings

© 2000-2003 Microsoft Corporation. All rights reserved.

Return code Description

ASF_E_BUFFERTOOSMALL The size of the buffer passed in is not large enough to hold the
return string.

E_INVALIDARG NULL or invalid argument passed in.

Previous Next

IWMReaderNetworkConfig::GetProxyPort
The GetProxyPort method retrieves the port number of the proxy server.

Syntax

HRESULT GetProxyPort(
 LPCWSTR pwszProtocol,
 DWORD* pdwPort
);

Parameters

pwszProtocol

[in] Pointer to a string that contains a protocol name, such as "http" or "mms". The string is not case-sensitive.

pdwPort

[out] Pointer to a variable that receives the port number. The returned value applies only to the protocol
specified in pwszProtocol; the reader object supports separate settings for each protocol.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

See Also

IWMReaderNetworkConfig Interface
IWMReaderNetworkConfig::SetProxyPort

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Return code Description

ASF_E_BUFFERTOOSMALL The size of the buffer passed in is not large enough to hold the
return string.

E_INVALIDARG NULL or invalid argument passed in.

Previous Next

IWMReaderNetworkConfig::GetProxySettings
The GetProxySettings method retrieves the current proxy settings.

Syntax

HRESULT GetProxySettings(
 LPCWSTR pwszProtocol,
 WMT_PROXY_SETTINGS* pProxySetting
);

Parameters

pwszProtocol

[in] Pointer to a wide-character null-terminated string containing the protocol.

pProxySetting

[out] Pointer to one member of the WMT_PROXY_SETTINGS enumeration type.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

See Also

IWMReaderNetworkConfig Interface
IWMReaderNetworkConfig::SetProxySettings

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Return code Description

E_INVALIDARG NULL or invalid argument passed in.

Previous Next

Previous Next

IWMReaderNetworkConfig::GetSupportedProtocolN
The GetSupportedProtocolName method retrieves a protocol name by index.

Syntax

HRESULT GetSupportedProtocolName(
 DWORD dwProtocolNum,
 WCHAR* pwszProtocolName,
 DWORD* pcchProtocolName
);

Parameters

dwProtocolNum

[in] Specifies protocol name to retrieve, indexed from zero. To get the number of supported protocols, call the
IWMReaderNetworkConfig::GetNumProtocolsSupported method.

pwszProtocolName

[out] Pointer to a wide-character null-terminated string containing the protocol name. Pass NULL to retrieve
the length of the name.

pcchProtocolName

[in, out] On input, pointer to a DWORD containing the length of the pwszProtocolName, in characters. On
output, pointer to the length of the protocol name, including the terminating null character.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

You should make two calls to GetSupportedProtocolName. On the first call, pass NULL for
pwszProtocoName. On return, the value pointed to by pcchProtocolName is set to the number of wide
characters, including the terminating null, required to hold the protocol name. Then you can allocate the
required amount of memory for the string and pass a pointer to it as pwszProtocolName on the second call.

Use this method along with GetNumProtocolsSupported to iterate through the network protocols supported by
the reader object.

This method only returns a list of protocols that are used to receive content from Windows Media servers.
Protocols that are only used for retrieving content from local sources, or non-Windows Media servers (such as

Return code Description

E_INVALIDARG NULL or invalid argument passed in.

Web servers) are not included in this list.

Note The HTTPS support works only when downloading content from a Web server (because the player is
using WININET). Streaming protocols supported are HTTP, RTSP, MMS, and, for multicasting, ASFM (by
opening an ASF file with an .nsc extension). Download support includes HTTP, HTTPS, and FTP.

See Also

IWMReaderNetworkConfig Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig::GetUDPPortRanges
The GetUDPPortRanges method retrieves the UDP port number ranges used for receiving data.

Syntax

HRESULT GetUDPPortRanges(
 WM_PORT_NUMBER_RANGE* pRangeArray,
 DWORD* pcRanges
);

Parameters

pRangeArray

[out] Pointer to an array of WM_PORT_NUMBER_RANGE structures allocated by the caller. Pass NULL to
get the size of the array.

pcRanges

[in, out] On input, pointer to a DWORD containing the length of the array passed in pRangeArray. On output,
pointer to the required array size.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Previous Next

Previous Next

Return code Description

ASF_E_BUFFERTOOSMALL The buffer is too small.

Remarks

You should make two calls to this method. On the first call, pass NULL for pRangeArray. On return, the value
pointed to by pcRanges is set to the size of the array that you should allocate. Then you can allocate the required
amount of memory for the array and pass a pointer to it as pRangeArray on the second call.

See Also

IWMReaderNetworkConfig Interface
IWMReaderNetworkConfig::SetUDPPortRanges

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig::ResetLoggingUrlList
The ResetLoggingUrlList method clears the list of servers that receive logging data.

Syntax

HRESULT ResetLoggingUrlList();

Parameters

This method takes no parameters.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

This method removes any servers that were added using the IWMReaderNetworkConfig::AddLoggingUrl
method. Note that the originating server always receives a log, even after the list is cleared.

See Also

Client Logging

E_INVALIDARG The pcRanges parameter is NULL.

S_OK The method succeeded.

Previous Next

Previous Next

IWMReaderNetworkConfig Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig::ResetProtocolRollover
The ResetProtocolRollover method forces the reader object to use the normal protocol rollover algorithm.

Syntax

HRESULT ResetProtocolRollover();

Parameters

This method takes no parameters.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

Protocol rollover is a process whereby the reader object discovers the best streaming protocol available from a
server. For more information, see Protocol Rollover.

When the reader object uses protocol rollover, it records which protocol was used and tries that protocol first on
subsequent connection attempts. After a certain period of time, the reader object goes back to the default
protocol rollover behavior.

However, if the application disables a particular protocol (for example, by calling SetEnableUDP or
SetEnableTCP), the reader object may use a protocol that is less efficient than necessary. You can force the
reader object to use the default protocol rollover behavior by calling the ResetProtocolRollover method.

Player users sometimes experiment with network settings when they are having connectivity problems. By
using this method to reset the protocol rollover settings, the application can improve the quality of streaming
that users receive.

See Also

IWMReaderNetworkConfig Interface
IWMReaderNetworkConfig::SetEnableUDP

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig::SetBufferingTime
The SetBufferingTime method specifies how long the network source buffers data before rendering it.

Syntax

HRESULT SetBufferingTime(
 QWORD cnsBufferingTime
);

Parameters

cnsBufferingTime

[in] Specifies the amount of time in to buffer content before starting playback, in 100-nanosecond units.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

The minimum buffering time is 1 second and the maximum is 60 seconds. To set a buffering time of 1 second,
for example, set the value to 10000000.

See Also

IWMReaderNetworkConfig Interface
IWMReaderNetworkConfig::GetBufferingTime

Previous Next

Previous Next

Return code Description

E_INVALIDARG cnsBufferingTime is larger than the maximum or smaller than
the minimum.

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig::SetConnectionBandwid
The SetConnectionBandwidth method specifies the connection bandwidth for the client.

Syntax

HRESULT SetConnectionBandwidth(
 DWORD dwConnectionBandwidth
);

Parameters

dwConnectionBandwidth

[in] Specifies the maximum bandwidth for the connection, in bits per second. Specify zero for the reader to
automatically detect the bandwidth

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

By default, the SDK automatically detects the bandwidth of the connection to the server. When auto-detection is
set, a call to GetConnectionBandwidth following the Open request returns the dynamically detected
connection bandwidth.

Setting a bandwidth by using this method is sometimes called bandwidth-throttling because it deliberately
limits the available bandwidth.

See Also

IWMReaderNetworkConfig Interface
IWMReaderNetworkConfig::GetConnectionBandwidth

Previous Next

Return code Description

E_INVALIDARG NULL or invalid argument passed in.

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig::SetEnableHTTP
The SetEnableHTTP method enables or disables HTTP.

Syntax

HRESULT SetEnableHTTP(
 BOOL fEnableHTTP
);

Parameters

fEnableHTTP

[in] Boolean value that is True if HTTP is to be enabled. Set this value to true if the reader can use HTTP when
selecting a protocol for streaming.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

This setting applies only to a protocol rollover or MMS:// URL. Even if this setting is disabled, the application
can still specify an explicit HTTP://URL and stream successfully.

See Also

IWMReaderNetworkConfig Interface
IWMReaderNetworkConfig::GetEnableHTTP

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Return code Description

E_INVALIDARG NULL or invalid argument passed in.

Previous Next

IWMReaderNetworkConfig::SetEnableMulticast
The SetEnableMulticast method enables or disables multicasting.

Syntax

HRESULT SetEnableMulticast(
 BOOL fEnableMulticast
);

Parameters

fEnableMulticast

[in] Boolean value that is True if multicasting is to be enabled.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

See Also

IWMReaderNetworkConfig Interface
IWMReaderNetworkConfig::GetEnableMulticast

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig::SetEnableTCP

Previous Next

Return code Description

E_INVALIDARG NULL or invalid argument passed in.

Previous Next

Previous Next

The SetEnableTCP method enables or disables TCP.

Syntax

HRESULT SetEnableTCP(
 BOOL fEnableTCP
);

Parameters

fEnableTCP

[in] Boolean value that is True if TCP is to be enabled. Set this to true if the SDK can use TCP-based MMS
streaming when selecting a protocol for streaming.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

This setting applies only to a protocol rollover or MMS://URL. Even if this setting is disabled, the application
can still specify an explicit MMST://URL and stream MMS via TCP successfully.

See Also

IWMReaderNetworkConfig Interface
IWMReaderNetworkConfig::GetEnableTCP
IWMReaderNetworkConfig::GetEnableUDP
IWMReaderNetworkConfig::SetEnableUDP

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig::SetEnableUDP
The SetEnableUDP method enables or disables UDP.

Return code Description

E_INVALIDARG NULL or invalid argument passed in.

Previous Next

Previous Next

Syntax

HRESULT SetEnableUDP(
 BOOL fEnableUDP
);

Parameters

fEnableUDP

[in] Boolean value that is True if UDP is to be enabled. Set this to true if the reader can use UDP-based MMS
streaming when selecting a protocol for streaming.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

This setting applies only to a protocol rollover or MMS://URL. Even if this setting is disabled, the application
can still specify an explicit MMSU://URL and stream MMS via TCP successfully.

For more information, see the Remarks section of IWMReaderNetworkConfig::ResetProtocolRollover.

See Also

IWMReaderNetworkConfig Interface
IWMReaderNetworkConfig::GetEnableTCP
IWMReaderNetworkConfig::GetEnableUDP
IWMReaderNetworkConfig::SetEnableTCP

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig::SetForceRerunAutoPro
The SetForceRerunAutoProxyDetection method enables or disables forced rerun detection.

Return code Description

E_INVALIDARG NULL or invalid argument passed in.

Previous Next

Previous Next

Syntax

HRESULT SetForceRerunAutoProxyDetection(
 BOOL fForceRerunDetection
);

Parameters

fForceRerunDetection

[in] Boolean value that is True if forced rerun detection is to be enabled.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

Forced rerun detection indicates that Web Proxy Auto-Detection mechanisms must be invoked before the next
streaming connection is established.

Setting fForceRerunDetection to True applies to all protocols when the auto setting has been specified by the
SetProxySettings method.

See Also

IWMReaderNetworkConfig Interface
IWMReaderNetworkConfig::GetForceRerunAutoProxyDetection

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig::SetProxyBypassForLoc
The SetProxyBypassForLocal method specifies the configuration setting for bypassing the proxy for local
hosts.

Return code Description

E_INVALIDARG NULL or invalid argument passed in.

Previous Next

Previous Next

Syntax

HRESULT SetProxyBypassForLocal(
 LPCWSTR pwszProtocol,
 BOOL fBypassForLocal
);

Parameters

pwszProtocol

[in] Pointer to a wide-character null-terminated string containing the protocol.

fBypassForLocal

[in] Boolean value that is True if bypassing the proxy for local hosts is to be enabled (implying that the origin
server is on the local network).

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

This setting is used only when the proxy setting is WMT_PROXY_SETTING_MANUAL. If the proxy setting
is WMT_PROXY_SETTING_BROWSER, the local bypass flag setting in the browser is used instead.

See Also

IWMReaderNetworkConfig Interface
IWMReaderNetworkConfig::GetProxyBypassForLocal
IWMReaderNetworkConfig::SetProxySettings

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig::SetProxyExceptionList

Return code Description

E_INVALIDARG NULL or invalid argument passed in.

Previous Next

Previous Next

The SetProxyExceptionList method specifies the proxy exception list.

Syntax

HRESULT SetProxyExceptionList(
 LPCWSTR pwszProtocol,
 LPCWSTR pwszExceptionList
);

Parameters

pwszProtocol

[in] Pointer to a wide-character null-terminated string containing the protocol.

pwszExceptionList

[in] Pointer to a wide-character null-terminated string containing the exception list. The list must be a comma-
separated list of hosts. Exception lists are limited to 1024 wide characters.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

The exception list is a list of computers, domains, or addresses that bypass the proxy host name when the host
in the target URL matches an entry in the list.

Wildcard characters can be used in the list entries (using the * character). For example "*.com" would match all
hosts in the "com" domain while "67.*" would match all hosts in the 67 class A subnet. The exception list is
used only when the proxy setting is WMT_PROXY_SETTING_MANUAL. If the proxy setting is
WMT_PROXY_SETTING_BROWSER, then the exception list configured in the browser is used instead.

See Also

IWMReaderNetworkConfig Interface
IWMReaderNetworkConfig::GetProxyExceptionList
IWMReaderNetworkConfig::SetProxySettings

© 2000-2003 Microsoft Corporation. All rights reserved.

Return code Description

E_INVALIDARG NULL or invalid argument passed in.

Previous Next

IWMReaderNetworkConfig::SetProxyHostName
The SetProxyHostName method specifies the proxy host name.

Syntax

HRESULT SetProxyHostName(
 LPCWSTR pwszProtocol,
 LPCWSTR pwszHostName
);

Parameters

pwszProtocol

[in] Pointer to a wide-character null-terminated string containing the protocol.

pwszHostName

[in] Pointer to a wide-character null-terminated string containing the host name. Host names are limited to 1024
wide characters.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

By default, the proxy host name is NULL, and must be set if a proxy is being used.

See Also

IWMReaderNetworkConfig Interface
IWMReaderNetworkConfig::GetProxyHostName

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Return code Description

E_INVALIDARG NULL or invalid argument passed in.

Previous Next

IWMReaderNetworkConfig::SetProxyPort
The SetProxyPort method specifies the proxy port.

Syntax

HRESULT SetProxyPort(
 LPCWSTR pwszProtocol,
 DWORD dwPort
);

Parameters

pwszProtocol

[in] Pointer to a wide-character null-terminated string containing the protocol.

dwPort

[in] DWORD containing the name of the port.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

By default, the port numbers are 1755 for MMS and 80 for HTTP. The correct port number must be set if a port
is required. It is not required if the proxy setting is WMT_PROXY_SETTING_AUTO or
WMT_PROXY_SETTING_BROWSER.

See Also

IWMReaderNetworkConfig Interface
IWMReaderNetworkConfig::GetProxyPort
IWMReaderNetworkConfig::SetProxySettings

Previous Next

Return code Description

E_INVALIDARG NULL or invalid argument passed in.

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig::SetProxySettings
The SetProxySettings method specifies the proxy settings.

Syntax

HRESULT SetProxySettings(
 LPCWSTR pwszProtocol,
 WMT_PROXY_SETTINGS ProxySetting
);

Parameters

pwszProtocol

[in] Pointer to a wide-character null-terminated string containing the protocol name. Supported names are
HTTP and MMS.

ProxySetting

[in] A value from the WMT_PROXY_SETTINGS enumeration type.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

Setting the protocol to WMT_PROXY_SETTING_MANUAL causes the reader to use the proxy settings from
SetProxyHostName and SetProxyPort. Setting it to WMT_PROXY_SETTING_AUTO uses Web Proxy
Auto-Detect mechanisms to dynamically determine the appropriate proxy based on the specified URL. Setting
the protocol to WMT_PROXY_SETTING_BROWSER is valid only for HTTP URLs, and causes the reader to
use the proxy settings that are configured in the browser.

See Also

IWMReaderNetworkConfig Interface

Previous Next

Return code Description

E_INVALIDARG NULL or invalid argument passed in.

IWMReaderNetworkConfig::GetProxySettings
IWMReaderNetworkConfig::SetProxyHostName
IWMReaderNetworkConfig::SetProxyPort
WMT_PROXY_SETTINGS

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig::SetUDPPortRanges
The SetUDPPortRanges method specifies the UDP port number ranges that are used for receiving data.

Syntax

HRESULT SetUDPPortRanges(
 WM_PORT_NUMBER_RANGE* pRangeArray,
 DWORD cRanges
);

Parameters

pRangeArray

[in] Pointer to an array of WM_PORT_NUMBER_RANGE structures.

pcRanges

[in] Pointer to a count of WM_PORT_NUMBER_RANGE structures.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

If no ranges are specified by the application, port numbers are selected by the reader.

See Also

Previous Next

Previous Next

Return code Description

E_INVALIDARG NULL or invalid argument passed in.

IWMReaderNetworkConfig Interface
IWMReaderNetworkConfig::GetUDPPortRanges
WM_PORT_NUMBER_RANGE

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig2 Interface
The IWMReaderNetworkConfig2 interface provides advanced networking functionality.

An IWMReaderNetworkConfig2 interface exists for every reader object. You can obtain a pointer to an
instance of this interface by calling the QueryInterface method of any other interface of the reader object.

In addition to the methods inherited from IWMReaderNetworkConfig, the IWMReaderNetworkConfig2
interface exposes the following methods.

Previous Next

Previous Next

Method Description

GetAcceleratedStreamingDuration Retrieves the duration of accelerated streaming.

GetAutoReconnectLimit Retrieves the number of allowable automatic
reconnections.

GetEnableContentCaching Queries whether content caching is enabled.

GetEnableFastCache Queries whether Fast Cache streaming is enabled.

GetEnableResends Queries whether resending is enabled.

GetEnableThinning Queries whether thinning is enabled.

GetMaxNetPacketSize Retrieves the maximum size of packets being
delivered over a network.

SetAcceleratedStreamingDuration Sets the duration of accelerated streaming.

SetAutoReconnectLimit Sets the automatic reconnection limit.

SetEnableContentCaching Enables or disables content caching.

SetEnableFastCache Enables or disables Fast Cache streaming.

SetEnableResends Enables or disables resending.

SetEnableThinning Enables or disables thinning.

In addition to the methods of IUnknown, this interface inherits the following methods.

Method Description

AddLoggingUrl Adds the specified URL to the list of URLs to receive logging
data.

GetBufferingTime Retrieves the amount of time required by the network source to
buffer data before rendering it.

GetConnectionBandwidth Retrieves the connection bandwidth for the client.

GetEnableHTTP Ascertains whether Hypertext Transfer Protocol (HTTP) is
enabled.

GetEnableMulticast Ascertains whether multicast is enabled.

GetEnableTCP Ascertains whether TCP is enabled.

GetEnableUDP Ascertains whether UDP is enabled.

GetForceRerunAutoProxyDetection Ascertains whether forced rerun detection is enabled.

GetLoggingUrlCount Retrieves the number of URLs in the current list of logging
URLs.

GetLoggingUrl Retrieves the URL corresponding to the specified index.

GetNumProtocolsSupported Retrieves the number of supported protocols.

GetProxyBypassForLocal Retrieves the configuration setting for bypassing the proxy for
local hosts.

GetProxyExceptionList Retrieves the proxy exception list.

GetProxyHostName Retrieves the name of the host to be used as the proxy.

GetProxyPort Retrieves the port to be used as the proxy.

GetProxySettings Retrieves the current proxy settings.

GetSupportedProtocolName Retrieves a protocol name by index.

GetUDPPortRanges Retrieves the UDP port number ranges that are used for
receiving data.

ResetLoggingUrlList Clears the list of logging URLs.

ResetProtocolRollover Forces the reader object to use the normal protocol rollover
algorithm.

SetBufferingTime Specifies how long the network source buffers data before
rendering it.

SetConnectionBandwidth Specifies the connection bandwidth for the client.

SetEnableHTTP Enables or disables HTTP.

SetEnableMulticast Enables or disables multicast.

SetEnableTCP Enables or disables TCP.

For information about which interfaces can be obtained by using the QueryInterface method of this interface,
see Reader Object.

See Also

Interfaces
IWMReaderNetworkConfig Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig2::GetAcceleratedStream
The GetAcceleratedStreamingDuration method retrieves the current accelerated streaming duration. This
duration applies to the Fast Start feature of Windows Media Services, which enables content to be played
quickly without waiting for lengthy initial buffering.

Syntax

HRESULT GetAcceleratedStreamingDuration(
 QWORD* pcnsAccelDuration
);

Parameters

pcnsAccelDuration

SetEnableUDP Enables or disables UDP.

SetForceRerunAutoProxyDetection Enables or disables forced rerun detection.

SetProxyBypassForLocal Specifies the configuration setting for bypassing the proxy for
local hosts.

SetProxyExceptionList Specifies the proxy exception list.

SetProxyHostName Specifies the name of the host to be used as the proxy.

SetProxyPort Specifies the port to be used as the proxy.

SetProxySettings Specifies the proxy settings.

SetUDPPortRanges Specifies the UDP port number ranges that are used for
receiving data.

Previous Next

Previous Next

[out] Pointer to a QWORD that receives the accelerated streaming duration, in 100-nanosecond units. This is
the amount of data at the beginning of the content that is streamed at an accelerated rate. The default value is
twice the buffering duration.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

When using Fast Start, the server running Windows Media Services will send some data at the beginning of the
content at a faster rate than that specified by the bit rate of the content.

See Also

IWMReaderNetworkConfig2 Interface
IWMReaderNetworkConfig2::SetAcceleratedStreamingDuration

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig2::GetAutoReconnectLim
The GetAutoReconnectLimit method retrieves the maximum number of times the reader will attempt to
reconnect to the server in the case of an unexpected disconnection. This feature, called Fast Reconnect, applies
only to content being streamed from a server running Windows Media Services.

Syntax

HRESULT GetAutoReconnectLimit(
 DWORD* pdwAutoReconnectLimit
);

Parameters

pdwAutoReconnectLimit

Return code Description

E_INVALIDARG NULL pointer argument.

S_OK The method succeeded.

Previous Next

Previous Next

[out] Pointer to a DWORD containing the automatic reconnection limit.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

See Also

IWMReaderNetworkConfig2 Interface
IWMReaderNetworkConfig2::SetAutoReconnectLimit

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig2::GetEnableContentCac
The GetEnableContentCaching method queries whether content caching is enabled. If content caching is
enabled, streaming content can be cached locally.

Syntax

HRESULT GetEnableContentCaching(
 BOOL* pfEnableContentCaching
);

Parameters

pfEnableContentCaching

[out] Pointer to a Boolean value that is True if content caching is enabled.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Return code Description

E_INVALIDARG NULL pointer argument.

S_OK The method succeeded.

Previous Next

Previous Next

Return code Description

Remarks

This method applies only to content being streamed from a server running Windows Media Services.

See Also

IWMReaderNetworkConfig2 Interface
IWMReaderNetworkConfig2::SetEnableContentCaching

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig2::GetEnableFastCache
The GetEnableFastCache method queries whether Fast Cache streaming is enabled. Fast Cache streaming
enables network content to be streamed faster than the playback rate, if bandwidth allows.

Syntax

HRESULT GetEnableFastCache(
 BOOL* pfEnableFastCache
);

Parameters

pfEnableFastCache

[out] Pointer to a variable that receives a Boolean value. The value is True if Fast Cache streaming is enabled,
or False otherwise.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

E_INVALIDARG NULL pointer argument.

S_OK The method succeeded.

Previous Next

Previous Next

Return code Description

E_INVALIDARG NULL pointer argument.

Remarks

This feature requires content caching to be enabled as well. Fast Cache applies only to content being streamed
from a server running Windows Media Services.

See Also

Enabling Fast Cache Streaming from the Client
IWMReaderNetworkConfig2 Interface
IWMReaderNetworkConfig2::SetEnableFastCache

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig2::GetEnableResends
The GetEnableResends method ascertains whether resending is enabled.

Syntax

HRESULT GetEnableResends(
 BOOL* pfEnableResends
);

Parameters

pfEnableResends

[out] Pointer to a Boolean value that is set to True if resending is enabled.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

S_OK The method succeeded.

Previous Next

Previous Next

Return code Description

E_INVALIDARG NULL pointer argument.

S_OK The method succeeded.

Remarks

This feature is available only for content streamed from a server running Windows Media Services using either
MMSU or RTSPU protocol.

See Also

IWMReaderNetworkConfig2 Interface
IWMReaderNetworkConfig2::SetEnableResends

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig2::GetEnableThinning
The GetEnableThinning method ascertains whether Intelligent Streaming is enabled. Intelligent Streaming is
the communication between the reader and the streaming server that enables the server to change the content
sent based on available bandwidth.

Syntax

HRESULT GetEnableThinning(
 BOOL* pfEnableThinning
);

Parameters

pfEnableThinning

[out] Pointer to a variable that receives a Boolean value. The value is TRUE if thinning is enabled, or FALSE if
thinning is disabled.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

Previous Next

Previous Next

Return code Description

E_INVALIDARG NULL pointer argument.

S_OK The method succeeded.

With Intelligent Streaming enabled, the reader responds to insufficient bandwidth by requesting that the server
reduce the bit rate by using one of the following techniques. If one technique does not solve the problem, the
reader will try the next one:

If the file is encoded using multiple bit rates (MBR), the first step the reader takes to rectify insufficient
bandwidth is to request a lower bit rate version of streams.
If the file is not MBR, or if using a lower bit rate stream does not reduce the bandwidth requirements
enough, the reader requests that the server thin the video streams. This means that the server reduces the
frame rate of the video being streamed.
If thinning the video streams does not reduce the bandwidth requirements enough, the reader requests that
the server stop sending video streams.

If Intelligent Streaming is disabled by setting pfEnableThinning to FALSE, the reader will not request any
bandwidth corrections.

This feature applies only to content streaming from a server running Windows Media Services.

See Also

IWMReaderNetworkConfig2 Interface
IWMReaderNetworkConfig2::SetEnableThinning

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig2::GetMaxNetPacketSize
The GetMaxNetPacketSize method retrieves the maximum size of packets being streamed over a network.

Syntax

HRESULT GetMaxNetPacketSize(
 DWORD* pdwMaxNetPacketSize
);

Parameters

pdwMaxNetPacketSize

[out] Pointer to a DWORD containing the maximum net packet size, in bytes.

Return Values

Previous Next

Previous Next

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

See Also

IWMReaderNetworkConfig2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig2::SetAcceleratedStream
The SetAcceleratedStreamingDuration method sets the accelerated streaming duration. This duration applies
to the Fast Start feature of Windows Media Services, which enables content to be played quickly without
waiting for lengthy initial buffering.

Syntax

HRESULT SetAcceleratedStreamingDuration(
 QWORD cnsAccelDuration
);

Parameters

cnsAccelDuration

[in] Specifies the accelerated streaming duration, in 100-nanosecond units. The maximum value is
1,200,000,000. This is the amount of data at the beginning of the content that is streamed at an accelerated rate.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Return code Description

E_INVALIDARG NULL pointer argument.

S_OK The method succeeded.

Previous Next

Previous Next

Return code Description

S_OK The method succeeded.

Remarks

When using Fast Start, the server running Windows Media Services will send some data at the beginning of the
content at a faster rate than that specified by the bit rate of the content.

See Also

IWMReaderNetworkConfig2 Interface
IWMReaderNetworkConfig2::GetAcceleratedStreamingDuration

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig2::SetAutoReconnectLim
The SetAutoReconnectLimit method sets the maximum number of times the reader will attempt to reconnect
to the server in the case of an unexpected disconnection. This feature, called Fast Reconnect, applies only to
content being streamed from a server running Windows Media Services.

Syntax

HRESULT SetAutoReconnectLimit(
 DWORD dwAutoReconnectLimit
);

Parameters

dwAutoReconnectLimit

[in] Specifies the maximum number of times the reader object will attempt to reconnect. To disable automatic
reconnection, set this value to zero.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

Previous Next

Previous Next

Return code Description

S_OK The method succeeded.

The method configures the Fast Reconnect feature, which enables the reader object to reconnect to the server
automatically if it loses the connection. When possible, playback resumes at the same point in the stream. The
accuracy may depend on whether the source file is indexed. For live content, there may be a gap in the stream.

The reader only tries to reconnect if the interruption is unexpected. For example, it does not try to reconnect if
the server denies access because of an authentication failure, if the server terminates the connection because of
client inactivity, if the server administrator terminates the connection, and so forth.

This method is equivalent to setting the WMReconnect modifier in the URL. For example:

mms://MyServer/MyVideo.wmv?WMReconnect=5

See Also

IWMReaderNetworkConfig2 Interface
IWMReaderNetworkConfig2::GetAutoReconnectLimit

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig2::SetEnableContentCac
The SetEnableContentCaching method enables or disables content caching. If content caching is enabled,
content that is being streamed can be cached locally.

Syntax

HRESULT SetEnableContentCaching(
 BOOL fEnableContentCaching
);

Parameters

fEnableContentCaching

[in] Boolean value that is True to enable content caching.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Previous Next

Previous Next

Return code Description

Remarks

This method applies only to content being streamed from a server running Windows Media Services.

See Also

IWMReaderNetworkConfig2 Interface
IWMReaderNetworkConfig2::GetEnableContentCaching

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig2::SetEnableFastCache
The SetEnableFastCache method enables or disables Fast Cache streaming. Fast Cache streaming enables
network content to be streamed faster than the playback rate, if bandwidth allows.

Syntax

HRESULT SetEnableFastCache(
 BOOL fEnableFastCache
);

Parameters

fEnableFastCache

[in] Specifies whether to enable or disable Fast Cache streaming. The value True enables Fast Cache, and the
value False disables it.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

S_OK The method succeeded.

Previous Next

Previous Next

Return code Description

S_OK The method succeeded.

This method enables the reader to use Fast Cache streaming if the server also supports it. This feature is
supported only when streaming content from a server running Windows Media Services. For more information,
see Enabling Fast Cache Streaming from the Client.

Regardless of the status of Fast Cache set by this method, a user can enable this feature by adding "?
WMCache=1" to the end of the URL. However, Fast Cache cannot be activated at all unless caching is enabled
with a call to IWMReaderNetworkconfig2::SetEnableContentCaching.

See Also

IWMReaderNetworkConfig2 Interface
IWMReaderNetworkConfig2::GetEnableFastCache

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig2::SetEnableResends
The SetEnableResends method enables or disables resends.

Syntax

HRESULT SetEnableResends(
 BOOL fEnableResends
);

Parameters

fEnableResends

[in] Pointer to a Boolean value that is True to enable resends.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

Previous Next

Previous Next

Return code Description

S_OK The method succeeded.

This feature is available only for content streamed from a server running Windows Media Services using either
MMSU or RTSPU protocol.

See Also

IWMReaderNetworkConfig2 Interface
IWMReaderNetworkConfig2::GetEnableResends

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderNetworkConfig2::SetEnableThinning
The SetEnableThinning method enables or disables Intelligent Streaming. Intelligent Streaming is the
communication between the reader and the streaming server that enables the server to change the content sent
based on available bandwidth.

Syntax

HRESULT SetEnableThinning(
 BOOL fEnableThinning
);

Parameters

fEnableThinning

[in] Specify True to enable thinning, or False to disable thinning.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

With Intelligent Streaming enabled, the reader responds to insufficient bandwidth by requesting that the server
reduce the bit rate by using one of the following techniques. If one technique does not solve the problem, the
reader will try the next one:

Previous Next

Previous Next

Return code Description

S_OK The method succeeded.

If the file is encoded using multiple bit rates (MBR), the first step the reader takes to rectify insufficient
bandwidth is to request a lower bit rate version of streams.
If the file is not MBR, or if using a lower bit rate stream does not reduce the bandwidth requirements
enough, the reader requests that the server thin the video streams. This means that the server reduces the
frame rate of the video being streamed.
If thinning the video streams does not reduce the bandwidth requirements enough, the reader requests that
the server stop sending video streams.

If Intelligent Streaming is disabled by setting pfEnableThinning to FALSE, the reader will not request any
bandwidth corrections.

This feature applies only to content streaming from a server running Windows Media Services.

This method is equivalent to specifying the WMThinning modifier in the URL. The modifier WMThinning=1
enables thinning, while WMThinning=0 disables it. For example:

mms://MyServer/MyVideo.wmv?WMThinning=1

Using the WMThinning URL modifier will override the setting specified with this method.

See Also

IWMReaderNetworkConfig2 Interface
IWMReaderNetworkConfig2::GetEnableThinning

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderStreamClock Interface
The IWMReaderStreamClock interface provides access to the clock used by the reader.

This interface exists for every reader object. You can obtain a pointer to an instance of this interface by calling
the QueryInterface method of any other interface of the reader object.

In addition to the methods inherited from IUnknown, the IWMReaderStreamClock interface exposes the
following methods.

Previous Next

Previous Next

Method Description

GetTime Retrieves the current value of the stream clock.

For information about which interfaces can be obtained by using the QueryInterface method of this interface,
see Reader Object.

See Also

Interfaces
Reader Object

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderStreamClock::GetTime
The GetTime method retrieves the current value of the stream clock.

Syntax

HRESULT GetTime(
 QWORD* pcnsNow
);

Parameters

pcnsNow

[in] Pointer to the current time of the stream clock, in 100-nanosecond units.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

See Also

KillTimer Cancels a timer on the stream clock.

SetTimer Sets a timer on the stream clock.

Previous Next

Previous Next

Return code Description

E_INVALIDARG pcnsNow is NULL.

IWMReaderStreamClock Interface
IWMReaderStreamClock::SetTimer

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderStreamClock::KillTimer
The KillTimer method cancels a timer that has been set on the clock.

Syntax

HRESULT KillTimer(
 DWORD dwTimerId
);

Parameters

dwTimerId

[in] DWORD containing the timer identifier.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

IWMReaderStreamClock Interface
IWMReaderStreamClock::SetTimer

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Previous Next

IWMReaderStreamClock::SetTimer
The SetTimer method sets a timer on the clock.

Syntax

HRESULT SetTimer(
 QWORD cnsWhen,
 void *pvParam,
 DWORD* pdwTimerId
);

Parameters

cnsWhen

[in] Specifies the time at which the reader notifies the OnStatus callback, in 100-nanosecond units.

pvParam

[in] Specifies a pointer to the timer context parameters that are returned in the OnStatus callback.

pdwTimerId

[out] Pointer to a DWORD containing the timer identifier.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

All timers are automatically terminated whenever the application stops the reader. When a timer expires, the
OnStatus method is called with WMT_TIMER as the WMT_STATUS enumeration type, the parameter hr set
to S_OK, pValue set to the TimerID, and pvContext set to the pvParam pointer specified in this method.

See Also

IWMReaderStreamClock Interface
IWMReaderStreamClock::GetTime

© 2000-2003 Microsoft Corporation. All rights reserved.

Return code Description

E_INVALIDARG pdwTimerId is NULL.

E_OUTOFMEMORY Not enough available memory.

Previous Next

IWMReaderTimecode Interface
The IWMReaderTimecode interface provides access to information about SMPTE (Society of Motion Picture
and Television Engineers) time code ranges. A range of SMPTE time code is a series of samples with time
codes that are contiguous and in increasing order. An individual video stream can contain more than one range.

An IWMReaderTimecode interface exists for every reader object. You can obtain a pointer to an instance of
this interface by calling the QueryInterface method of any other interface of the reader object.

In addition to the methods inherited from IUnknown, the IWMReaderTimecode interface exposes the
following methods.

For information about which interfaces can be obtained by using the QueryInterface method of this interface,
see Reader Object.

See Also

Interfaces
Reader Object

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderTimecode::GetTimecodeRangeBounds
The GetTimecodeRangeBounds method retrieves the starting and ending time codes for a specified SMPTE
time code range.

Previous Next

Method Description

GetTimecodeRangeBounds Retrieves the starting and ending time codes for a
specified SMPTE time code range.

GetTimecodeRangeCount Retrieves the total number of SMPTE time code
ranges for a specified stream.

Previous Next

Previous Next

Syntax

HRESULT GetTimecodeRangeBounds(
 WORD wStreamNum,
 WORD wRangeNum,
 DWORD* pStartTimecode,
 DWORD* pEndTimecode
);

Parameters

wStreamNum

[in] WORD containing the stream number.

wRangeNum

[in] WORD containing the range number.

pStartTimecode

[out] Pointer to a DWORD containing the first time code in the range.

pEndTimecode

[out] Pointer to a DWORD containing the last time code in the range.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

See Also

IWMReaderTimecode Interface
IWMReaderTimecode::GetTimecodeRangeCount

© 2000-2003 Microsoft Corporation. All rights reserved.

Return code Description

S_OK The method succeeded.

Previous Next

Previous Next

IWMReaderTimecode::GetTimecodeRangeCount
The GetTimecodeRangeCount method retrieves the total number of SMTPE time code ranges in a specified
stream.

Syntax

HRESULT GetTimecodeRangeCount(
 WORD wStreamNum,
 WORD* pwRangeCount
);

Parameters

wStreamNum

[in] WORD containing the stream number. This stream must be indexed by time code.

pwRangeCount

[out] Pointer to a WORD containing the number of ranges. If this parameter is 0 on method return, no SMPTE
ranges exist in the stream.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

See Also

IWMReaderTimecode Interface
IWMReaderTimecode::GetTimecodeRangeBounds

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderTypeNegotiation Interface
The IWMReaderTypeNegotiation interface provides a single method that can be used to test certain changes

Return code Description

S_OK The method succeeded.

Previous Next

Previous Next

to the output properties of a stream.

An IWMReaderTypeNegotiation interface exists for every reader object. You can obtain a pointer to an
instance of this interface by calling the QueryInterface method of any other interface of the reader object.

In addition to the methods inherited from IUnknown, the IWMReaderTypeNegotiation interface exposes the
following method.

For information about which interfaces can be obtained by using the QueryInterface method of this interface,
see Reader Object.

See Also

Interfaces
IWMReader Interface
Reader Object

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMReaderTypeNegotiation::TryOutputProps
The TryOutputProps method ascertains whether certain changes to the properties of an output are possible.

Syntax

HRESULT TryOutputProps(
 DWORD dwOutputNum,
 IWMOutputMediaProps* pOutput
);

Parameters

dwOutputNum

[in] DWORD containing the output number.

pOutput

Method Description

TryOutputProps Determines whether certain changes to the properties of an
output are possible.

Previous Next

Previous Next

[in] Pointer to the IWMOutputMediaProps interface of an output media properties object.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

This method is usually used to test different output properties to find out if they are possible; for example, to
find out whether a video stream can be rendered at a resolution of 320 x 240 pixels in 16-bit color. To perform
this testing, call IWMReader::GetOutputProps to retrieve an IWMOutputMediaProps interface, and alter
properties by using that interface. Then test the modified object with the TryOutputProps method. If it returns
S_OK, the new properties would work.

See Also

IWMOutputMediaProps Interface
IWMReaderTypeNegotiation Interface
Inputs, Streams and Outputs

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMRegisterCallback Interface
The IWMRegisterCallback interface enables the application to get status messages from a sink object.

By default, the writer object does not send the application any status messages from the sink object. To get
status messages from a sink object, the application must query the sink object for the IWMRegisterCallback
interface and call the Advise method.

The file sink object, the network sink object, and the push sink object all expose this interface. To obtain a

Return code Description

E_INVALIDARG dwOutputNumber is too large.

E_UNEXPECTED Unspecified error.

NS_E_INVALID_OUTPUT_FORMAT Media type of object is not valid.

E_OUTOFMEMORY Not enough memory to complete the task.

Previous Next

Previous Next

pointer to this interface for a sink, call QueryInterface on any of these sink objects.

In addition to the methods inherited from IUnknown, the IWMRegisterCallback interface exposes the
following methods.

See Also

Interfaces
Writer File Sink Object
Writer Network Sink Object

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMRegisterCallback::Advise
The Advise method registers the application to receive status messages from the sink object.

Syntax

HRESULT Advise(
 IWMStatusCallback* pCallback,
 void* pvContext
);

Parameters

pCallback

[in] Pointer to the application's IWMStatusCallback interface. The application must implement this interface.

pvContext

[in] Generic pointer, for use by the application. This is passed to the application in calls to OnStatus.

Return Values

Method Description

Advise Registers the application to receive status messages from the
sink object.

Unadvise Unregisters the application's callback interface.

Previous Next

Previous Next

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

The sink object sends status messages to the application by calling the application's
IWMStatusCallback::OnStatus method.

When the application has finished using the sink object, use the Unadvise method to break the connection with
the sink object.

See Also

IWMRegisterCallback Interface
IWMRegisterCallback::Unadvise

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMRegisterCallback::Unadvise
The Unadvise method unregisters the application's IWMStatusCallback callback interface. Call this method
when the application has finished using the sink object. It notifies the object to stop sending status events to the
application.

Syntax

HRESULT Unadvise(
 IWMStatusCallback* pCallback,
 void* pvContext
);

Parameters

pCallback

[in] Pointer to the IWMStatusCallback interface of an object.

pvContext

[in] Generic pointer, for use by the application.

Return Values

Previous Next

Previous Next

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

IWMRegisterCallback Interface
IWMRegisterCallback::Advise

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSBufferAllocator Interface
The IWMSSBufferAllocator interface provides methods for allocating a buffer. This method is implemented
by the server object in Microsoft Windows Media Services 9 Series. For more information, see the Windows
Media Services 9 SDK documentation.

Note This interface is available only on Windows .NET Server 2003, Enterprise Edition, and Windows .NET
Server 2003, Datacenter Edition.

In addition to the methods inherited from IUnknown, the IWMSBufferAllocator interface exposes the
following methods.

See Also

Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Method Description

AllocateBuffer Initializes a buffer.

AllocatePageSizeBuffer Initializes a buffer that can be used to perform page-
aligned reads.

Previous Next

IWMSBufferAllocator::AllocateBuffer
The AllocateBuffer method initializes a buffer.

Syntax

HRESULT AllocateBuffer(
 DWORD dwMaxBufferSize,
 INSSBuffer** ppBuffer
);

Parameters

dwMaxBufferSize

[in] DWORD containing the maximum size of the buffer in bytes.

ppBuffer

[out] Address of a variable that receives a pointer to the INSSBuffer interface.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

IWMSBufferAllocator Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSBufferAllocator::AllocatePageSizeBuffer
The AllocatePageSizeBuffer method initializes a buffer that can be used to perform page-aligned reads.

Previous Next

Previous Next

Previous Next

Syntax

HRESULT AllocatePageSizeBuffer(
 DWORD dwMaxBufferSize,
 INSSBuffer** ppBuffer
);

Parameters

dwMaxBufferSize

[in] DWORD containing the size of the buffer in bytes.

ppBuffer

[out] Address of a variable that receives a pointer to the INSSBuffer interface.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

IWMSBufferAllocator Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSInternalAdminNetSource Interface
The IWMSInternalAdminNetSource interface manages cached passwords and finds proxy servers.

To obtain a pointer to an instance of this interface, call the QueryInterface method of the IDispatch interface
retrieved by INSNetSourceCreator::GetNetSourceAdminInterface.

In addition to the methods inherited from IUnknown, the IWMSInternalAdminNetSource interface exposes
the following methods.

Previous Next

Previous Next

Method Description

DeleteCredentials Removes a password from the cache.

FindProxyForURL Retrieves the DNS name and port number of a proxy

Remarks

Most of the methods of the IWMSInternalAdminNetSource interface have been updated in
IWMSInternalAdminNetSource2 and IWMSInternalAdminNetSource3. If you are developing an
application using a version of the Windows Media Format SDK that supports the later interfaces, you should
use them.

See Also

INSNetSourceCreator Interface
Interfaces
IWMSInternalAdminNetSource2 Interface
IWMSInternalAdminNetSource3 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSInternalAdminNetSource::DeleteCredentials
The DeleteCredentials method removes a password from the cache.

This method has been superseded by IWMSInternalAdminNetSource2::DeleteCredentialsEx. The methods
of IWMSInternalAdminNetSource2 are much more secure than the password caching methods in
IWMSInternalAdminNetSource and should be used if available.

Syntax

HRESULT DeleteCredentials(
 BSTR bstrRealm
);

server that should be used for the client.

GetCredentialFlags Retrieves the user's preference for password caching.

GetCredentials Retrieves a password from the cache.

SetCredentialFlags Sets the user's preference for password caching.

SetCredentials Saves a password to the cache.

ShutdownProxyContext Releases internally allocated resources used in
finding proxy servers.

Previous Next

Previous Next

Parameters

bstrRealm

[in] String containing the realm name. Realm names are supplied by servers to distinguish different levels of
access to their files. Not all servers will have realm names, in which case the DNS name is used.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

IWMSInternalAdminNetSource Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSInternalAdminNetSource::FindProxyForURL
The FindProxyForURL method finds a proxy server name and port to use for the user.

Syntax

HRESULT FindProxyForURL(
 BSTR bstrProtocol,
 BSTR bstrHost,
 BOOL* pfProxyEnabled,
 BSTR* pbstrProxyServer,
 DWORD* pdwProxyPort,
 DWORD* pdwProxyContext
);

Parameters

bstrProtocol

[in] String containing the protocol for which to find the proxy server. Typically, this is either "http" or "mms".

bstrHost

[in] String containing the DNS name or IP address of the server with which you want to communicate.
Depending upon the server, the proxy might be different.

Previous Next

Previous Next

pfProxyEnabled

[out] Pointer to a Boolean value that is True if the user has enabled a proxy that applies to the specified
protocol and host.

pbstrProxyServer

[out] Pointer to a string containing the proxy server DNS name.

pdwProxyPort

[out] Pointer to a DWORD containing the proxy port number.

pdwProxyContext

[in, out] DWORD representing the proxy server returned. You can make multiple calls to FindProxyForURL
to find all configured proxy servers. On your first call, set the context to zero. When the call returns, the context
is set to a value representing the proxy for which information was returned. On the next call, set the context to
the context value retrieved on the first call. Continue this process until the call returns S_FALSE.

This method has internal algorithms that determine how it looks for proxy servers. You can override this and
make it find the proxy server set by the client's Web browser, by setting the context to 3.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

When you have finished making calls to FindProxyForURL, you must call
IWMSInternalAdminNetSource::ShutdownProxyContext to free the internal resources used.

See Also

IWMSInternalAdminNetSource Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Return code Description

S_OK The method succeeded.

S_FALSE When calling this method multiple times to find all proxies configured,
this value is returned when there are no more configured proxy servers.

Previous Next

IWMSInternalAdminNetSource::GetCredentialFlags
The GetCredentialFlags method can be used in conjunction with
IWMSInternalAdminNetSource::SetCredentialFlags to determine whether the user wants passwords saved
as a default behavior. This method retrieves any flags previously set.

Syntax

HRESULT GetCredentialFlags(
 DWORD* lpdwFlags
);

Parameters

lpdwFlags

[out] DWORD containing credential flags. At this time, the only supported flag is 0x1, which signifies that the
user has stated a preference that passwords should be saved automatically.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

IWMSInternalAdminNetSource Interface
IWMSInternalAdminNetSource::GetCredentials
IWMSInternalAdminNetSource::SetCredentialFlags

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSInternalAdminNetSource::GetCredentials
The GetCredentials method retrieves a cached password.

Previous Next

Previous Next

Previous Next

This method has been superseded by IWMSInternalAdminNetSource3::GetCredentialsEx2. The methods of
IWMSInternalAdminNetSource3 are much more secure than the password caching methods in
IWMSInternalAdminNetSource and should be used if available.

Syntax

HRESULT GetCredentials(
 BSTR bstrRealm,
 BSTR* pbstrName,
 BSTR* pbstrPassword,
 BOOL* pfConfirmedGood
);

Parameters

bstrRealm

[in] String containing the realm name. Realm names are supplied by servers to distinguish different levels of
access to their files. Not all servers have realm names, in which case the DNS name is used.

pbstrName

[out] Pointer to a string containing the user name.

pbstrPassword

[out] Pointer to a string containing the password.

pfConfirmedGood

[out] Pointer to a Boolean value that is set to True if the password was cached after it was confirmed as correct
by the server.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

IWMSInternalAdminNetSource Interface
IWMSInternalAdminNetSource::GetCredentialFlags
IWMSInternalAdminNetSource::SetCredentials

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

IWMSInternalAdminNetSource::SetCredentialFlags
The SetCredentialFlags method is used to set the user preference for automatic password caching. When your
application prompts the user for a password, you can include a checkbox on the dialog box that the user can
select to always have passwords saved. You can then set a flag to maintain that preference.

Syntax

HRESULT SetCredentialFlags(
 DWORD dwFlags
);

Parameters

dwFlags

[in] DWORD containing the credential flags. At this time, the only supported flag is 0x1, which signifies that
the user has stated a preference that passwords should be saved automatically.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

IWMSInternalAdminNetSource Interface
IWMSInternalAdminNetSource::GetCredentialFlags
IWMSInternalAdminNetSource::SetCredentials

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSInternalAdminNetSource::SetCredentials
The SetCredentials method adds a password to the cache.

This method has been superseded by IWMSInternalAdminNetSource3::SetCredentialsEx2. The methods of
IWMSInternalAdminNetSource3 are much more secure than the password caching methods in
IWMSInternalAdminNetSource and should be used if available.

Previous Next

Previous Next

Previous Next

Syntax

HRESULT SetCredentials(
 BSTR bstrRealm,
 BSTR bstrName,
 BSTR bstrPassword,
 BOOL fPersist,
 BOOL fConfirmedGood
);

Parameters

bstrRealm

[in] String containing the realm name. Realm names are supplied by servers to distinguish different levels of
access to their files. Not all servers have realm names, in which case the DNS name should be used.

bstrName

[in] String containing the user name.

bstrPassword

[in] String containing the password.

fPersist

[in] Boolean value that is True if these credentials should be permanently saved. If you set this to False, the
credentials will be saved only for the current session.

fConfirmedGood

[in] Boolean value that is True if the server has confirmed the password as correct. You can cache the password
before receiving verification from the server, in which case you should set this to False.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

IWMSInternalAdminNetSource Interface
IWMSInternalAdminNetSource::GetCredentials
IWMSInternalAdminNetSource::SetCredentialFlags

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

IWMSInternalAdminNetSource::ShutdownProxyCo
The ShutdownProxyContext method releases the internal resources used by
IWMSInternalAdminNetSource::FindProxyForURL. To avoid memory leaks, you must call this method
after you are finished making calls to FindProxyForURL.

Syntax

HRESULT ShutdownProxyContext(
 DWORD dwProxyContext
);

Parameters

dwProxyContext

[in] DWORD containing the proxy context. Set this to the last proxy context received from
FindProxyForURL.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

IWMSInternalAdminNetSource Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSInternalAdminNetSource2 Interface
The IWMSInternalAdminNetSource2 interface provides improved methods for password caching. These
methods should be used in preference to their counterparts in IWMSInternalAdminNetSource because the
older methods are vulnerable to spoofing and are therefore not secure.

Previous Next

Previous Next

Previous Next

To obtain a pointer to an instance of this interface, call the QueryInterface method of the IDispatch method
retrieved by INSNetSourceCreator::GetNetSourceAdminInterface.

In addition to the methods inherited from IUnknown, the IWMSInternalAdminNetSource2 interface exposes
the following methods.

In addition to the methods of IUnknown, this interface inherits the following methods.

See Also

Interfaces
IWMSInternalAdminNetSource Interface
IWMSInternalAdminNetSource3 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSInternalAdminNetSource2::DeleteCredentials

Method Description

DeleteCredentialsEx Removes a password from the cache.

GetCredentialsEx Retrieves a cached password.

SetCredentialsEx Saves a password to the cache.

Method Description

DeleteCredentials Removes a password from the cache.

FindProxyForURL Retrieves the DNS name and port number of a proxy
server that should be used for the client.

GetCredentialFlags Retrieves the user's preference for password caching.

GetCredentials Retrieves a password from the cache.

SetCredentialFlags Sets the user's preference for password caching.

SetCredentials Saves a password to the cache.

ShutdownProxyContext Releases internally allocated resources used in
finding proxy servers.

Previous Next

Previous Next

The DeleteCredentialsEx method removes a password from the cache. This improved version of
IWMSInternalAdminNetSource::DeleteCredentials uses the combination of realm, URL, and proxy use to
identify the credentials. This is an improvement over using the realm by itself, which can easily be spoofed by
malicious code.

Syntax

HRESULT DeleteCredentialsEx(
 BSTR bstrRealm,
 BSTR bstrUrl,
 BOOL fProxy
);

Parameters

bstrRealm

[in] String containing the realm name. Realm names are supplied by servers to distinguish different levels of
access to their files. Not all servers will have realm names, in which case the DNS name is used.

bstrUrl

[in] String containing the URL to which the credentials apply.

fProxy

[in] Boolean value that is True if the password applies when using a proxy server to access the site specified by
bstrUrl.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

IWMSInternalAdminNetSource2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSInternalAdminNetSource2::GetCredentialsEx
The GetCredentialsEx method retrieves a cached password. This improved version of

Previous Next

Previous Next

IWMSInternalAdminNetSource::GetCredentials uses the combination of realm, URL, and proxy use to
identify the credentials. This is an improvement over using the realm by itself, which can easily be spoofed by
malicious code.

This method has been superseded by IWMSInternalAdminNetSource3::GetCredentialsEx2.

Syntax

HRESULT GetCredentialsEx(
 BSTR bstrRealm,
 BSTR bstrUrl,
 BOOL fProxy,
 NETSOURCE_URLCREDPOLICY_SETTINGS* pdwUrlPolicy,
 BSTR* pbstrName,
 BSTR* pbstrPassword,
 BOOL* pfConfirmedGood
);

Parameters

bstrRealm

[in] String containing the realm name. Realm names are supplied by servers to distinguish different levels of
access to their files. Not all servers have realm names, in which case the DNS name is used.

If fProxy is False, this realm refers to the host server. If fProxy is True, this realm refers to the proxy server.

bstrUrl

[in] String containing the URL to which the credentials apply.

fProxy

[in] Boolean value that is True if the password applies when using a proxy server to access the site specified by
bstrUrl.

pdwUrlPolicy

[out] Pointer to a DWORD containing one member of the NETSOURCE_URLCREDPOLICY_SETTINGS
enumeration type. This value is based on the user's network security settings and determines whether your
application can automatically log in to sites for the user if you have credentials cached.

pbstrName

[out] Pointer to a string containing the user name.

pbstrPassword

[out] Pointer to a string containing the password.

pfConfirmedGood

[out] Boolean value that is True if the password was cached after it was confirmed as correct by the server.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

IWMSInternalAdminNetSource2 Interface
IWMSInternalAdminNetSource2::SetCredentialsEx

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSInternalAdminNetSource2::SetCredentialsEx
The SetCredentialsEx method adds a password to the cache. This improved version of
IWMSInternalAdminNetSource::SetCredentials uses the combination of realm, URL, and proxy use to
identify the credentials. This is an improvement over using the realm by itself, which can easily be spoofed by
malicious code.

This method has been superseded by IWMSInternalAdminNetSource3::SetCredentialsEx2.

Syntax

HRESULT SetCredentialsEx(
 BSTR bstrRealm,
 BSTR bstrUrl,
 BOOL fProxy,
 BSTR bstrName,
 BSTR bstrPassword,
 BOOL fPersist,
 BOOL fConfirmedGood
);

Parameters

bstrRealm

[in] String containing the realm name. Realm names are supplied by servers to distinguish different levels of
access to their files. Not all servers have realm names, in which case the DNS name should be used.

If fProxy is False, this realm refers to the host server. If fProxy is True, this realm refers to the proxy server.

bstrUrl

Previous Next

Previous Next

[in] String containing the URL to which the credentials apply.

fProxy

[in] Boolean value that is True if the password applies when using a proxy server to access the site specified by
bstrUrl.

bstrName

[in] String containing the user name.

bstrPassword

[in] String containing the password.

fPersist

[in] Boolean value that is True if these credentials should be permanently saved. If you set this to False, the
credentials will only be persisted for the current session.

fConfirmedGood

[in] Boolean value that is True if the server has confirmed the password as correct. You can cache the password
before receiving verification from the server, in which case you should set this to False.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

IWMSInternalAdminNetSource2 Interface
IWMSInternalAdminNetSource2::GetCredentialsEx

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSInternalAdminNetSource3 Interface
The IWMSInternalAdminNetSource3 interface provides improved methods to find proxy servers.

To obtain a pointer to an instance of this interface, call the QueryInterface method of the IDispatch method

Previous Next

Previous Next

retrieved by INSNetSourceCreator::GetNetSourceAdminInterface.

In addition to the methods inherited from IWMSInternalAdminNetSource2, the
IWMSInternalAdminNetSource3 interface exposes the following methods.

In addition to the methods of IUnknown, this interface inherits the following methods.

See Also

Interfaces
IWMSInternalAdminNetSource Interface
IWMSInternalAdminNetSource2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Method Description

FindProxyForURLEx2 Retrieves the DNS name and port number of a proxy
server that should be used for the client.

GetCredentialsEx2 Retrieves a cached password.

SetCredentialsEx2 Adds a password to the cache.

ShutdownProxyContext2 Releases internally allocated resources used in
finding proxy servers.

Method Description

DeleteCredentials Removes a password from the cache.

DeleteCredentialsEx Removes a password from the cache.

FindProxyForURL Retrieves the DNS name and port number of a proxy
server that should be used for the client.

GetCredentialFlags Retrieves the user's preference for password caching.

GetCredentials Retrieves a password from the cache.

GetCredentialsEx Retrieves a cached password.

SetCredentialFlags Sets the user's preference for password caching.

SetCredentials Saves a password to the cache.

SetCredentialsEx Saves a password to the cache.

ShutdownProxyContext Releases internally allocated resources used in finding
proxy servers.

Previous Next

IWMSInternalAdminNetSource3::FindProxyForUR
The FindProxyForURLEx2 method finds a proxy server name and port to use for the user.

Syntax

HRESULT FindProxyForURLEx2(
 BSTR bstrProtocol,
 BSTR bstrHost,
 BSTR bstrUrl,
 BOOL* pfProxyEnabled,
 BSTR* pbstrProxyServer,
 DWORD* pdwProxyPort,
 QWORD* pqwProxyContext
);

Parameters

bstrProtocol

[in] String containing the protocol for which to find the proxy server. Typically, this is either "http" or "mms".

bstrHost

[in] String containing the DNS name, or IP address, of the server with which you want to communicate.
Depending upon the server, the proxy might be different.

bstrUrl

[in] String containing the full URL of the site to which you want to connect.

pfProxyEnabled

[out] Pointer to a Boolean value that is set to True if the user has enabled a proxy that applies to the specified
protocol, host, and site.

pbstrProxyServer

[out] Pointer to a string containing the proxy server DNS name.

pdwProxyPort

[out] Pointer to a DWORD containing the proxy port number.

pqwProxyContext

[in, out] QWORD representing the proxy server returned. You can make multiple calls to FindProxyForURL

Previous Next

to find all configured proxy servers. On your first call, set the context to zero. When the call returns, the context
is set to a value representing the proxy for which information was returned. On the next call, set the context to
the context value retrieved on the first call. Continue this process until the call returns S_FALSE.

This method has internal algorithms that determine how it looks for proxy servers. You can override this and
make it find the proxy server set by the client's Web browser, by setting the context to 3.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

See Also

IWMSInternalAdminNetSource3 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSInternalAdminNetSource3::GetCredentialsEx
The GetCredentialsEx2 method retrieves a cached password. This improved version of
IWMSInternalAdminNetSource2::GetCredentialsEx adds a flag (fClearTextAuthentication) that indicates
whether credentials were sent in unencrypted form over the network.

Syntax

HRESULT GetCredentialsEx2(
 BSTR bstrRealm,
 BSTR bstrUrl,
 BOOL fProxy,
 BOOL fClearTextAuthentication
 NETSOURCE_URLCREDPOLICY_SETTINGS* pdwUrlPolicy,
 BSTR* pbstrName,
 BSTR* pbstrPassword,
 BOOL* pfConfirmedGood
);

Return code Description

S_OK The method succeeded.

S_FALSE When calling this method multiple times to find all
proxies configured, this value is returned when there
are no more configured proxy servers.

Previous Next

Previous Next

Parameters

bstrRealm

[in] String containing the realm name. Realm names are supplied by servers to distinguish different levels of
access to their files. Not all servers have realm names, in which case the DNS name is used.

If fProxy is False, this realm refers to the host server. If fProxy is True, this realm refers to the proxy server.

bstrUrl

[in] String containing the URL to which the credentials apply.

fProxy

[in] Boolean value that is True if the password applies when using a proxy server to access the site specified by
bstrUrl.

fClearTextAuthentication

[in] Boolean value that is True if the cached credentials were previously sent over the network in an
unencrypted form.

pdwUrlPolicy

[out] Pointer to a DWORD containing one member of the NETSOURCE_URLCREDPOLICY_SETTINGS
enumeration type. This value is based on the user's network security settings and determines whether your
application can automatically log in to sites for the user if you have credentials cached.

pbstrName

[out] Pointer to a string containing the user name.

pbstrPassword

[out] Pointer to a string containing the password.

pfConfirmedGood

[out] Boolean value that is True if the password was cached after it was confirmed as correct by the server.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

IWMSInternalAdminNetSource3 Interface
IWMSInternalAdminNetSource3::SetCredentialsEx2

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSInternalAdminNetSource3::SetCredentialsEx2
The SetCredentialsEx2 method adds a password to the cache. This improved version of
IWMSInternalAdminNetSource2::SetCredentialsEx adds a flag (fClearTextAuthentication) that indicates
whether credentials were sent in unencrypted form over the network.

Syntax

HRESULT SetCredentialsEx2(
 BSTR bstrRealm,
 BSTR bstrUrl,
 BOOL fProxy,
 BSTR bstrName,
 BSTR bstrPassword,
 BOOL fPersist,
 BOOL fConfirmedGood
 BOOL fClearTextAuthentication
);

Parameters

bstrRealm

[in] String containing the realm name. Realm names are supplied by servers to distinguish different levels of
access to their files. Not all servers have realm names, in which case the DNS name should be used.

If fProxy is False, this realm refers to the host server. If fProxy is True, this realm refers to the proxy server.

bstrUrl

[in] String containing the URL to which the credentials apply.

fProxy

[in] Boolean value that is True if the password applies when using a proxy server to access the site specified by
bstrUrl.

bstrName

[in] String containing the user name.

bstrPassword

Previous Next

[in] String containing the password.

fPersist

[in] Boolean value that is True if these credentials should be permanently saved. If you set this to False, the
credentials will only be persisted for the current session.

fConfirmedGood

[in] Boolean value that is True if the server has confirmed the password as correct. You can cache the password
before receiving verification from the server, in which case you should set this to False.

fClearTextAuthentication

[in] Boolean value that is True if the credentials were obtained using an authentication scheme where
credentials are sent over the network in an unencrypted form (such as HTTP Basic authentication).

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

IWMSInternalAdminNetSource3 Interface
IWMSInternalAdminNetSource3::GetCredentialsEx2

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSInternalAdminNetSource3::ShutdownProxyC
The ShutdownProxyContext2 method releases the internal resources used by
IWMSInternalAdminNetSource3::FindProxyForURLEx2. To avoid memory leaks, you must call this
method after you are finished making calls to FindProxyForURLEx2.

Syntax

HRESULT ShutdownProxyContext2(
 QWORD qwProxyContext
);

Parameters

Previous Next

Previous Next

qwProxyContext

[in] QWORD containing the proxy context. Set this to the last proxy context received from
FindProxyForURLEx2.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

IWMSInternalAdminNetSource3 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMStatusCallback Interface
The IWMStatusCallback interface is implemented by the application to receive status information from
various objects.

In addition to the methods inherited from IUnknown, the IWMStatusCallback interface exposes the following
method.

Remarks

The following methods and functions associate an implementation of this interface with an object:

IWMIndexer::StartIndexing
IWMLicenseBackup::BackupLicenses
IWMLicenseRestore::RestoreLicenses
IWMReader::Open
IWMRegisterCallback::Advise
WMCreateBackupRestorer

See Also

Previous Next

Previous Next

Method Description

OnStatus Called when status information must be communicated to the host application.
This happens routinely when an ASF file is being opened and read, and when
errors occur during reading.

Interfaces
IWMReaderCallback
IWMReaderCallbackAdvanced

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMStatusCallback::OnStatus
The OnStatus method is called when status information must be communicated to the application.

Syntax

HRESULT OnStatus(
 WMT_STATUS Status,
 HRESULT hr,
 WMT_ATTR_DATATYPE dwType,
 BYTE* pValue,
 void* pvContext
);

Parameters

Status

[in] One member of the WMT_STATUS enumeration type. For a description of possible WMT_STATUS
values, see the tables in the Remarks section.

hr

[in] HRESULT error code. If this indicates failure, you should not process the status as normal, as some error
has occurred. Use if (FAILED(hr)) to check for a failed value.

dwType

[in] Member of the WMT_ATTR_DATATYPE enumeration type. This value specifies the type of data in the
buffer at pValue.

pValue

[in] Pointer to a byte array containing the value. The contents of this array depend on the value of Status and
the value of dwType.

Previous Next

Previous Next

pvContext

[in] Generic pointer provided by the application, for its own use. This pointer matches the context pointer given
to the IWMReader::Open, IWMIndexer::StartIndexing, and other methods. The SDK makes no
assumptions about the use of this pointer; it is simply provided by the application and passed back to the
application when a callback is made.

Return Values

This method is implemented by the application. It should always return S_OK.

Remarks

The contents of pParam depend on those of Status.

The following WMT_STATUS values can be passed to this method by the reader.

Member Description

WMT_ACQUIRE_LICENSE The license acquisition process is complete. If the license
acquisition is unsuccessful, an error is returned in the hr
parameter. If the license acquisition is successful, S_OK is
returned in the hr parameter, and a
WM_GET_LICENSE_DATA data structure is returned in the
pvalue parameter.

WMT_BUFFERING_START The reader has started buffering data.

WMT_BUFFERING_STOP The reader has stopped buffering data.

WMT_CLOSED The reader has closed the file.

WMT_CONNECTING The reader is connecting to a server.

WMT_END_OF_FILE The reader has reached the end of the file.

WMT_END_OF_SEGMENT When the Start method is called with a duration argument,
WMT_END_OF_SEGMENT is returned when playback has
been completed after the specified period. The argument is a
QWORD indicating duration of playback in 100-nanosecond
units.

WMT_END_OF_STREAMING The file has finished streaming.

WMT_EOF The reader has reached the end of the file.

WMT_ERROR An error occurred in reading the file.

WMT_INDIVIDUALIZE The individualization process is in progress or has completed.
This event is sent repeatedly during the individualization
process. pvalue contains a WM_INDIVIDUALIZE_STATUS
structure that contains status information about the progress of
the download.

WMT_LOCATING The reader is locating a server.

WMT_MISSING_CODEC The reader does not have the appropriate codec to decompress

The following WMT_STATUS values can be passed to the callback by the writer file sink.

The following WMT_STATUS enumeration values can be passed to the callback by the writer network sink.

The following WMT_STATUS enumeration values can be passed to the callback by the indexer.

this file.

WMT_NEEDS_INDIVIDUALIZATION The client needs a security update.

WMT_NEW_METADATA The metadata has changed for the current source.

WMT_NEW_SOURCEFLAGS There has been a change to the settings for the current source.

WMT_NO_RIGHTS The reader has tried to play back DRM version 1 content and the
computer does not have an appropriate license to play it.

WMT_NO_RIGHTS_EX The reader has tried to play back DRM version 7 content and the
computer does not have an appropriate license to play it.

WMT_OPENED The file has been opened for reading.

WMT_SAVEAS_START Starting to save the file to disk.

WMT_SAVEAS_STOP Stopped saving the file to disk.

WMT_SOURCE_SWITCH There has been a change in source file or stream.

WMT_STARTED The reader has started reading the file.

WMT_STOPPED The reader has stopped reading the file.

WMT_TIMER A timer event has occurred.

Member Description

WMT_ERROR An error occurred in writing the file.

WMT_OPENED The file has been opened for writing.

WMT_STARTED The writer has started writing the file.

WMT_STOPPED The writer has stopped writing the file.

WMT_CLOSED The writer has closed the file.

Member Description

WMT_CLIENT_CONNECT A client has connected to the broadcast. The dwType parameter
is WMT_TYPE_BINARY, and the pValue parameter points to
a WM_CLIENT_PROPERTIES structure.

WMT_CLIENT_DISCONNECT A client has disconnected from the broadcast. The dwType
parameter is WMT_TYPE_BINARY, and the pValue parameter
points to a WM_CLIENT_PROPERTIES structure.

The following WMT_STATUS enumeration values can be passed to the callback by the backup restorer.

See Also

IWMStatusCallback Interface
WMT_STATUS

© 2000-2003 Microsoft Corporation. All rights reserved.

Member Description

WMT_ERROR An error occurred in reading the file.

WMT_OPENED The file has been opened for indexing.

WMT_STARTED The indexer has started indexing the file.

WMT_STOPPED The indexer has stopped indexing the file.

WMT_CLOSED The indexer has closed the file.

WMT_INDEX_PROGRESS Indicates the progress of the current indexing operation. The
argument is a DWORD that indicates percentage completed,
ranging from 0 to 100.

Member Description

WMT_BACKUPRESTORE_BEGIN Sent when backing up or restoring licenses to indicate the
process has started.

WMT_BACKUPRESTORE_END Sent when backing up or restoring licenses to indicate the
process has completed successfully.

WMT_BACKUPRESTORE_CONNECTING Sent only when restoring licenses, to indicate the clients
credentials are being validated.

WMT_BACKUPRESTORE_DISCONNECTING Sent only when restoring licenses to indicate the clients
credentials were validated successfully.

WMT_ERROR_WITHURL Sent only when restoring licenses to indicate the client
does not have the rights to do this.

WMT_RESTRICTED_LICENSE Sent only when backing up licenses to indicate the
licenses are restricted and cannot be backed up.

Previous Next

Previous Next

IWMStreamConfig Interface
The IWMStreamConfig interface is the primary interface of a stream configuration object. It provides methods
to configure basic properties for streams to be used in a profile.

Every profile contains one or more stream configuration objects. You can get the IWMStreamConfig interface
of a stream configuration object by calling the IWMProfile::GetStream method or the
IWMProfile::GetStreamByNumber method. The difference between these two methods is that GetStream
retrieves the stream using an index ranging from zero to one less than the total stream count, and
GetStreamByNumber retrieves the stream using the assigned stream number. You can also retrieve a stream
configuration object using the IWMProfile::CreateNewStream method. All of the methods that create stream
configuration objects set a pointer to this interface.

In addition to the methods inherited from IUnknown, the IWMStreamConfig interface exposes the following
methods.

The following interfaces can be obtained by using the QueryInterface method of this interface.

Method Description

GetBitrate Retrieves the bit rate for the stream.

GetBufferWindow Retrieves the maximum latency between when a stream is
received and when it begins to be displayed.

GetConnectionName Retrieves the connection name given to the stream.

GetStreamName Retrieves the stream name.

GetStreamNumber Retrieves the stream number.

GetStreamType Retrieves the major type of the stream (audio, video, or script).

SetBitrate Specifies the bit rate for the stream.

SetBufferWindow Specifies the maximum latency between when a stream is
received and when it begins to be displayed.

SetConnectionName Specifies the connection name given to a stream.

SetStreamName Specifies the stream name.

SetStreamNumber Specifies the stream number.

Interface IID

IWMMediaProps IID_IWMMediaProps

IWMPropertyVault IID_IWMPropertyVault

IWMStreamConfig2 IID_IWMStreamConfig2

IWMStreamConfig3 IID_IWMStreamConfig3

IWMVideoMediaProps (on video streams only) IID_IWMVideoMediaProps

See Also

Interfaces
IWMInputMediaProps Interface
IWMMediaProps Interface
IWMOutputMediaProps Interface
IWMProfile Interface
IWMStreamConfig2 Interface
IWMStreamConfig3 Interface
IWMVideoMediaProps Interface
Working With Profiles

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMStreamConfig::GetBitrate
The GetBitrate method retrieves the bit rate for the stream.

Syntax

HRESULT GetBitrate(
 DWORD* pdwBitrate
);

Parameters

pdwBitrate

[out] Pointer to a DWORD containing the bit rate, in bits per second.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

See Also

Previous Next

Previous Next

Return code Description

S_OK The method succeeded.

E_POINTER The pdwbitrate parameter is NULL.

IWMStreamConfig Interface
IWMStreamConfig::SetBitrate

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMStreamConfig::GetBufferWindow
The GetBufferWindow method retrieves the maximum latency between when a stream is received and when it
begins to be displayed.

Syntax

HRESULT GetBufferWindow(
 DWORD* pmsBufferWindow
);

Parameters

pmsBufferWindow

[out] Pointer to a variable specifying the buffer window, in milliseconds.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

See Also

IWMStreamConfig Interface
IWMStreamConfig::SetBufferWindow

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Return code Description

S_OK The method succeeded.

E_POINTER The pmsBufferWindow parameter is NULL.

Previous Next

IWMStreamConfig::GetConnectionName
The GetConnectionName method retrieves the input name given to the stream.

Syntax

HRESULT GetConnectionName(
 WCHAR* pwszInputName,
 WORD* pcchInputName
);

Parameters

pwszInputName

[out] Pointer to a wide-character null-terminated string containing the input name. Pass NULL to retrieve the
length of the name.

pcchInputName

[in, out] On input, a pointer to a variable containing the length of the pwszInputName array in wide characters
(2 bytes). On output, if the method succeeds, the variable contains the length of the name, including the
terminating null character.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

You should make two calls to GetConnectionName. On the first call, pass NULL as pwszInputName. On
return, the value pointed to by pcchInputName is set to the number of wide characters, including the terminating
null character, required to hold the connection name. Then you can allocate the required amount of memory for
the string and pass a pointer to it as pwszInputName on the second call.

The connection name is not written to the header section of an ASF file. If you obtain the IWMStreamConfig

Previous Next

Return code Description

S_OK The method succeeded.

E_INVALIDARG The pcchInputName parameter is NULL.

ASF_E_BUFFERTOOSMALL The name value contained in the pcchInputName parameter is
too large for the pwszInputName array.

interface from the reader object or synchronous reader object, you cannot retrieve the original connection name.

See Also

IWMStreamConfig Interface
IWMStreamConfig::SetConnectionName

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMStreamConfig::GetStreamName
The GetStreamName method retrieves the stream name.

Syntax

HRESULT GetStreamName(
 WCHAR* pwszStreamName,
 WORD* pcchStreamName
);

Parameters

pwszStreamName

[out] Pointer to a wide-character null-terminated string containing the stream name. Pass NULL to retrieve the
length of the name.

pcchStreamName

[in, out] On input, a pointer to a variable containing the length of the pwszStreamName array in wide characters
(2 bytes). On output, if the method succeeds, the variable contains the actual length of the name, including the
terminating null character.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Previous Next

Previous Next

Return code Description

S_OK The method succeeded.

E_INVALIDARG The pcchStreamName parameter is NULL.

Remarks

You should make two calls to GetStreamName. On the first call, pass NULL as pwszStreamName. On return,
the value pointed to by pcchStreamName is set to the number of wide characters, including the terminating null
character, required to hold the stream name. Then you can allocate the required amount of memory for the
string and pass a pointer to it as pwszStreamName on the second call.

The stream name is not written to the header section of an ASF file. If you obtain the IWMStreamConfig
interface from the reader object or synchronous reader object, you cannot retrieve the original stream name.

See Also

IWMStreamConfig Interface
IWMStreamConfig::GetStreamType
IWMStreamConfig::SetStreamName

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMStreamConfig::GetStreamNumber
The GetStreamNumber method retrieves the stream number.

Syntax

HRESULT GetStreamNumber(
 WORD* pwStreamNum
);

Parameters

pwStreamNum

[out] Pointer to a WORD containing the stream number. Stream numbers must be in the range of 1 through 63.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

ASF_E_BUFFERTOOSMALL The name value contained in the pcchStreamName parameter is
too large for the pwszStreamName array.

Previous Next

Previous Next

See Also

IWMStreamConfig Interface
IWMStreamConfig::SetStreamNumber

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMStreamConfig::GetStreamType
The GetStreamType method retrieves the major type of the stream (audio, video, or script).

Syntax

HRESULT GetStreamType(
 GUID* pguidStreamType
);

Parameters

pguidStreamType

[out] Pointer to a GUID object specifying the major type of the stream.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

Return code Description

S_OK The method succeeded.

E_POINTER The pwStreamNum parameter is NULL.

Previous Next

Previous Next

Return code Description

S_OK The method succeeded.

E_POINTER The pguidStreamType parameter is NULL.

GUID_NULL The pMediaType parameter is NULL.

For a table of stream major types, see Media Types.

See Also

IWMStreamConfig Interface
IWMStreamConfig::GetStreamName

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMStreamConfig::SetBitrate
The SetBitrate method specifies the bit rate for the stream.

Syntax

HRESULT SetBitrate(
 DWORD dwBitrate
);

Parameters

dwBitrate

[in] DWORD containing the bit rate, in bits per second.

Return Values

This method always returns S_OK.

Remarks

The bit rate is the number of bits per second given to the stream in the ASF file, not including any overhead.
For compressed bit streams, such as audio or video, a higher bit rate gives higher quality.

See Also

IWMStreamConfig Interface
IWMStreamConfig::GetBitrate

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMStreamConfig::SetBufferWindow
The SetBufferWindow method specifies the maximum latency between when a stream is received and when it
begins to be displayed.

Syntax

HRESULT SetBufferWindow(
 DWORD msBufferWindow
);

Parameters

msBufferWindow

[in] Buffer window, in milliseconds.

Return Values

This method always returns S_OK.

Remarks

For high bit rate streams (typically, more than 1 megabit per second), a latency (or buffer window) of 1 second
is typical; for lower bit rate streams, a latency of approximately 3 seconds is often used.

Setting the buffer window to -1 (0xFFFFFFFF) indicates that the buffer window is unknown. In this case, the
writer selects the buffer window size.

For video streams, a larger buffer window gives higher quality.

Note A problem can arise if you create a file containing streams with widely varying buffer windows.
Playback applications created with a previous version of the Windows Media Format SDK have difficulty
rendering the data from such files properly. If you are creating files to be used with older players, you should
ensure that the buffer windows of any two streams do not vary by more than five seconds.

See Also

IWMStreamConfig Interface
IWMStreamConfig::GetBufferWindow

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMStreamConfig::SetConnectionName
The SetConnectionName method specifies a name for an input. If the profile you are creating contains multiple
bit rate mutual exclusion, each of the mutually exclusive streams must have the same connection name.

Syntax

HRESULT SetConnectionName(
 WCHAR* pwszInputName
);

Parameters

pwszInputName

[in] Pointer to a wide-character null-terminated string containing the input name. Connection names are limited
to 256 wide characters.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

This method is purely for the convenience of the developer during profile manipulation and file writing. The
name assigned using this method is not stored in the header section of ASF files created using the profile and is
therefore not available through the reader object or synchronous reader object.

See Also

IWMStreamConfig Interface
IWMStreamConfig::GetConnectionName

Previous Next

Return code Description

S_OK The method succeeded.

E_INVALIDARG The pwszInputName parameter is NULL.

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMStreamConfig::SetStreamName
The SetStreamName method assigns a name to the stream represented by the stream configuration object.

Syntax

HRESULT SetStreamName(
 WCHAR* pwszStreamName
);

Parameters

pwszStreamName

[in] Pointer to a wide-character null-terminated string containing the stream name. Stream names are limited to
256 wide characters.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

This method is purely for the convenience of the developer during profile manipulation and file writing. The
name assigned using this method is not stored in the header section of ASF files created using the profile and is
therefore not available through the reader object or synchronous reader object.

See Also

IWMStreamConfig Interface
IWMStreamConfig::GetStreamName

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Return code Description

S_OK The method succeeded.

E_INVALIDARG The pwszStreamName parameter is NULL.

Previous Next

IWMStreamConfig::SetStreamNumber
The SetStreamNumber method specifies the stream number.

Syntax

HRESULT SetStreamNumber(
 WORD wStreamNum
);

Parameters

wStreamNum

[in] WORD containing the stream number. Stream numbers must be in the range of 1 through 63.

Return Values

This method always returns S_OK.

See Also

IWMStreamConfig Interface
IWMStreamConfig::GetStreamNumber

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMStreamConfig2 Interface
The IWMStreamConfig2 interface manages the data unit extensions associated with a stream.

IWMStreamConfig2 inherits from IWMStreamConfig. To obtain a pointer to IWMStreamConfig2, call the
QueryInterface method of the IWMStreamConfig interface.

Previous Next

Previous Next

Previous Next

In addition to the methods inherited from IWMStreamConfig, the IWMStreamConfig2 interface exposes the
following methods.

In addition to the methods of IUnknown, this interface inherits the following methods.

The following interfaces can be obtained by using the QueryInterface method of this interface.

Method Description

AddDataUnitExtension Adds a data unit extension to the stream.

GetDataUnitExtension Retrieves a data unit extension from the stream.

GetDataUnitExtensionCount Retrieves a count of all the data unit extensions in the stream.

GetTransportType Retrieves the type of communication protocol.

RemoveAllDataUnitExtensions Removes all previously added data unit extensions.

SetTransportType Sets the type of communication protocol.

Method Description

GetBitrate Retrieves the bit rate for the stream.

GetBufferWindow Retrieves the maximum latency between when a stream is
received and when it begins to be displayed.

GetConnectionName Retrieves the connection name given to the stream.

GetStreamName Retrieves the stream name.

GetStreamNumber Retrieves the stream number.

GetStreamType Retrieves the major type of the stream (audio, video, or script).

SetBitrate Specifies the bit rate for the stream.

SetBufferWindow Specifies the maximum latency between when a stream is
received and when it begins to be displayed.

SetConnectionName Specifies the connection name given to a stream.

SetStreamName Specifies the stream name.

SetStreamNumber Specifies the stream number.

Interface IID

IWMMediaProps IID_IWMMediaProps

IWMPropertyVault IID_IWMPropertyVault

IWMStreamConfig IID_IWMStreamConfig

IWMStreamConfig3 IID_IWMStreamConfig3

IWMVideoMediaProps (on video streams only) IID_IWMVideoMediaProps

See Also

Interfaces
IWMStreamConfig Interface
IWMStreamConfig3 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMStreamConfig2::AddDataUnitExtension
The AddDataUnitExtension method adds a data unit extension system to the stream. You can use data unit
extension systems to attach custom data to samples in an output file.

Syntax

HRESULT AddDataUnitExtension(
 GUID guidExtensionSystemID,
 WORD cbExtensionDataSize,
 BYTE* pbExtensionSystemInfo,
 DWORD cbExtensionSystemInfo
);

Parameters

guidExtensionSystemID

[in] A GUID that identifies the data unit extension system. This can be one of the predefined GUIDs listed in
INSSBuffer3::SetProperty, or a GUID whose value is understood by a custom player application.

cbExtensionDataSize

[in] Size, in bytes, of the data unit extensions that will be attached to the packets in the stream. Set to 0xFFFF
to specify data unit extensions of variable size. Each individual data unit extension can then be set to any size
ranging from 0 to 65534.

pbExtensionSystemInfo

[in] Pointer to a byte buffer containing information about the data unit extension system. If you have no
information, you can pass NULL. When passing NULL, cbExtensionSystemInfo must be zero.

cbExtensionSystemInfo

Previous Next

Previous Next

[in] Count of bytes in the buffer at pbExtensionSystemInfo. If you have no data unit extension system
information, you can pass zero. When passing zero, pbExtensionSystemInfo must be NULL.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

Passing the GUID of an existing data unit extension system does not cause an error. The old system is destroyed
and replaced by the new one.

See Also

IWMStreamConfig2 Interface
IWMStreamConfig2::GetDataUnitExtension

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMStreamConfig2::GetDataUnitExtension
The GetDataUnitExtension method retrieves information about an existing data unit extension system.

Syntax

HRESULT GetDataUnitExtension(
 WORD wDataUnitExtensionNumber,
 GUID* pguidExtensionSystemID,
 WORD* pcbExtensionDataSize,
 BYTE* pbExtensionSystemInfo,
 DWORD* pcbExtensionSystemInfo
);

Return code Description

S_OK The method succeeded.

E_INVALIDARG cbExtensionSystemInfo specifies a non-zero value, but
pbExtensionSystemInfo is NULL.

E_OUTOFMEMORY The method cannot allocate memory to hold the new data unit
extension.

Previous Next

Previous Next

Parameters

wDataUnitExtensionNumber

[in] WORD containing the data unit extension number. This number is assigned to a data unit extension system
when it is added to the stream.

pguidExtensionSystemID

[out] Pointer to a GUID that receives the identifier of the data unit extension system.

pcbExtensionDataSize

[out] Pointer to the size, in bytes, of the data unit extensions that will be attached to the packets in the stream.

If this value is 0xFFFF, the system uses data unit extensions of variable size. Each individual data unit
extension can then be set to any size ranging from 0 to 65534.

pbExtensionSystemInfo

[out] Pointer to a byte buffer that receives information about the data unit extension system.

pcbExtensionSystemInfo

[in, out] Pointer to the size, in bytes, of the data stored at pbExtensionSystemInfo.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

To retrieve the total number of data unit extension systems associated with the stream, call
GetDataUnitExtensionCount.

See Also

IWMStreamConfig2 Interface
IWMStreamConfig2::AddDataUnitExtension

Return code Description

S_OK The method succeeded.

E_INVALIDARG pguidExtensionSystemID or pcbExtensionDataSize is NULL.

OR

wDataUnitExtensionNumber specifies an invalid data unit
extension number.

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMStreamConfig2::GetDataUnitExtensionCount
The GetDataUnitExtensionCount method retrieves the total number of data unit extension systems that have
been added to the stream.

Syntax

HRESULT GetDataUnitExtensionCount(
 WORD* pcDataUnitExtensions
);

Parameters

pcDataUnitExtensions

[out] Pointer to a WORD that receives the count of data unit extensions.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

See Also

IWMStreamConfig2 Interface
IWMStreamConfig2::GetDataUnitExtension

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Return code Description

S_OK The method succeeded.

E_INVALIDARG pcDataUnitExtensions is NULL.

Previous Next

IWMStreamConfig2::GetTransportType
The GetTransportType method retrieves the type of data communication protocol (reliable or unreliable) used
for the stream.

Syntax

HRESULT GetTransportType(
 WMT_TRANSPORT_TYPE* pnTransportType
);

Parameters

pnTransportType

[out] Pointer to a variable that receives one member of the WMT_TRANSPORT_TYPE enumeration type.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

See Also

IWMStreamConfig2 Interface
IWMStreamConfig2::SetTransportType

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMStreamConfig2::RemoveAllDataUnitExtensions

Previous Next

Return code Description

S_OK The method succeeded.

E_POINTER pnTransportType is NULL.

Previous Next

Previous Next

The RemoveAllDataUnitExtensions method removes all data unit extension systems that are associated with
the stream.

Syntax

HRESULT RemoveAllDataUnitExtensions();

Parameters

This method takes no parameters.

Return Values

The method always returns S_OK.

See Also

IWMStreamConfig2 Interface
IWMStreamConfig2::AddDataUnitExtension
IWMStreamConfig2::GetDataUnitExtension
IWMStreamConfig2::GetDataUnitExtensionCount

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMStreamConfig2::SetTransportType
The SetTransportType method sets the type of data communication protocol (reliable or unreliable) used for
the stream.

Syntax

HRESULT SetTransportType(
 WMT_TRANSPORT_TYPE nTransportType
);

Parameters

nTransportType

[in] One member of the WMT_TRANSPORT_TYPE enumeration type specifying the transport type for the
stream.

Previous Next

Previous Next

Return Values

The method always returns S_OK.

See Also

IWMStreamConfig2 Interface
IWMStreamConfig2::GetTransportType

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMStreamConfig3 Interface
The IWMStreamConfig3 interface controls language settings for a stream.

An IWMStreamConfig3 interface exists for every stream configuration object. You can obtain a pointer to an
IWMStreamConfig3 interface by calling the QueryInterface method of any other interface of the stream
configuration object.

In addition to the methods inherited from IWMStreamConfig2, the IWMStreamConfig3 interface exposes
the following methods.

In addition to the methods of IUnknown, this interface inherits the following methods.

Previous Next

Previous Next

Method Description

GetLanguage Retrieves the language setting for the stream.

SetLanguage Configures the language setting for the stream.

Method Description

AddDataUnitExtension Adds a data unit extension to the stream.

GetBitrate Retrieves the bit rate for the stream.

GetBufferWindow Retrieves the maximum latency between when a stream is
received and when it begins to be displayed.

GetConnectionName Retrieves the connection name given to the stream.

GetDataUnitExtensionCount Retrieves a count of all the data unit extensions in the stream.

The following interfaces can be obtained by using the QueryInterface method of this interface.

See Also

Interfaces
IWMStreamConfig Interface
IWMStreamConfig2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

GetDataUnitExtension Retrieves a data unit extension from the stream.

GetStreamName Retrieves the stream name.

GetStreamNumber Retrieves the stream number.

GetStreamType Retrieves the major type of the stream (audio, video, or script).

GetTransportType Retrieves the type of communication protocol.

RemoveAllDataUnitExtensions Removes all previously added data unit extensions.

SetBitrate Specifies the bit rate for the stream.

SetBufferWindow Specifies the maximum latency between when a stream is
received and when it begins to be displayed.

SetConnectionName Specifies the connection name given to a stream.

SetStreamName Specifies the stream name.

SetStreamNumber Specifies the stream number.

SetTransportType Sets the type of communication protocol.

Interface IID

IWMMediaProps IID_IWMMediaProps

IWMPropertyVault IID_IWMPropertyVault

IWMStreamConfig IID_IWMStreamConfig

IWMStreamConfig2 IID_IWMStreamConfig2

IWMVideoMediaProps (on video streams only) IID_IWMVideoMediaProps

Previous Next

Previous Next

IWMStreamConfig3::GetLanguage
The GetLanguage method retrieves the RFC1766-compliant language string for the stream.

Syntax

HRESULT GetLanguage(
 WCHAR* pwszLanguageString,
 WORD* pcchLanguageStringLength
);

Parameters

pwszLanguageString

[out] Pointer to a wide-character null-terminated string containing the language string. Pass NULL to retrieve
the size of the string, which is returned in pcchLanguageStringLength.

pcchLanguageStringLength

[in, out] Pointer to a WORD containing the size of the language string in wide characters. This size includes
the terminating null character.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

IWMStreamConfig3 Interface
IWMStreamConfig3::SetLanguage

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMStreamConfig3::SetLanguage
The SetLanguage method sets the language for a stream using an RFC1766-compliant string.

Syntax

HRESULT SetLanguage(

Previous Next

Previous Next

 LPWSTR pwszLanguageString
);

Parameters

pwszLanguageString

[in] Pointer to a wide-character null-terminated string containing the language string.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

The string passed to this method must be an RFC1766-compliant string. Use of other strings will cause
problems when streaming a file made with this profile. For a list of commonly used language strings, see
Language Strings.

See Also

IWMStreamConfig3 Interface
IWMStreamConfig3::GetLanguage

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMStreamList Interface
The IWMStreamList interface is used by mutual exclusion objects and bandwidth sharing objects to maintain
lists of streams. The IWMMutualExclusion and IWMBandwidthSharing interfaces each inherit from
IWMStreamList. These are the only uses of this interface in the SDK. You never need to deal with interface
pointers for IWMStreamList directly.

In addition to the methods inherited from IUnknown, the IWMStreamList interface exposes the following
methods.

Previous Next

Previous Next

Method Description

AddStream Adds a stream to the list.

GetStreams Retrieves an array of stream numbers that make up the list.

For information about which interfaces can be obtained by using the QueryInterface method of this interface,
see the topic for the object on which this interface is implemented.

See Also

Bandwidth Sharing Object
Interfaces
Mutual Exclusion Object

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMStreamList::AddStream
The AddStream method adds a stream to the list.

Syntax

HRESULT AddStream(
 WORD wStreamNum
);

Parameters

wStreamNum

[in] WORD containing the stream number. Stream numbers are in the range of 1 through 63.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

See Also

RemoveStream Removes a stream from the list.

Previous Next

Previous Next

Return code Descripton

S_OK The method succeeded.

E_OUTOFMEMORY There is not enough available memory.

IWMStreamList Interface
IWMStreamList::RemoveStream

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMStreamList::GetStreams
The GetStreams method retrieves an array of stream numbers that make up the list.

Syntax

HRESULT GetStreams(
 WORD* pwStreamNumArray,
 WORD* pcStreams
);

Parameters

pwStreamNumArray

[out] Pointer to a WORD array containing the stream numbers. Pass NULL to retrieve the required size of the
array.

pcStreams

[in, out] On input, a pointer to a variable containing the size of the pwStreamNumArray array. On output, if the
method succeeds, this variable contains the number of stream numbers entered into pwStreamNumArray by the
method.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

Previous Next

Previous Next

Return code Descripton

S_OK The method succeeded.

E_POINTER The pcStreams parameter is NULL.

ASF_E_BUFFERTOOSMALL The input value of pcStreams is not large enough.

You should make two calls to GetStreams. On the first call, pass NULL as pwStreamNumArray. On return, the
value pointed to by pcStreams is set to the number of stream numbers in the stream number array. Then you can
allocate the required amount of memory for the array and pass a pointer to it as pwStreamNumArray on the
second call.

Stream numbers are in the range of 1 through 63.

See Also

IWMStreamList Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMStreamList::RemoveStream
The RemoveStream method removes a stream from the list.

Syntax

HRESULT RemoveStream(
 WORD wStreamNum
);

Parameters

wStreamNum

[in] WORD containing the stream number. Stream numbers are in the range of 1 through 63.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

The RemoveStream method also removes the stream from any mutual exclusion objects that the stream

Previous Next

Previous Next

Return code Descripton

S_OK The method succeeded.

NS_E_NOMATCHING_ELEMENT The wStreamNum parameter is not valid.

belongs to.

See Also

IWMStreamList Interface
IWMStreamList::AddStream

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMStreamPrioritization Interface
The IWMStreamPrioritization interface provides methods to set and read priority records for a file.

Stream prioritization allows content creators to specify the priority of the streams in an ASF file. The streams
assigned the lowest priority will be dropped first in the case of insufficient bit rate during playback.

Only one stream prioritization object can exist for a profile. You can check to see if one is present with a call to
IWMProfile3::GetStreamPrioritization, which will retrieve a pointer to one if it exists.

You can create a new stream prioritization object with a call to
IWMProfile3::CreateNewStreamPrioritization. You will then receive a pointer to
IWMStreamPrioritization for the new object. This will erase the existing stream prioritization, if there is one.

In addition to the methods inherited from IUnknown, the IWMStreamPrioritization interface exposes the
following methods.

See Also

Interfaces
Stream Prioritization Object
IWMProfile3 Interface

Previous Next

Previous Next

Method Description

GetPriorityRecords Retrieves the list of streams and their priorities from the profile.

SetPriorityRecords Set the list of streams and their priorities for the profile.

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMStreamPrioritization::GetPriorityRecords
The GetPriorityRecords method retrieves the list of streams and their priorities from the profile.

Syntax

HRESULT GetPriorityRecords(
 WM_STREAM_PRIORITY_RECORD* pRecordArray,
 WORD* pcRecords
);

Parameters

pRecordArray

[out] Pointer to an array of WM_STREAM_PRIORITY_RECORD structures. This array will receive the
current stream priority data.

pcRecords

[in, out] Pointer to a WORD that receives the count of records.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

You should make two calls to GetPriorityRecords. On the first call, pass NULL as pRecordArray. On return,
the value of pcRecords is set to the number of prioritization records in the stream priority object. Then you can
allocate the required amount of memory for the array and pass a pointer to it as pRecordArray in the second
call.

If you pass an array as pRecordArray that does not have enough elements allocated to contain the data, an error

Previous Next

Return code Description

S_OK The method succeeded.

E_INVALIDARG pcRecords is NULL.

ASF_E_BUFFERTOOSMALL pcRecords specifies fewer records than exist in the stream
prioritization object.

code of ASF_E_BUFFERTOOSMALL is returned. When returning this error code, the method still sets the
value of pcRecords.

Records in a stream prioritization object are given in order of decreasing priority

See Also

IWMStreamPrioritization Interface
IWMStreamPrioritization::SetPriorityRecords
WM_STREAM_PRIORITY_RECORD

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMStreamPrioritization::SetPriorityRecords
The SetPriorityRecords method assigns the members of an array as the stream priority list in the stream
prioritization object.

Syntax

HRESULT SetPriorityRecords(
 WM_STREAM_PRIORITY_RECORD* pRecordArray,
 WORD cRecords
);

Parameters

pRecordArray

[in] Pointer to an array of WM_STREAM_PRIORITY_RECORD structures.

cRecords

[in] Count of records.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Previous Next

Previous Next

Return code Description

S_OK The method succeeded.

Remarks

Valid arrays contain no duplicate stream numbers. Streams are listed in the array in descending priority order.
Any stream that is designated as mandatory must occur in the array before any entries that are optional. If any
of these rules are broken, SetPriorityRecords will return E_INVALIDARG.

SetPriorityRecords overwrites an existing stream priority array if there is one. You can clear the array by
passing zero for cRecords.

This method does not verify that the streams specified are valid for the profile.

See Also

IWMStreamPrioritization Interface
IWMStreamPrioritization::GetPriorityRecords
WM_STREAM_PRIORITY_RECORD

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSyncReader Interface
The IWMSyncReader interface provides the ability to read ASF files using synchronous calls. This is in
contrast to many of the methods in IWMReader, which are called asynchronously.

You get a pointer to an IWMSyncReader interface when you create a new synchronous reader object with a
call to WMCreateSyncReader.

In addition to enabling synchronous reading, the methods of IWMSyncReader are tailored to meet the
demands of editing applications. Default playback from IWMSyncReader delivers uncompressed samples for
the default streams of all outputs. However, you can manipulate the selected streams during streaming without

E_INVALIDARG cRecords specifies a record count greater than zero, but
pRecordArray is NULL.

OR

One of the array rules has been broken (see the Remarks
section).

E_OUTOFMEMORY The method is unable to allocate the memory required to store
the array in the stream prioritization object.

Previous Next

Previous Next

having to enable manual stream selection. You can also receive compressed or uncompressed samples, though
you cannot change between them during streaming. Samples are delivered by either output number or stream
number, so you can receive uncompressed samples from mutually exclusive streams.

Many of the methods in this interface are almost identical to corresponding methods in the asynchronous reader.

Use of this interface, as well as the implementation of an IStream COM object that passes data to this object, is
demonstrated in the WMSyncReader SDK sample.

In addition to the methods inherited from IUnknown, the IWMSyncReader interface exposes the following
methods.

Method Description

Close Removes a file from the synchronous reader.

GetMaxOutputSampleSize Retrieves the maximum sample size for an output in the file.

GetMaxStreamSampleSize Retrieves the maximum sample size for a stream in the file.

GetNextSample Gets the next sample from the file.

GetOutputCount Retrieves the number of outputs in the file.

GetOutputFormat Retrieves one output format for one output in the file.

GetOutputFormatCount Retrieves the number of formats supported by an output in the
file.

GetOutputNumberForStream Retrieves the output number that corresponds to a stream in the
file.

GetOutputProps Retrieves the current properties of an output in the file.

GetOutputSetting Retrieves a setting for a particular output by name.

GetReadStreamSamples Ascertains whether a stream is configured to deliver
uncompressed samples.

GetStreamNumberForOutput Retrieves the current stream number that corresponds to an
output number in the file.

GetStreamSelected Retrieves whether or not a particular stream is selected for
sample delivery.

Open Opens a file for reading.

OpenStream Opens a stream for reading.

SetOutputProps Sets the properties of an output in the file.

SetOutputSetting Sets a named setting for an output in the file.

SetRange Sets a start time and duration for playback.

SetRangeByFrame Sets a start time and duration for playback based upon the
frame number of a frame-indexed video stream.

SetReadStreamSamples Sets a stream to deliver compressed or uncompressed samples.

For information on which interfaces can be obtained by calling the QueryInterface method of this interface,
see Synchronous Reader Object.

See Also

Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSyncReader::Close
The Close method removes a file from the synchronous reader.

Syntax

HRESULT Close();

Parameters

This method takes no parameters.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

IWMSyncReader Interface
IWMSyncReader::Open

© 2000-2003 Microsoft Corporation. All rights reserved.

SetStreamsSelected Sets the streams for which the reader will deliver samples.

Previous Next

Previous Next

Previous Next

IWMSyncReader::GetMaxOutputSampleSize
The GetMaxOutputSampleSize method retrieves the maximum sample size for a specified output of the file
open in the synchronous reader.

Syntax

HRESULT GetMaxOutputSampleSize(
 DWORD dwOutput,
 DWORD* pcbMax
);

Parameters

dwOutput

[in] DWORD containing the output number for which you want to retrieve the maximum sample size.

pcbMax

[out] Pointer to a DWORD value that receives the maximum sample size, in bytes, for the output specified in
dwOutput.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

In some scenarios, such as multiple bit rate streaming, the output encompasses several streams. The size
returned is the maximum sample size for all of the streams associated with the specified output.

Previous Next

Return code Description

S_OK The method succeeded.

E_INVALIDARG pcbMax is NULL.

OR

dwOutput specifies an invalid output number.

ASF_E_INVALIDSTATE No file is opened in the synchronous reader.

NS_E_NOT_CONFIGURED The specified output is not currently configured for playback.

E_UNEXPECTED The synchronous reader failed to initialize an internal object.

You can retrieve the maximum sample size for a specific stream by using
IWMSyncReader::GetMaxStreamSampleSize.

See Also

IWMSyncReader Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSyncReader::GetMaxStreamSampleSize
The GetMaxStreamSampleSize method retrieves the maximum sample size for a specified stream in the file
that is open in the synchronous reader.

Syntax

HRESULT GetMaxStreamSampleSize(
 WORD wStream,
 DWORD* pcbMax
);

Parameters

wStream

[in] WORD containing the stream number for which you want to retrieve the maximum sample size.

pcbMax

[out] Pointer to a DWORD value that receives the maximum sample size, in bytes, for the stream specified in
wStream.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Previous Next

Previous Next

Return code Description

S_OK The method succeeded.

E_INVALIDARG pcbMax is NULL.

Remarks

This method retrieves the maximum sample size for an individual stream. The stream may be one of several in
an output. If you are using output numbers, you should use IWMSyncReader::GetMaxOutputSampleSize to
retrieve the maximum sample size for the entire output.

See Also

IWMSyncReader Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSyncReader::GetNextSample
The GetNextSample method retrieves the next sample from the file.

Syntax

HRESULT GetNextSample(
 WORD wStreamNum,
 INSSBuffer** ppSample,
 QWORD* pcnsSampleTime,
 QWORD* pcnsDuration,
 DWORD* pdwFlags,
 DWORD* pdwOutputNum,
 WORD* pwStreamNum
);

Parameters

wStreamNum

[in] WORD containing the stream number for which you would like a sample. If you pass zero, the next
sample in the file is returned, regardless of stream number.

ppSample

OR

wStream specifies an invalid stream number.

ASF_E_INVALIDSTATE No file is open in the synchronous reader.

Previous Next

Previous Next

[out] Pointer to a buffer that receives the sample.

pcnsSampleTime

[out] Pointer to a QWORD specifying the sample time in 100-nanosecond units.

pcnsDuration

[out] Pointer to QWORD specifying the duration of the sample in 100-nanosecond units.

pdwFlags

[out] Pointer to a DWORD containing one or more of the following flags.

pdwOutputNum

[out] Pointer to a DWORD that receives the output number.

pwStreamNum

[out] Pointer to a WORD that receives the stream number.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

Flag Description

No flag set None of the conditions for the other flags applies. For example,
a delta frame in most cases would not have any flags set for it.

WM_SF_CLEANPOINT Indicates that the sample does not require any other samples to
be decompressed. All audio samples and all video samples that
are key frames are cleanpoints.

WM_SF_DISCONTINUITY The data stream has a gap in it, which could be due to a seek, a
network loss, or other reason. This can be useful extra
information for an application such as a codec or renderer. The
flag is set on the first piece of data following the gap.

WM_SF_DATALOSS Some data has been lost between the previous sample and the
sample with this flag set.

Return code Description

S_OK The method succeeded.

NS_E_NO_MORE_SAMPLES All the samples in the file have been read.

E_UNEXPECTED A problem occurred with a call within the method.

E_INVALIDARG wStreamNum specifies an invalid stream number.

Both compressed and uncompressed samples are delivered by this method, depending upon whether you have
called SetReadStreamSamples for the streams in the file. This is the only method to retrieve samples using the
synchronous reader.

To begin receiving samples from anywhere in the file other than the beginning, you must first specify a range
for playback. To specify a playback range based on presentation times, use the SetRange method. To set a
range using frame numbers, use the SetRangeByFrame method. When you have received all of the samples in
the file, or in the range if you specified one, the next call made to GetNextSample returns
NS_E_NO_MORE_SAMPLES.

The timeline is presentation time if no output setting is specified. To get early delivery for a stream, use
SetOutputSetting.

You can call GetNextSample in one of three ways:

If you pass a non-zero value as wStreamNum, you will get the next sample for the specified stream
number. In this case, you can pass NULL for both pdwOutputNum and pwStreamNum.
If you pass zero as wStreamNum, and are using output numbers, you can pass NULL for pwStreamNum.
In this case you must pass a valid address for pdwOutputNum.
If you pass zero as wStreamNum, and are not using output numbers, you can pass NULL for
pdwOutputNum. In this case you must pass a valid address for pwStreamNum.

You can also use GetNextSample to retrieve precise times for video frames when reading compressed data. For
more information, see To Retrieve Accurate Presentation Times for Compressed Samples by Frame.

See Also

INSSBuffer Interface
IWMSyncReader Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSyncReader::GetOutputCount
The GetOutputCount method retrieves the number of outputs that exist for the file open in the synchronous
reader.

Syntax

HRESULT GetOutputCount(
 DWORD* pcOutputs
);

Previous Next

Previous Next

Parameters

pcOutputs

[out] Pointer to a DWORD that receives the number of outputs in the file.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

To enumerate the outputs, call GetOutputCount to get the number of outputs, and then call GetOutputProps.

See Also

Inputs, Streams and Outputs
IWMSyncReader Interface
IWMSyncReader::GetOutputProps

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSyncReader::GetOutputFormat
The GetOutputFormat method retrieves the supported formats for a specified output media stream.

Syntax

HRESULT GetOutputFormat(
 DWORD dwOutputNumber,
 DWORD dwFormatNumber,
 IWMOutputMediaProps** ppProps
);

Return code Description

S_OK The method succeeded.

E_POINTER The pcOutputs parameter is NULL.

E_UNEXPECTED The method failed for an unspecified reason.

Previous Next

Previous Next

Parameters

dwOutputNumber

[in] DWORD containing the output number.

dwFormatNumber

[in] DWORD containing the format number.

ppProps

[out] Pointer to a pointer to an IWMOutputMediaProps interface. This object is created by a successful call
to this method.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

To enumerate the supported formats for an output media stream, call GetOutputFormatCount to get the
number of formats, and then call GetOutputFormat in succession to get the formats.

See Also

IWMSyncReader Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSyncReader::GetOutputFormatCount
The GetOutputFormatCount method is used to determine all possible format types supported by this output
on the synchronous reader.

Return code Description

S_OK The method succeeded.

E_POINTER ppProps is NULL.

E_UNEXPECTED No file is open in the synchronous reader.

Previous Next

Previous Next

Syntax

HRESULT GetOutputFormatCount(
 DWORD dwOutputNum,
 DWORD* pcFormats
);

Parameters

dwOutputNum

[in] DWORD containing the output number for which you want to determine the number of supported formats.

pcFormats

[out] Pointer to a DWORD that receives the number of supported formats.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

See Also

IWMSyncReader Interface
IWMSyncReader::GetOutputFormat

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSyncReader::GetOutputNumberForStream
The GetOutputNumberForStream method retrieves the output number that corresponds with the specified
stream.

Syntax

Return code Description

S_OK The method succeeded.

E_POINTER pcFormats is NULL.

E_UNEXPECTED There is no file loaded in the synchronous reader.

Previous Next

Previous Next

HRESULT GetOutputNumberForStream(
 WORD wStreamNum,
 DWORD* pdwOutputNum
);

Parameters

wStreamNum

[in] WORD containing the stream number for which you want to retrieve the corresponding output number.

pdwOutputNum

[out] Pointer to a DWORD that will receive the output number that corresponds to the stream number specified
in wStreamNum.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

More than one stream can be encompassed by an output, as in the case of multiple bit rate files.

See Also

IWMSyncReader Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSyncReader::GetOutputProps
The GetOutputProps method retrieves the current properties of an uncompressed output stream.

Syntax

Return code Description

S_OK The method succeeded.

NS_E_INVALID_REQUEST wStreamNum specifies an invalid stream number.

Previous Next

Previous Next

HRESULT GetOutputProps(
 DWORD dwOutputNum,
 IWMOutputMediaProps** ppOutput
);

Parameters

dwOutputNum

[in] DWORD containing the output number.

ppOutput

[out] Pointer to a pointer to an IWMOutputMediaProps interface, which is created by a successful call to this
method.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

Manipulating the object retrieved by a call to GetOutputProps has no effect on the output media stream, unless
the application also calls SetOutputProps.

See Also

IWMSyncReader Interface
IWMSyncReader::SetOutputProps

© 2000-2003 Microsoft Corporation. All rights reserved.

Return code Description

S_OK The method succeeded.

E_POINTER The ppOutput parameter is NULL, or the dwOutputNum
parameter is greater than or equal to the number of outputs.
Output numbers begin with zero.

E_UNEXPECTED The method failed for an unspecified reason.

Previous Next

Previous Next

IWMSyncReader::GetOutputSetting
The GetOutputSetting method retrieves a setting for a particular output by name.

Syntax

HRESULT GetOutputSetting(
 DWORD dwOutputNum,
 LPCWSTR pszName,
 WMT_ATTR_DATATYPE* pType,
 BYTE* pValue,
 WORD* pcbLength
);

Parameters

dwOutputNum

[in] DWORD containing the output number.

pszName

[in] Pointer to a wide-character null-terminated string containing the name of the setting for which you want
the value. For a list of global constants representing setting names, see Output Settings.

pType

[out] Pointer to a variable that receives one value from the WMT_ATTR_DATATYPE enumeration type. The
value received specifies the type of data in pValue.

pValue

[out] Pointer to a byte buffer containing the value. Pass NULL to retrieve the length of the buffer required.

pcbLength

[in, out] On input, pointer to a variable containing the length of pValue. On output, the variable contains the
number of bytes in pValue used.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Return code Description

S_OK The method succeeded.

E_INVALIDARG dwOutputNum specifies an invalid output number.

OR

pszName or pType or pcbLength is NULL.

Remarks

You should make two calls to GetOutputSetting for each setting you want to retrieve. On the first call, pass
NULL as pValue. On return, the value of pcbLength is set to the buffer size required to hold the value of the
specified setting. Then you can allocate the required amount of memory for the buffer and pass a pointer to it as
pValue on the second call.

If you pass a buffer as pValue that is not large enough to contain the data, an error code of
ASF_E_BUFFERTOOSMALL is returned. When returning this error code, the method still sets the value of
pcbLength to the correct size of the value.

See Also

IWMSyncReader Interface
IWMSyncReader::SetOutputSetting

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSyncReader::GetReadStreamSamples
The GetReadStreamSamples method ascertains whether a stream is configured to deliver compressed
samples.

Syntax

HRESULT GetReadStreamSamples(
 WORD wStreamNum,
 BOOL* pfCompressed
);

Parameters

OR

pszName specifies an invalid setting name.

E_UNEXPECTED No file is open in the synchronous reader.

ASF_E_BUFFERTOOSMALL The buffer size passed as pcbLength is not large enough to
contain the setting value.

NS_E_INVALID_REQUEST pszName specifies an unsupported setting.

Previous Next

Previous Next

wStreamNum

[in] WORD containing the stream number.

pfCompressed

[out] Pointer to a flag that receives the status of compressed delivery for the stream specified.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

To configure a stream to deliver compressed samples, call IWMSyncReader::SetReadStreamSamples.

See Also

IWMSyncReader Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSyncReader::GetStreamNumberForOutput
The GetStreamNumberForOutput method retrieves the stream number that corresponds with the specified
output.

Syntax

HRESULT GetStreamNumberForOutput(

Return code Description

S_OK The method succeeded.

E_INVALIDARG pfCompressed is NULL.

OR

wStreamNum specifies an invalid stream number.

E_UNEXPECTED No file is open in the synchronous reader.

Previous Next

Previous Next

 DWORD dwOutput,
 WORD* pwStreamNum
);

Parameters

dwOutput

[in] DWORD value specifying the output number for which you want to retrieve a stream number.

pwStreamNum

[out] Pointer to a WORD value that receives the stream number that corresponds to the output specified by
dwOutput.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

In the case of outputs that equate to mutual exclusions, only the active stream number is retrieved. If you need
to get all of the stream numbers associated with such an output, you must access the profile information for the
file.

See Also

IWMProfile Interface
IWMSyncReader Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSyncReader::GetStreamSelected
The GetStreamSelected method retrieves a flag indicating whether a particular stream is currently selected.

Return code Description

S_OK The method succeeded.

NS_E_INVALID_REQUEST dwOutput specifies an invalid output number.

Previous Next

Previous Next

Syntax

HRESULT GetStreamSelected(
 WORD wStreamNum,
 WMT_STREAM_SELECTION* pSelection
);

Parameters

wStreamNum

[in] WORD containing the stream number.

pSelection

[out] Pointer to a variable that receives one member of the WMT_STREAM_SELECTION enumeration type
on output. This value specifies the selection status for the specified stream.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

This method is identical to IWMReaderAdvanced::GetStreamSelected.

See Also

IWMSyncReader Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Return code Description

S_OK The method succeeded.

E_UNEXPECTED The method failed for an unspecified reason.

E_INVALIDARG The pSelection parameter is NULL, or the stream number is
invalid.

NS_E_INVALID_REQUEST No file is open in the synchronous reader.

Previous Next

Previous Next

IWMSyncReader::Open
The Open method opens a file for reading. Unlike IWMReader::Open, this method is a synchronous call.

Syntax

HRESULT Open(
 const WCHAR* pwszFilename
);

Parameters

pwszFilename

[in] Pointer to a wide-character null-terminated string containing the file name to open. This must be a valid
file name with an ASF file extension or an MP3 file name.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

The synchronous reader does not support streaming media. Passing a URL as pwszFilename results in an error.

See Also

IWMSyncReader Interface
IWMSyncReader::Close
IWMSyncReader::OpenStream

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSyncReader::OpenStream
The OpenStream method opens a stream for reading.

Syntax

HRESULT OpenStream(
 IStream* pStream

Previous Next

Previous Next

);

Parameters

pStream

[in] Pointer to an IStream interface.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

IWMSyncReader Interface
IWMSyncReader::Open

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSyncReader::SetOutputProps
The SetOutputProps method specifies the media properties of an uncompressed output stream.

Syntax

HRESULT SetOutputProps(
 DWORD dwOutputNum,
 IWMOutputMediaProps* pOutput
);

Parameters

dwOutputNum

[in] DWORD containing the output number.

pOutput

[in] Pointer to an IWMOutputMediaProps interface.

Return Values

Previous Next

Previous Next

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

Manipulating an object retrieved by a call to GetOutputProps has no effect on the output media stream unless
the application also calls SetOutputProps.

DirectX VA formats can be returned from GetOutputFormat, but if they are passed in to SetOutputProps,
that method will fail because DirectX VA formats cannot be specified in this way. Therefore, your code should
either examine the format before passing it to SetOutputProps, or else handle the case of that method failing
by attempting the next format enumerated from GetOutputFormat.. For example code showing how to
identify a DirectX VA format, see Enabling DirectX Video Acceleration.

You can call SetOutputProps at any time after a file has been loaded into the synchronous reader. You can
continue making calls as needed during playback.

New output properties set with this method will take effect with the next call to GetNextSample.

See Also

IWMOutputMediaProps Interface
IWMSyncReader Interface
IWMSyncReader::GetOutputProps

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSyncReader::SetOutputSetting
The SetOutputSetting method specifies a named setting for a particular output.

Syntax

HRESULT SetOutputSetting(

Return code Description

S_OK The method succeeded.

E_INVALIDARG The dwOutputNum parameter is greater than or equal to the
number of outputs. Output numbers begin with zero.

E_UNEXPECTED The method failed for an unspecified reason.

Previous Next

Previous Next

 DWORD dwOutputNum,
 LPCWSTR pszName,
 WMT_ATTR_DATATYPE Type,
 const BYTE* pValue,
 WORD cbLength
);

Parameters

dwOutputNum

[in] DWORD containing the output number.

pszName

[in] Pointer to a null-terminated string containing the name of the setting. For a list of global constants
representing setting names, see Output Settings.

Type

[in] Member of the WMT_ATTR_DATATYPE enumeration type. This value specifies the type of data in the
buffer at pValue.

pValue

[in] Pointer to a byte array containing the value of the setting. The type of data stored in this buffer is specified
by Type.

cbLength

[in] Size of pValue in bytes.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

See Also

IWMSyncReader Interface
IWMSyncReader::GetOutputSetting

Return code Description

S_OK The method succeeded.

E_INVALIDARG pszName or pValue is NULL.

OR

dwOutputNum specifies an invalid output number.

E_UNEXPECTED No file is open in the synchronous reader.

NS_E_INVALID_REQUEST pszName specifies an unsupported setting.

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSyncReader::SetRange
The SetRange method enables you to specify a start time and duration for playback by the synchronous reader.

Syntax

HRESULT SetRange(
 QWORD cnsStartTime,
 LONGLONG cnsDuration
);

Parameters

cnsStartTime

[in] Offset into the file at which to start playback. This value is measured in 100-nanosecond units.

cnsDuration

[in] Duration in 100-nanosecond units, or zero to continue playback to the end of the file.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

This method specifies a range for the whole file only. You cannot specify a range for an individual stream.

You can call SetRange at any time after a file has been loaded.

Previous Next

Previous Next

Return code Description

S_OK The method succeeded.

E_INVALIDARG The cnsDuration parameter is negative.

E_OUTOFMEMORY The method is unable to allocate memory for an internal object.

E_UNEXPECTED No file is loaded in the synchronous reader.

The start time you specify might not be the presentation time of the first sample received. The synchronous
delivers video samples starting with the key frame before the specified time.

See Also

IWMSyncReader Interface
IWMSyncReader::SetRangeByFrame

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSyncReader::SetRangeByFrame
The SetRangeByFrame method configures the synchronous reader to read a portion of the file specified by a
starting video frame number and a number of frames to read.

Syntax

HRESULT SetRangeByFrame(
 WORD wStreamNum,
 QWORD qwFrameNumber,
 LONGLONG cFramesToRead
);

Parameters

wStreamNum

[in] Stream number.

qwFrameNumber

[in] Frame number at which to begin playback. The first frame in a file is number 1.

cFramesToRead

[in] Count of frames to read. Pass 0 to continue playback to the end of the file.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Previous Next

Previous Next

Remarks

If the call is successful, all streams are synchronized to the same position based on the presentation time of the
selected frame. Subsequent calls to GetNextSample will retrieve samples for all active streams, not just the
stream specified in the call to SetRangeByFrame. If you want to receive only samples for a single video stream
by frame, you must call SetStreamsSelected and pass the desired stream number prior to calling
GetNextSample.

To use SetRangeByFrame, the file in the synchronous reader must be indexed by frame numbers. You can
configure the indexer object to index by frame numbers with a call to IWMIndexer2::Configure. Then make a
call to IWMIndexer::StartIndexing to index the file with the new settings.

When you set a range for compressed sample delivery using a starting frame number, the synchronous reader
will deliver samples starting at the first key frame before the specified frame. If you want to identify the
presentation time of a frame, use IWMSyncReader2::SetRangeByFrameEx.

Passing a negative number results in an error.

You can call SetRangeByFrame at any time after a file has been loaded in the synchronous reader.

See Also

IWMIndexer Interface
IWMSyncReader Interface
IWMSyncReader::SetRange
IWMSyncReader2::SetRangeByFrameEx

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSyncReader::SetReadStreamSamples
The SetReadStreamSamples method specifies whether samples from a stream will be delivered compressed or
uncompressed.

Syntax

Return code Description

S_OK The method succeeded.

E_INVALIDARG cFramesToRead contains a negative number.

Previous Next

Previous Next

HRESULT SetReadStreamSamples(
 WORD wStreamNum,
 BOOL fCompressed
);

Parameters

wStreamNum

[in] WORD containing the stream number.

fCompressed

[in] Boolean value that is True if samples will be compressed.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

You can call SetReadStreamSamples at any time after a file has been loaded into the synchronous reader. You
can continue making calls as needed during playback.

See Also

IWMSyncReader Interface
IWMSyncReader::GetReadStreamSamples

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSyncReader::SetStreamsSelected

Return code Description

S_OK The method succeeded.

E_UNEXPECTED No file is open in the synchronous reader.

NS_E_PROTECTED_CONTENT The stream is protected and not configured to deliver
compressed samples.

E_INVALIDARG wStreamNum specifies an invalid stream number.

Previous Next

Previous Next

The SetStreamsSelected method configures the samples to be delivered from a list of streams. Each stream can
be set to deliver all samples, no samples, or only cleanpoint samples.

Syntax

HRESULT SetStreamsSelected(
 WORD cStreamCount,
 WORD* pwStreamNumbers,
 WMT_STREAM_SELECTION* pSelections
);

Parameters

cStreamCount

[in] Count of streams listed at pwStreamNumbers.

pwStreamNumbers

[in] Pointer to an array of WORD values containing the stream numbers.

pSelections

[in] Pointer to an array of WMT_STREAM_SELECTION enumeration values. These values correspond with
the stream numbers listed at pwStreamNumbers. Each value specifies the samples to deliver for the appropriate
stream.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

You can call SetStreamsSelects at any time after a file has been loaded into the synchronous reader. You can
continue making calls as needed during playback.

This method is identical to IWMReaderAdvanced::SetStreamsSelected except that, in the synchronous
reader, stream selection is always manual. Also, because IWMSyncReader::GetNextSample includes a stream
number output, you can select as many mutually exclusive streams as you like and receive samples for them.

Return code Description

S_OK The method succeeded.

E_INVALIDARG pwStreamNumbers or pSelections is NULL.

OR

cStreamCount is zero.

NS_E_INVALID_REQUEST No file is loaded in the synchronous reader.

E_OUTOFMEMORY The method is unable to allocate memory for an internal object.

See Also

IWMSyncReader Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSyncReader2 Interface
The IWMSyncReader2 interface provides advanced features for the synchronous reader. It contains methods
for allocating samples manually and for seeking to SMPTE time codes.

An IWMSyncReader2 interface exists for every synchronous reader object. You can obtain a pointer to an
instance of this interface by calling the QueryInterface method of any other interface of the synchronous
reader object.

In addition to the methods inherited from IWMSyncReader, the IWMSyncReader2 interface exposes the
following methods.

In addition to the methods of IUnknown, this interface inherits the following methods.

Previous Next

Previous Next

Method Description

GetAllocateForOutput Retrieves an IWMReaderAllocatorEx interface for allocating
output samples.

GetAllocateForStream Retrieves an IWMReaderAllocatorEx interface for allocating
stream samples.

SetAllocateForOutput Sets an IWMReaderAllocatorEx interface for allocating
output samples.

SetAllocateForStream Sets an IWMReaderAllocatorEx interface for allocating
stream samples.

SetRangeByFrameEx Enables you to play a portion of a file specified by frame
numbers.

SetRangeByTimecode Sets a start time and duration for playback using SMPTE time
codes.

Method Description

Close Removes a file from the synchronous reader.

For information on which interfaces can be obtained by calling the QueryInterface method of this interface,
see Synchronous Reader Object.

See Also

Interfaces
IWMSyncReader Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

GetMaxOutputSampleSize Retrieves the maximum sample size for an output in the file.

GetMaxStreamSampleSize Retrieves the maximum sample size for a stream in the file.

GetNextSample Gets the next sample from the file.

GetOutputCount Retrieves the number of outputs in the file.

GetOutputFormat Retrieves one output format for one output in the file.

GetOutputFormatCount Retrieves the number of formats supported by an output in the
file.

GetOutputNumberForStream Retrieves the output number that corresponds to a stream in the
file.

GetOutputProps Retrieves the current properties of an output in the file.

GetOutputSetting Retrieves a setting for a particular output by name.

GetReadStreamSamples Ascertains whether a stream is configured to deliver
uncompressed samples.

GetStreamNumberForOutput Retrieves the current stream number that corresponds to an
output number in the file.

GetStreamSelected Retrieves whether or not a particular stream is selected for
sample delivery.

Open Opens a file for reading.

OpenStream Opens a stream for reading.

SetOutputProps Sets the properties of an output in the file.

SetOutputSetting Sets a named setting for an output in the file.

SetRange Sets a start time and duration for playback.

SetRangeByFrame Sets a start time and duration for playback based upon the
frame number of a frame-indexed video stream.

SetReadStreamSamples Sets a stream to deliver compressed or uncompressed samples.

SetStreamsSelected Sets the streams for which the reader will deliver samples.

Previous Next

IWMSyncReader2::GetAllocateForOutput
The GetAllocateForOutput method retrieves an interface for allocating output samples.

Syntax

HRESULT GetAllocateForOutput(
 DWORD dwOutputNum,
 IWMReaderAllocatorEx** ppAllocator
);

Parameters

dwOutputNum

[in] DWORD containing the output number.

ppAllocator

[out] Pointer to a pointer to an IWMReaderAllocatorEx interface.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

IWMSyncReader2 Interface
IWMSyncReader2::SetAllocateForOutput

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSyncReader2::GetAllocateForStream

Previous Next

Previous Next

Previous Next

The GetAllocateForStream method retrieves an interface for allocating stream samples.

Syntax

HRESULT GetAllocateForStream(
 WORD dwSreamNum,
 IWMReaderAllocatorEx** ppAllocator
);

Parameters

dwSreamNum

[in] DWORD containing the stream number.

ppAllocator

[out] Pointer to a pointer to an IWMReaderAllocatorEx interface.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

IWMSyncReader2 Interface
IWMSyncReader2::SetAllocateForStream

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSyncReader2::SetAllocateForOutput
The SetAllocateForOutput method sets a sample allocation callback interface for allocating output samples.
This method enables you to use your own buffers for reading samples. Once set, the synchronous reader will
call the IWMReaderAllocatorEx::AllocateForOutputEx method every time it needs a buffer to hold an
output sample.

Syntax

HRESULT SetAllocateForOutput(
 DWORD dwOutputNum,
 IWMReaderAllocatorEx* pAllocator
);

Previous Next

Previous Next

Parameters

dwOutputNum

[in] DWORD containing the output number.

pAllocator

[in] Pointer to an IWMReaderAllocatorEx interface implemented in your application.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

Allocating Buffers for File Reading
IWMSyncReader2 Interface
IWMSyncReader2::GetAllocateForOutput

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSyncReader2::SetAllocateForStream
The SetAllocateForStream method sets a sample allocation callback interface for allocating stream samples.
This method enables you to use your own buffers for reading samples. Once set, the synchronous reader will
call the IWMReaderAllocatorEx::AllocateForStreamEx method every time it needs a buffer to hold a stream
sample.

Syntax

HRESULT SetAllocateForStream(
 WORD wStreamNum,
 IWMReaderAllocatorEx* pAllocator
);

Parameters

wStreamNum

[in] WORD containing the stream number.

Previous Next

Previous Next

pAllocator

[in] Pointer to an IWMReaderAllocatorEx interface implemented in your application.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

See Also

Allocating Buffers for File Reading
IWMSyncReader2 Interface
IWMSyncReader2::GetAllocateForStream

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSyncReader2::SetRangeByFrameEx
The SetRangeByFrameEx method configures the synchronous reader to read a portion of the file specified by
a starting video frame number and a number of frames to read. This method also retrieves the presentation time
of the requested frame number.

Syntax

HRESULT SetRangeByFrameEx(
 WORD wStreamNum,
 QWORD qwFrameNumber,
 LONGLONG cFramesToRead,
 QWORD* pcnsStartTime
);

Parameters

wStreamNum

[in] Stream number.

qwFrameNumber

[in] Frame number at which to begin playback. The first frame in a file is number 1.

cFramesToRead

Previous Next

Previous Next

[in] Count of frames to read. Pass 0 to continue playback to the end of the file.

pcnsStartTime

[out] Start time in 100-nanosecond units.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

By getting the presentation time of the requested frame number, you can avoid problems caused by seeking to a
delta frame. The synchronous reader begins delivering samples at key frame boundaries. You can ignore frames
until you reach the presentation time of your target frame.

The file must be frame-indexed. If the call is successful, all streams are synchronized to the same position based
on time.

See Also

IWMSyncReader2 Interface
IWMSyncReader::SetRangeByFrame

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMSyncReader2::SetRangeByTimecode
The SetRangeByTimecode method sets a starting and ending time, based on SMPTE time codes, for playback
of a file.

Syntax

HRESULT SetRangeByTimecode(
 WORD wStreamNum,
 WMT_TIMECODE_EXTENSION_DATA* pStart,
 WMT_TIMECODE_EXTENSION_DATA* pEnd
);

Parameters

wStreamNum

Previous Next

Previous Next

[in] WORD containing the stream number.

pStart

[in] Pointer to a WMT_TIMECODE_EXTENSION_DATA structure containing the starting time code.

pEnd

[in] Pointer to a WMT_TIMECODE_EXTENSION_DATA structure containing the ending time code.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

For the method to succeed, the file must be indexed by SMPTE time code.

If the call is successful, all streams are synchronized to the same position based on presentation time.

See Also

IWMSyncReader2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMVideoMediaProps Interface
With this interface, the application can specify additional video-specific parameters not available on the
IWMMediaProps interface.

To get access to the methods of this interface, call QueryInterface on a stream configuration object. For more
information, see IWMStreamConfig Interface).

In addition to the methods inherited from IWMMediaProps, the IWMVideoMediaProps interface exposes the
following methods.

Previous Next

Previous Next

Method Description

GetMaxKeyFrameSpacing Retrieves the maximum interval between key frames.

The following interfaces can be obtained by using the QueryInterface method of this interface.

See Also

Interfaces

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMVideoMediaProps::GetMaxKeyFrameSpacing
The GetMaxKeyFrameSpacing method retrieves the maximum interval between key frames.

Syntax

HRESULT GetMaxKeyFrameSpacing(
 LONGLONG* pllTime
);

Parameters

pllTime

[out] Pointer to a variable that receives the interval in 100-nanosecond units.

Return Values

GetQuality Retrieves the quality setting for the video stream.

SetMaxKeyFrameSpacing Specifies the maximum interval between key frames.

SetQuality Specifies the quality setting for the video stream.

Interface IID

IWMMediaProps IID_IWMMediaProps

IWMPropertyVault IID_IWMPropertyVault

IWMStreamConfig IID_IWMStreamConfig

IWMStreamConfig2 IID_IWMStreamConfig2

IWMStreamConfig3 IID_IWMStreamConfig3

Previous Next

Previous Next

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

This method retrieves the value set by SetMaxKeyFrameSpacing, or the default value for the key frame
spacing, during the encoding process only. If called for a file that is open in the reader, the method always
returns zero.

For more information, see the Remarks for SetMaxKeyFrameSpacing.

See Also

IWMVideoMediaProps Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMVideoMediaProps::GetQuality
The GetQuality method retrieves the quality setting for the video stream.

Syntax

HRESULT GetQuality(
 DWORD* pdwQuality
);

Parameters

pdwQuality

[out] Pointer to a DWORD containing the quality setting.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Return code Description

E_POINTER The pllTime parameter is NULL.

Previous Next

Previous Next

Remarks

For more information, see the Remarks for SetQuality.

See Also

IWMVideoMediaProps Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMVideoMediaProps::SetMaxKeyFrameSpacing
The SetMaxKeyFrameSpacing method specifies the maximum interval between key frames.

Syntax

HRESULT SetMaxKeyFrameSpacing(
 LONGLONG llTime
);

Parameters

llTime

[in] Maximum key-frame spacing in 100-nanosecond units.

Return Values

This method always returns S_OK.

Remarks

A key frame is a video frame that can be rendered without any information being required from any previous
frame. A delta frame is a frame that is dependent on a previous frame. The application can seek to a key frame,
but not to a delta frame. The SDK does not enforce any limit on the time between key frames. In general, times
longer than 30 seconds can adversely affect seek times both when the content is streamed over a network, and
when it is played back locally. For recommended values, see Configuring Video Streams for Seeking

Return code Description

E_POINTER pdwQuality is NULL.

Previous Next

Previous Next

Performance.

See Also

IWMVideoMediaProps Interface
IWMVideoMediaProps::GetMaxKeyFrameSpacing

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMVideoMediaProps::SetQuality
The SetQuality method specifies the quality setting for the video stream.

Syntax

HRESULT SetQuality(
 DWORD dwQuality
);

Parameters

dwQuality

[in] DWORD specifying the quality setting, in the range from zero (maximum frame rate) to 100 (maximum
image quality).

Return Values

This method always returns S_OK.

See Also

IWMVideoMediaProps Interface
IWMVideoMediaProps::GetQuality

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

IWMWatermarkInfo Interface
The IWMWatermarkInfo interface retrieves information about available watermarking systems.
Watermarking systems are implemented in DirectX Media Objects that are registered for use with the Windows
Media Formats SDK.

An IWMWatermarkInfo interface exists for every writer object. To obtain a pointer to this interface, call
QueryInterface on any other interface of the writer object.

In addition to the methods inherited from IUnknown, the IWMWatermarkInfo interface exposes the
following methods.

For information about which interfaces can be obtained by using the QueryInterface method of this interface,
see Writer Object.

See Also

Interfaces
Watermarking Support

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWatermarkInfo::GetWatermarkEntry
The GetWatermarkEntry method retrieves information about one available watermarking system.

Syntax

Previous Next

Method Description

GetWatermarkEntry Retrieves information about one available
watermarking system.

GetWatermarkEntryCount Retrieves the total number of watermarking systems
available.

Previous Next

Previous Next

HRESULT GetWatermarkEntry(
 WMT_WATERMARK_ENTRY_TYPE wmetType,
 DWORD dwEntryNum,
 WMT_WATERMARK_ENTRY* pEntry
);

Parameters

wmetType

[in] A value from the WMT_WATERMARK_ENTRY_TYPE enumeration type specifying the type of
watermarking system.

dwEntryNum

[in] DWORD containing the watermark entry number. This number is between zero and one less than the
number of watermark entries returned by IWMWatermarkInfo::GetWatermarkEntryCount.

pEntry

[out] Pointer to a WMT_WATERMARK_ENTRY structure containing information about the specified
watermarking system.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

No watermarking DMOs are provided with the Windows Media Format SDK. You can install third-party
DMOs to use with your application.

See Also

IWMWatermarkInfo Interface
IWMWatermarkInfo::GetWatermarkEntryCount

© 2000-2003 Microsoft Corporation. All rights reserved.

Return code Description

S_OK The method succeeded.

Previous Next

Previous Next

IWMWatermarkInfo::GetWatermarkEntryCount
The GetWatermarkEntryCount method retrieves the total number of installed watermarking systems of a
specified type. Use this method in conjunction with IWMWatermarkInfo::GetWatermarkEntry to enumerate the
installed watermarking DMOs.

Syntax

HRESULT GetWatermarkEntryCount(
 WMT_WATERMARK_ENTRY_TYPE wmetType,
 DWORD* pdwCount
);

Parameters

wmetType

[in] A value from the WMT_WATERMARK_ENTRY_TYPE enumeration type specifying the type of
watermarking system..

pdwCount

[out] Pointer to a DWORD containing the number of watermark entries.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

No watermarking DMOs are provided with the Windows Media Format SDK. You can install third-party
DMOs to use with your application.

See Also

IWMWatermarkInfo Interface
IWMWatermarkInfo::GetWatermarkEntry

© 2000-2003 Microsoft Corporation. All rights reserved.

Return code Description

S_OK The method succeeded.

Previous Next

IWMWriter Interface
The IWMWriter interface is used to write ASF files. It includes methods for allocating buffers, setting and
retrieving input properties, and setting profiles and output file names. The writer object exposes this interface.
To create the writer object, call the WMCreateWriter function.

In addition to the methods inherited from IUnknown, the IWMWriter interface exposes the following
methods.

For information about which interfaces can be obtained by using the QueryInterface method of this interface,
see Writer Object.

See Also

Interfaces
IWMWriterAdvanced Interface
IWMWriterFileSink Interface

Previous Next

Method Description

AllocateSample Allocates a buffer that the application can use to supply
samples to the writer.

BeginWriting Initializes the writing process.

EndWriting Terminates the writing process.

Flush Functionality removed. Always returns S_OK.

GetInputCount Retrieves the number of uncompressed input streams.

GetInputFormat Retrieves possible media formats for the specified input.

GetInputFormatCount Retrieves the number of format types supported by this input on
the writer.

GetInputProps Retrieves the media properties of a specified input stream.

SetInputProps Specifies the media properties of a specified input stream.

SetOutputFilename Specifies the name of the file to be written.

SetProfile Specifies the profile to use for the current writing task, using a
pointer to an IWMProfile object.

SetProfileByID Specifies the profile to use for the current writing task,
identifying the profile by its globally unique identifier.

WriteSample Passes in uncompressed data to be compressed and appended to
the Windows Media file that is being created.

IWMWriterNetworkSink Interface
IWMWriterSink Interface
Writer Object
Writing ASF Files

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriter::AllocateSample
The AllocateSample method allocates a buffer that can be used to provide samples to the writer.

Syntax

HRESULT AllocateSample(
 DWORD dwSampleSize,
 INSSBuffer** ppSample
);

Parameters

dwSampleSize

[in] DWORD containing the sample size, in bytes.

ppSample

[out] Pointer to a pointer to an INSSBuffer interface to an object containing the sample.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

You must use a new buffer for each sample passed to the writer object; reusing a buffer after passing it to call
IWMWriter::WriteSample will cause errors because the writer object does not immediately release its
references to the buffer object. You can release the interfaces of the buffer object safely any time after the

Previous Next

Previous Next

Return code Description

NS_E_INVALID_REQUEST The writer is not currently running.

WriteSample call returns.

See Also

IWMWriter Interface
To Write Samples

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriter::BeginWriting
The BeginWriting method initializes the writing process.

Syntax

HRESULT BeginWriting();

Parameters

This method takes no parameters.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Example Code

Previous Next

Previous Next

Return code Description

E_OUTOFMEMORY There is not enough available memory.

E_UNEXPECTED The method failed for an unspecified reason.

NS_E_AUDIO_CODEC_ERROR An error occurred in the audio codec.

NS_E_AUDIO_CODEC_NOT_INSTALLED The required audio codec is not available.

NS_E_INVALID_OUTPUT_FORMAT The output format is not valid.

NS_E_VIDEO_CODEC_ERROR An error occurred in the video codec.

NS_E_VIDEO_CODEC_NOT_INSTALLED The required video codec is not available.

The following example code outlines how to set up a writer and send output both to a network sink and an
archive file.

IWMWriter * pWriter = NULL;
IWMWriterAdvanced * pWriterAdvanced = NULL;
IWMWriterFileSink2 * pWriterFileSink = NULL;
IWMWriterNetworkSink2 * pWriterNetworkSink = NULL;
HRESULT hr = S_OK;
DWORD dwPort;

// Do everything in a dummy loop for easy error-handling.

do
{
 // Create the basic objects.

 hr = WMCreateWriter(&pWriter);
 if(FAILED(hr))
 {
 break;
 }

 hr = WMCreateWriterFileSink(&pWriterFileSink);
 if(FAILED(hr))
 {
 break;
 }

 hr = WMCreateWriterNetworkSink(&pWriterNetworkSink);
 if(FAILED(hr))
 {
 break;
 }

 // Retrieve a pointer to an IWMWriterAdvanced interface and add the sinks.

 hr = pWriter->QueryInterface(IID_IWMWriterAdvanced, (void **)&pWriterAdvanced);
 if(FAILED(hr))
 {
 break;
 }

 hr = pWriterAdvanced->AddSink(pWriterFileSink);
 if(FAILED(hr))
 {
 break;
 }

 hr = pWriterAdvanced->AddSink(pWriterNetworkSink);
 if(FAILED(hr))
 {
 break;
 }

 hr = pWriterFileSink->Open(L"Archive file name");
 if(FAILED(hr))
 {
 break;
 }

 // Setting the port number to zero enables the SDK to select an
 // appropriate port number.

 dwPort = 0;
 hr = pWriterNetworkSink->Open(&dwPort);
 if(FAILED(hr))
 {
 break;
 }

 hr = pWriter->BeginWriting();
 if(FAILED(hr))
 {
 break;
 }

 // Code to send data to the writer goes here (not shown).

 // Close both sinks.
 hr = pWriterFileSink->Close();
 if(FAILED(hr))
 {
 break;
 }

 hr = pWriterNetworkSink->Close();
 if(FAILED(hr))
 {
 break;
 }

 hr = pWriter-> EndWriting();
 if(FAILED(hr))
 {
 break;
 }
}
while(FALSE);

// Clean up.

if (pWriter)
{
 pWriter->Release();
}
if (pWriterAdvanced)
{
 pWriterAdvanced->Release();
}
if (pWriterFileSink)
{
 pWriterFileSink->Release();
}
if (pWriterNetworkSink)
{
 pWriterNetworkSink->Release();
}

Remarks

The BeginWriting method must be called before any samples are written. This method does not actually start
writing, but initializes the process. Between this call and the call to EndWriting there can be no configuration
changes to the writer. The EndWriting method must be called to cleanly end the writing of the samples.

The following operations can be performed only before calling BeginWriting:

Setting the profile with SetProfile
Setting the output filename (if using IWMWriter::SetOutputFilename)
Setting an attribute with IWMHeaderInfo::SetAttribute
Marker operations (IWMHeaderInfo::GetMarkerCount, GetMarker, AddMarker, and
RemoveMarker, although AddMarker is not implemented on the writer and the rest aren't useful if
there are no markers)
Calling IWMWriter::SetInputProps with a NULLIWMInputMediaProps parameter to indicate that
the input stream will be written using WriteStreamSample.
Header Script operations (IWMHeaderInfo::GetScriptCount, GetScript, AddScript, and
RemoveScript)
Codec info operations (IWMHeaderInfo2::GetCodecInfoCount and GetCodecInfo)
IWMWriterPostView::SetPostViewProps

The following methods can be called only after a profile has been set and before calling BeginWriting:

IWMHeaderInfo::GetAttributeCount
IWMHeaderInfo::GetAttributeByIndex
IWMHeaderInfo::GetAttributeByName
IWMWriterAdvanced2::SetInputSetting

Note SetInputSetting can be called after BeginWriting for g_wszDeinterlaceMode,
g_wszInitialPatternForInverseTelecine, g_wszInterlacedCoding, and g_wszJPEGCompressionQuality.

The following operations can be performed any time after a profile has been set:

Any postview operations except for SetPostViewProps

IWMWriter::SetInputProps except when passing in a NULL IWMInputMediaProps parameter.

IWMWriter::GetInputProps
IWMWriter::GetInputFormatCount
IWMWriter::GetInputFormat

The following operations can be performed only after calling BeginWriting:

Allocating samples with IWMWriter::AllocateSample
Writing samples with IWMWriter::WriteSample and IWMWriterAdvanced::WriteStreamSample
IWMWriter::EndWriting

The following operations can be performed at any time:

Adding and removing a sink with IWMWriterAdvanced::AddSink and
IWMWriterAdvanced::RemoveSink
IWMWriterAdvanced::SetLiveSource
IWMWriterAdvanced::IsRealTime
IWMWriterAdvanced::GetWriterTime (although it won't return meaningful values)
IWMWriterAdvanced::GetStatistics
IWMWriterAdvanced::SetSyncTolerance
IWMWriterAdvanced::GetSyncTolerance

See Also

IWMWriter Interface
IWMWriter::EndWriting

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriter::EndWriting
The EndWriting method performs tasks required at the end of a writing session. This method flushes the
buffers, updates indices and headers, and closes the file. You must call EndWriting when you have finished
sending samples to the writer to encode an ASF file.

Syntax

HRESULT EndWriting();

Parameters

This method takes no parameters.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

This method will not return a failure code if the disk space was used up before the encoding was completed. In
order to be notified of a file writing error, an application should implement the IWMStatusCallback method
and listen for the NS_E_FILE_WRITE event.

See Also

IWMWriter Interface
IWMWriter::BeginWriting

Previous Next

Previous Next

Return code Description

NS_E_INVALID_STATE The writer cannot currently be run.

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriter::Flush
The functionality of the Flush method has been removed, because IWMWriter::EndWriting performs the
needed checks internally. For compatibility with older applications, calls to flush will always return S_OK even
though the call does nothing.

Syntax

HRESULT Flush();

Parameters

This method takes no parameters.

Return Values

This method always returns S_OK.

See Also

IWMWriter Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriter::GetInputCount
The GetInputCount method retrieves the number of uncompressed input streams.

Syntax

HRESULT GetInputCount(

Previous Next

Previous Next

Previous Next

 DWORD* pcInputs
);

Parameters

pcInputs

[out] Pointer to a count of inputs.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

This method along with GetInputProps can be used to enumerate through the various inputs, and get the input
format of each. These are not the output Windows Media streams specified in the profile; in a multiple bit rate
scenario, one input stream can map to multiple Windows Media streams.

See Also

IWMWriter Interface
To Identify Inputs By Number

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriter::GetInputFormat
The GetInputFormat method retrieves possible media formats for the specified input.

Syntax

HRESULT GetInputFormat(
 DWORD dwInputNumber,
 DWORD dwFormatNumber,
 IWMInputMediaProps** pProps
);

Return code Description

E_INVALIDARG The pcInputs parameter is NULL.

Previous Next

Previous Next

Parameters

dwInputNumber

[in] DWORD containing the input number.

dwFormatNumber

[in] DWORD containing the format number.

pProps

[out] Pointer to a pointer to an IWMInputMediaProps interface.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

See Also

IWMWriter Interface
IWMWriter::GetInputFormatCount
To Enumerate Input Formats

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriter::GetInputFormatCount
The GetInputFormatCount method retrieves the number of media format types supported by this input on the
writer.

Syntax

HRESULT GetInputFormatCount(
 DWORD dwInputNumber,
 DWORD* pcFormats
);

Return code Description

E_INVALIDARG dwInputNumber is too large.

Previous Next

Previous Next

Parameters

dwInputNumber

[in] DWORD containing the input number.

pcFormats

[out] Pointer to a count of formats.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

See Also

IWMWriter Interface
IWMWriter::GetInputFormat
To Enumerate Input Formats

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriter::GetInputProps
The GetInputProps method retrieves the current media properties of a specified input stream.

Syntax

HRESULT GetInputProps(
 DWORD dwInputNum,
 IWMInputMediaProps** ppInput
);

Return code Description

E_INVALIDARG The pcFormats parameter is NULL.

OR

dwInputNumber is too large.

Previous Next

Previous Next

Parameters

dwInputNum

[in] DWORD containing the input index number.

ppInput

[out] Pointer to a pointer to an IWMInputMediaProps object.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

The range of indexes to use for the dwInputNum parameter can be found by calling GetInputCount.

Manipulating the IWMInputMediaProps object has no effect on the writer, unless the application calls the
SetInputProps method to configure the input.

See Also

IWMWriter Interface
To Identify Inputs By Number

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriter::SetInputProps
The SetInputProps method specifies the media properties of an input stream.

Syntax

HRESULT SetInputProps(

Return code Description

E_INVALIDARG The dwInputNum value is greater than the highest index
number.

Previous Next

Previous Next

 DWORD dwInputNum,
 IWMInputMediaProps* pInput
);

Parameters

dwInputNum

[in] DWORD containing the input number.

pInput

[in] Pointer to an IWMInputMediaProps interface. See Remarks.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

Manipulating the IWMInputMediaProps object has no effect on the writer until the application calls this
method to configure the input.

Specify NULL for pInput if the input contains compressed samples that will be written directly to the new
stream (using IWMWriterAdvanced::WriteStreamSample) without being recompressed.

See Also

Assigning Input Formats
IWMWriter Interface
IWMWriter::GetInputCount
IWMWriter::GetInputProps

© 2000-2003 Microsoft Corporation. All rights reserved.

Return code Description

E_INVALIDARG dwInputNum is greater than the highest index number.

E_OUTOFMEMORY There is not enough available memory.

E_UNEXPECTED The method failed for an unspecified reason.

Previous Next

Previous Next

IWMWriter::SetOutputFilename
The SetOutputFilename method specifies the name of the file to be written.

Syntax

HRESULT SetOutputFilename(
 const WCHAR* pwszFilename
);

Parameters

pwszFilename

[in] Pointer to a wide-character null-terminated string containing the file name.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

This method is equivalent to creating a file sink with an index of 0 and adding it through a call to
IWMWriterAdvanced::AddSink, and is provided for convenience.

You can obtain a pointer to the IWMWriterSink interface of the file sink created by this method by calling
IWMWriterAdvanced::GetSink. This is important because the writer does not deliver status messages for the
sinks associated with it. You can call QueryInterface on IWMWriterSink to obtain a pointer to the
IWMRegisterCallback, which is used to set an IWMStatusCallback::OnStatus callback method to which
the sink will deliver status messages.

See Also

IWMWriter Interface
Using File Sinks

© 2000-2003 Microsoft Corporation. All rights reserved.

Return code Description

E_UNEXPECTED The method failed for an unspecified reason.

NS_E_INVALID_STATE The writer is not in a configurable state.

Previous Next

IWMWriter::SetProfile
The SetProfile method specifies the profile to use for the current writing task.

Syntax

HRESULT SetProfile(
 IWMProfile* pProfile
);

Parameters

pProfile

[in] Pointer to an IWMProfile interface.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

Calling this method removes any previously set header attribute information.

Changes to the profile object made after this method is called do not take effect until SetProfile is called again.

The maximum number of video streams in a profile is 63, as defined by the constant
WM_MAX_VIDEO_STREAMS.

See Also

Attributes
IWMProfile Interface
IWMWriter Interface
IWMWriter::SetProfileByID
To Use Profiles with the Writer

Previous Next

Return code Description

NS_E_INVALIDPROFILE The profile contains invalid information.

NS_E_INVALID_STATE The writer is not in a configurable state.

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriter::SetProfileByID
The SetProfileByID method specifies the profile to use for the current writing task, identifying the profile by its
GUID.

Syntax

HRESULT SetProfileByID(
 REFGUID guidProfile
);

Parameters

guidProfile

[in] GUID of the profile.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

Only system profiles have IDs. Use the methods of the IWMProfileManager interface to examine system
profiles. The header file Wmsysprf.h has a list of system profiles and their IDs.

See Also

IWMProfileManager Interface
IWMWriter Interface
IWMWriter::SetProfile
To Use Profiles with the Writer

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Return code Description

E_UNEXPECTED The method failed for an unspecified reason.

Previous Next

IWMWriter::WriteSample
The WriteSample method passes in uncompressed data to be compressed and appended to the file that is being
created.

Syntax

HRESULT WriteSample(
 DWORD dwInputNum,
 QWORD cnsSampleTime,
 DWORD dwFlags,
 INSSBuffer* pSample
);

Parameters

dwInputNum

[in] DWORD containing the input number.

cnsSampleTime

[in] QWORD containing the sample time, in 100-nanosecond units.

dwFlags

[in] DWORD containing one or more of the following flags.

pSample

[in] Pointer to an INSSBuffer interface representing a sample.

Previous Next

Flag Description

No flag set None of the conditions for the other flags applies. For example, a
delta frame in most cases would not have any flags set for it.

WM_SF_CLEANPOINT Forces the sample to be written as a key frame. Setting this flag for
audio inputs will have no effect, as all audio samples are
cleanpoints.

WM_SF_DISCONTINUITY For audio inputs, this flag helps to deal with gaps that may appear
between samples. You should set this flag for the first sample after
a gap.

WM_SF_DATALOSS This flag is not used by the writer object.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

If the output stream has a time code data unit extension and there is no time code extension on the sample, this
method will fail in order not to cause problems later when the file is indexed. All other data unit extensions are
optional on the sample. That means that this method will succeed if a data unit extension has been specified for
the stream but no actual data extension is present in the sample. WriteSample will write zeros into the file for
samples that do not have extensions specified on the sample.

See Also

IWMWriter Interface
To Write Samples

© 2000-2003 Microsoft Corporation. All rights reserved.

Return code Description

E_INVALIDARG The dwInputNum value is greater than the highest index
number.

E_UNEXPECTED The method failed for an unspecified reason.

NS_E_INVALID_STATE The writer is not running.

NS_E_INVALID_DATA The sample is not valid. This can occur when an input script
stream contains a script sample that is not valid.

NS_E_INVALID_NUM_PASSES The wrong number of preprocessing passes was used for the
stream's output type.

Typically, this error will be returned if the stream configuration
requires a preprocessing pass and a sample is passed without
first configuring preprocessing. You can check for this error to
determine whether a stream requires a preprocessing pass.
Preprocessing passes are required only for bit-rate-based VBR.

NS_LATE_OPERATION The writer has received samples whose presentation times
differ by an amount greater than the maximum synchronization
tolerance. You can set the synchronization tolerance by
callingIWMWriterAdvanced::SetSyncTolerance.

NS_E_TOO_MUCH_DATA Samples from a real-time source are arriving faster than
expected. This error is returned only if
IWMWriterAdvanced::SetLiveSource has been called to
indicate a live source.

Previous Next

IWMWriterAdvanced Interface
The IWMWriterAdvanced interface provides advanced writing functionality.

This interface exists for every instance of the writer object. To obtain a pointer to this interface, call
QueryInterface on the writer object.

In addition to the methods inherited from IUnknown, the IWMWriterAdvanced interface exposes the
following methods.

For information about which interfaces can be obtained by using the QueryInterface method of this interface,
see Writer Object.

See Also

Interfaces
IWMWriter Interface
IWMWriterAdvanced2 Interface
Writer Object
Writing ASF Files

Previous Next

Method Description

AddSink Adds a writer sink.

GetSink Retrieves a writer sink object.

GetSinkCount Retrieves the number of writer sinks.

GetSyncTolerance Retrieves the amount of time during which the inputs can fall
out of synchronization before the samples are discarded.

GetStatistics Retrieves statistics about the current writing operation.

GetWriterTime Retrieves the clock time that the writer is working to.

IsRealTime Ascertains whether the writer is running in real time.

RemoveSink Removes a writer sink object.

SetLiveSource Specifies whether the source is live.

SetSyncTolerance Sets the amount of time that the inputs can fall out of
synchronization before the samples are discarded.

WriteStreamSample Writes a stream sample directly into an ASF file, bypassing the
normal compression procedures.

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterAdvanced::AddSink
The AddSink method adds a writer sink to receive writer output. The Windows Media Format SDK supports
file sinks, which create ASF files on disk; network sinks, which stream ASF content across a network; and push
sinks, which deliver ASF content to other media servers. To create a sink object, call one of the following
functions:

New sinks must be added to the writer with this method before they can be used.

Syntax

HRESULT AddSink(
 IWMWriterSink* pSink
);

Parameters

pSink

[in] Pointer to an IWMWriterSink interface.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Previous Next

Previous Next

Sink Function

File sink WMCreateWriterFileSink

Network sink WMCreateWriterNetworkSink

Push sink WMCreateWriterPushSink

Return code Description

E_INVALIDARG The pSink parameter is NULL.

NS_E_INVALID_STATE The writer is not in a configurable state.

Remarks

If you only need to write to a single file, you can let the writer object handle the creation and management of a
default file sink. To use a default file sink, pass a file name to the writer by calling
IWMWriter::SetOutputFilename.

See Also

Adding Sinks to the Writer
IWMWriterAdvanced Interface
IWMWriterAdvanced::GetSink
IWMWriterAdvanced::RemoveSink

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterAdvanced::GetSink
The GetSink method retrieves a writer sink object. Used in conjunction with
IWMWriterAdvanced::GetSinkCount, this method can be used to enumerate the sinks associated with a
writer object.

Syntax

HRESULT GetSink(
 DWORD dwSinkNum,
 IWMWriterSink** ppSink
);

Parameters

dwSinkNum

[in] DWORD containing the sink number (its index). This is a number between 0 and one less than the total
number of sinks associated with the file as obtained with IWMWriterAdvanced::GetSinkCount.

ppSink

[out] Pointer to a pointer to an IWMWriterSink interface.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the

Previous Next

Previous Next

values shown in the following table.

Remarks

You can use GetSink to gain access to the file sink that is automatically created when you call
IWMWriter::SetOutputFilename. If you are only writing to the automatically created file sink, it will always
be sink number 0.

See Also

Enumerating Sinks
IWMWriterAdvanced Interface
IWMWriterAdvanced::AddSink
IWMWriterAdvanced::GetSinkCount
IWMWriterAdvanced::RemoveSink

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterAdvanced::GetSinkCount
The GetSinkCount method retrieves the number of writer sinks associated with the writer object. To obtain a
pointer to an interface of an individual sink, call IWMWriterAdvanced::GetSink using a sink number
between 0 and one less than the count returned by this method.

Syntax

HRESULT GetSinkCount(
 DWORD* pcSinks
);

Parameters

pcSinks

[out] DWORD indicating the total number of sinks associated with the writer object.

Return Values

Return code Description

E_INVALIDARG Either the ppSink parameter is NULL, or the dwSinkNum
parameter is greater than the number of sinks.

Previous Next

Previous Next

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

If you specify a file by calling IWMWriter::SetOutputFilename, the writer object will automatically create a
file sink and add it to the writer. That sink will be included in the count retrieved by this method.

See Also

Enumerating Sinks
IWMWriterAdvanced Interface
IWMWriterAdvanced::GetSink

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterAdvanced::GetSyncTolerance
The GetSyncTolerance method retrieves the amount of time during which the inputs can fall out of
synchronization before the samples are discarded.

Syntax

HRESULT GetSyncTolerance(
 DWORD* pmsWindow
);

Parameters

pmsWindow

[in] Pointer to the limit of the number of milliseconds that the inputs can be out of synchronization. Note that
this parameter is in milliseconds and not 100-nanosecond units.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the

Return code Description

E_INVALIDARG pcSinks is NULL.

Previous Next

Previous Next

values shown in the following table.

Remarks

The default tolerance is 3000 milliseconds.

See Also

IWMWriterAdvanced Interface
IWMWriterAdvanced::SetSyncTolerance

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterAdvanced::GetStatistics
The GetStatistics method retrieves statistics describing the current writing operation.

Syntax

HRESULT GetStatistics(
 WORD wStreamNum,
 WM_WRITER_STATISTICS* pStats
);

Parameters

wStreamNum

[in] WORD containing the stream number. Stream numbers must be in the range of 1 through 63. A value of 0
retrieves statistics for the file as a whole.

pStats

[out] Pointer to a WM_WRITER_STATISTICS structure that receives the statistics.

Return Values

Return code Description

E_INVALIDARG pmsWindow is NULL.

Previous Next

Previous Next

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

See Also

IWMWriterAdvanced Interface
IWMWriterAdvanced3::GetStatisticsEx

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterAdvanced::GetWriterTime
The GetWriterTime method retrieves the clock time that the writer is working to.

Syntax

HRESULT GetWriterTime(
 QWORD* pcnsCurrentTime
);

Parameters

pcnsCurrentTime

[out] Pointer to a variable containing the current time in 100-nanosecond units.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

Return code Description

E_POINTER pStats is NULL.

Previous Next

Previous Next

Return code Description

E_INVALIDARG pcnsCurrentTime is NULL.

This method returns the largest time stamp that the writer can currently process. This time stamp will increase
as data is produced by the writer. This method can be used to ensure that data is delivered to the writer at the
proper rate.

The time returned is the number of 100-nanosecond units since the call to IWMWriter::BeginWriting.

The writer can be running in real time. Call the IWMWriterAdvanced::IsRealTime method to ascertain
whether this is true.

See Also

IWMWriterAdvanced Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterAdvanced::IsRealTime
The IsRealTime method ascertains whether the writer is running in real time.

Syntax

HRESULT IsRealTime(
 BOOL* pfRealTime
);

Parameters

pfRealTime

[out] Pointer to a Boolean value that is True if the writer is running in real time.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

Previous Next

Previous Next

Return code Description

E_INVALIDARG pfRealTime is NULL.

If the writer is running in real time, the application can get the current time from it.

By default, the writer does not run in real time.

See Also

IWMWriterAdvanced Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterAdvanced::RemoveSink
The RemoveSink method removes a writer sink object.

Syntax

HRESULT RemoveSink(
 IWMWriterSink* pSink
);

Parameters

pSink

[in] Pointer to the IWMWriterSink interface of the sink object to remove, or NULL to remove all sinks.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

See Also

IWMWriterAdvanced Interface
IWMWriterAdvanced::AddSink
IWMWriterAdvanced::GetSink

Previous Next

Previous Next

Return code Description

S_FALSE Could not remove the specified sink.

NS_E_INVALID_STATE The writer is not in a configurable state.

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterAdvanced::SetLiveSource
The SetLiveSource method sets a flag indicating whether the source is live.

Syntax

HRESULT SetLiveSource(
 BOOL fIsLiveSource
);

Parameters

fIsLiveSource

[in] Boolean value that is True if the source is live.

Return Values

This method always returns S_OK.

Remarks

The default is False. To handle incoming samples correctly, the writer object must be notified whether the
source is live.

See Also

IWMWriterAdvanced Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Previous Next

IWMWriterAdvanced::SetSyncTolerance
The SetSyncTolerance method sets the amount of time that the inputs can fall out of synchronization before the
samples are discarded.

Syntax

HRESULT SetSyncTolerance(
 DWORD msWindow
);

Parameters

msWindow

[in] Amount of time that the inputs can be out of synchronization, in milliseconds. Note that this parameter is
in milliseconds and not 100-nanosecond units.

Return Values

This method always returns S_OK.

Remarks

The default tolerance value is 3000 milliseconds.

Regardless of what the tolerance is set to, keeping samples as tightly synchronized as possible results in the best
performance and the highest-quality content.

See Also

IWMWriterAdvanced Interface
IWMWriterAdvanced::GetSyncTolerance

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterAdvanced::WriteStreamSample
The WriteStreamSample method writes a stream sample directly into an ASF file, bypassing the normal
compression procedures. Use this method when writing a compressed stream if you already have the

Previous Next

Previous Next

compressed samples. The most common use of WriteStreamSample is in copying streams from one file to
another.

Syntax

HRESULT WriteStreamSample(
 WORD wStreamNum,
 QWORD cnsSampleTime,
 DWORD msSampleSendTime,
 QWORD cnsSampleDuration,
 DWORD dwFlags,
 INSSBuffer* pSample
);

Parameters

wStreamNum

[in] WORD containing the stream number. Stream numbers are in the range of 1 through 63.

cnsSampleTime

[in] QWORD containing the sample time, in 100-nanosecond units.

msSampleSendTime

[in] DWORD containing the sample send time, in milliseconds. This parameter is not used.

cnsSampleDuration

[in] QWORD containing the sample duration, in 100-nanosecond units. This parameter is not used.

dwFlags

[in] DWORD containing one or more of the following flags.

pSample

[in] Pointer to an INSSBuffer interface representing the sample.

Flag Description

No flag set None of the conditions for the other flags applies. For example,
a delta frame in most cases would not have any flags set for it.

WM_SF_CLEANPOINT Indicates the sample is a key frame. Set this flag if and only if
the compressed input sample is a key frame.

WM_SF_DISCONTINUITY For audio inputs, this flag helps to deal with gaps that may
appear between samples. You should set this flag for the first
sample after a gap.

WM_SF_DATALOSS This flag is not used by the writer object.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

You must manually set the WM_SF_CLEANPOINT flag for every video key frame. If you do not specify the
key frames, it will not be readable. The first video sample delivered by the reading object is the first sample
marked as a clean point.

When reading a stream created using stream samples, the reader and synchronous reader objects set the
WM_SF_DISCONTINUITY flag for the first sample in the stream.

Normally the application provides samples to an input file on the IWMWriter interface, and the samples are
then compressed. However, the application can use this interface to put the samples directly into the file,
without compressing or otherwise modifying them.

If the output stream has a time code data unit extension and there is no time code extension on the sample, this
method will fail in order not to cause problems later when the file is indexed. All other data unit extensions are
optional on the sample. That means that this method will succeed if a data unit extension has been specified for
the stream but no actual data extension is present in the sample. WriteStreamSample will write zeros into the
file for samples that do not have extensions specified on the sample.

You can use both IWMWriter::WriteSample and WriteStreamSample to write uncompressed samples and
compressed samples to the same stream. However, problems can arise because the writer cannot accurately
gauge the bit rate and buffer window usage for the stream samples. Some samples may be dropped as a result.

See Also

INSSBuffer Interface
IWMWriterAdvanced Interface
Writing Compressed Samples

© 2000-2003 Microsoft Corporation. All rights reserved.

Return code Description

NS_E_INVALID_STATE The writer cannot currently be run.

NS_E_INVALID_DATA The sample is not valid. This can occur when an input script
stream contains a script sample that is not valid.

Previous Next

Previous Next

IWMWriterAdvanced2 Interface
The IWMWriterAdvanced2 interface provides the ability to set and retrieve named settings for an input.

IWMWriterAdvanced2 exists for every instance of the writer object. To obtain a pointer to this interface, call
QueryInterface on the writer object.

In addition to the methods inherited from IWMWriterAdvanced, the IWMWriterAdvanced2 interface
exposes the following methods.

In addition to the methods of IUnknown, this interface inherits the following methods.

For information about which interfaces can be obtained by using the QueryInterface method of this interface,
see Writer Object.

See Also

Interfaces
IWMWriter Interface
IWMWriterAdvanced Interface
IWMWriterAdvanced3 Interface
Writer Object

Method Description

GetInputSetting Retrieves a setting for a particular input by name.

SetInputSetting Specifies a named setting for a particular input.

Method Description

AddSink Adds a writer sink.

GetSink Retrieves a writer sink object.

GetSinkCount Retrieves the number of writer sinks.

GetSyncTolerance Retrieves the amount of time during which the inputs can fall
out of synchronization before the samples are discarded.

GetStatistics Retrieves statistics about the current writing operation.

GetWriterTime Retrieves the clock time that the writer is working to.

IsRealTime Ascertains whether the writer is running in real time.

RemoveSink Removes a writer sink object.

SetLiveSource Specifies whether the source is live.

SetSyncTolerance Sets the amount of time that the inputs can fall out of
synchronization before the samples are discarded.

WriteStreamSample Writes a stream sample directly into an ASF file, bypassing the
normal compression procedures.

Writing ASF Files

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterAdvanced2::GetInputSetting
The GetInputSetting method retrieves a setting for a particular input by name.

Syntax

HRESULT GetInputSetting(
 DWORD dwInputNum,
 LPCWSTR pszName,
 WMT_ATTR_DATATYPE* pType,
 BYTE* pValue,
 WORD* pcbLength
);

Parameters

dwInputNum

[in] DWORD containing the input number.

pszName

[in] Pointer to a wide-character null-terminated string containing the setting name. For a list of valid settings,
see Input Settings.

pType

[out] Pointer to a value from the WMT_ATTR_DATATYPE enumeration type.

pValue

[out] Pointer to a byte array containing the setting. The type of date is determined by pType. Pass NULL to
retrieve the size of array required.

pcbLength

[in, out] On input, pointer to the length of pValue. On output, pointer to a count of the bytes in pValue filled in
by this method.

Previous Next

Previous Next

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

You should make two calls to GetInputSetting for each setting you want to retrieve. On the first call, pass
NULL as pValue. On return, the value pointed to by pcbLength is set to the buffer size required to hold the
setting value. Then you can allocate the required amount of memory for the buffer and pass a pointer to it as
pValue on the second call.

See Also

Input Formats, Input Settings, and Data Unit Extensions
IWMWriterAdvanced2 Interface
IWMWriterAdvanced2::SetInputSetting
To Set Input Settings

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterAdvanced2::SetInputSetting
The SetInputSetting method specifies a named setting for a particular input.

Syntax

HRESULT SetInputSetting(
 DWORD dwInputNum,
 LPCWSTR pszName,
 WMT_ATTR_DATATYPE Type,
 const BYTE* pValue,

Return code Description

NS_E_NOT_CONFIGURED The input profile has not yet been set.

E_INVALIDARG dwInputNum is larger than the number of existing inputs

OR

pType, pcbLength, or pszName is NULL.

Previous Next

Previous Next

 WORD cbLength
);

Parameters

dwInputNum

[in] DWORD containing the input number.

pszName

[in] Pointer to a wide-character null-terminated string containing the setting name. For a list of valid settings,
see Input Settings.

Type

[in] Pointer to a value from the WMT_ATTR_DATATYPE enumeration type.

pValue

[in] Pointer to a byte array containing the setting.

cbLength

[in] Size of pValue, in bytes.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

Only g_wszDeinterlaceMode, g_wszInitialPatternForInverseTelecine, g_wszInterlacedCoding, and
g_wszJPEGCompressionQuality can be set after IWMWriter::BeginWriting has been called.

See Also

Input Formats, Input Settings, and Data Unit Extensions

Return code Description

NS_E_NOT_CONFIGURED The input profile has not yet been set.

E_INVALIDARG dwInputNum is larger than the number of existing inputs

OR

pValue or pszName is NULL.

NS_E_INVALID_REQUEST This setting cannot be changed while the writer is running.

E_UNEXPECTED Unspecified error.

IWMWriterAdvanced2 Interface
IWMWriterAdvanced2::GetInputSetting
To Set Input Settings

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterAdvanced3 Interface
The IWMWriterAdvanced3 interface provides additional functionality for the writer object.

IWMWriterAdvanced3 exists for every instance of the writer object. To obtain a pointer to this interface, call
QueryInterface on the writer object.

In addition to the methods inherited from IWMWriterAdvanced2, the IWMWriterAdvanced3 interface
exposes the following methods.

In addition to the methods of IUnknown, this interface inherits the following methods.

Previous Next

Previous Next

Method Description

GetStatisticsEx Retrieves extended statistics for the writer.

SetNonBlocking Configures the writer so that it does not block the calling
thread.

Method Description

AddSink Adds a writer sink.

GetInputSetting Retrieves a setting for a particular input by name.

GetSinkCount Retrieves the number of writer sinks.

GetSink Retrieves a writer sink object.

GetStatistics Retrieves statistics about the current writing operation.

GetSyncTolerance Retrieves the amount of time during which the inputs can fall out
of synchronization before the samples are discarded.

GetWriterTime Retrieves the clock time that the writer is working to.

IsRealTime Ascertains whether the writer is running in real time.

For information about which interfaces can be obtained by using the QueryInterface method of this interface,
see Writer Object.

See Also

IWMWriterAdvanced Interface
IWMWriterAdvanced2 Interface
Writer Object
Writing ASF Files

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterAdvanced3::GetStatisticsEx
The GetStatisticsEx method retrieves extended statistics for the writer.

Syntax

HRESULT GetStatisticsEx(
 WORD wStreamNum,
 WM_WRITER_STATISTICS_EX* pStats
);

Parameters

wStreamNum

[in] WORD containing the stream number for which you want to get statistics. You can pass 0 to obtain
extended statistics for the entire file. Stream numbers are in the range of 1 through 63.

pStats

RemoveSink Removes a writer sink object.

SetInputSetting Specifies a named setting for a particular input.

SetLiveSource Specifies whether the source is live.

SetSyncTolerance Sets the amount of time that the inputs can fall out of
synchronization before the samples are discarded.

WriteStreamSample Writes a stream sample directly into an ASF file, bypassing the
normal compression procedures.

Previous Next

Previous Next

[out] Pointer to the WM_WRITER_STATISTICS_EX structure that receives the statistics.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an error code.

Remarks

GetStatisticsEx is not an improved version of IWMWriterAdvanced::GetStatistics. The statistics retrieved
by GetStatistics are not retrieved by GetStatisticsEx; if you want to get all available statistics you must call
both methods.

See Also

IWMWriterAdvanced3 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterAdvanced3::SetNonBlocking
The SetNonBlocking method configures the writer so that the calling thread is not blocked while writing
samples.

Syntax

HRESULT SetNonBlocking();

Parameters

This method takes no parameters.

Return Values

The method always returns S_OK.

Remarks

Return code Description

NS_E_INVALID_REQUEST The writer is in the configuration state, during which this
method cannot be called.

Previous Next

Previous Next

You should use this method only for time-critical threads. After calling SetNonBlocking, it is the responsibility
of the calling application to control the amount of data that is queued to the writer. It is possible to queue too
much data for the writer to handle, or to take up too many of the resources of the computer. In extreme cases,
the encoding session can stop unexpectedly as a result.

This method has no effect when writing from a live source. It is normal for the writer to refrain from blocking
the caller's thread in a live encoding situation.

See Also

IWMWriterAdvanced3 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterFileSink Interface
The IWMWriterFileSink interface is used to open a file to which the writer can write data. The file sink object
exposes this interface. To create the file sink object, call the WMCreateWriterFileSink function.

In addition to the methods inherited from IWMWriterSink, the IWMWriterFileSink interface exposes the
following method.

The following interfaces can be obtained by using the QueryInterface method of this interface.

See Also

Interfaces
IWMWriterFileSink2 Interface
IWMWriterFileSink3 Interface
IWMWriterSink Interface
Using File Sinks

Previous Next

Previous Next

Method Description

Open Opens a file that acts as the writer sink.

Interface IID

IWMWriterFileSink2 IID_IWMWriterFileSink2

IWMWriterFileSink3 IID_IWMWriterFileSink3

Writer Object

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterFileSink::Open
The Open method opens a file that acts as the writer sink.

Syntax

HRESULT Open(
 const WCHAR* pwszFilename
);

Parameters

pwszFilename

[in] Pointer to a wide-character null-terminated string containing the file name. URLs are not supported.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

There is no close method in this interface as the closing of the writer sink file is done automatically by a call to
IWMWriter::EndWriting.

See the Remarks and Example Code sections for IWMWriter::BeginWriting.

See Also

IWMWriterFileSink Interface

Previous Next

Previous Next

Return code Description

E_POINTER The pwszFilename parameter is NULL.

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterFileSink2 Interface
The IWMWriterFileSink2 interface provides extended management of a file sink.

This interface can be obtained by calling the QueryInterface method of an IWMWriterFileSink intefface.

In addition to the methods inherited from IWMWriterFileSink, the IWMWriterFileSink2 interface exposes
the following methods.

In addition to the methods of IUnknown, this interface inherits the following method.

The following interfaces can be obtained by using the QueryInterface method of this interface.

See Also

Previous Next

Method Description

Close Closes the sink.

GetFileDuration Retrieves the duration of the portion of the file that has been
written.

GetFileSize Retrieves the size of the file.

IsClosed Ascertains whether the file sink has been closed.

IsStopped Ascertains whether the file sink has stopped writing.

Start Starts recording at the specified time.

Stop Stops recording at the specified time.

Method Description

Open Opens a file that acts as the writer sink.

Interface IID

IWMWriterFileSink IID_IWMWriterFileSink

IWMWriterFileSink3 IID_IWMWriterFileSink3

Interfaces
IWMWriterFileSink Interface
IWMWriterFileSink3 Interface
IWMWriterSink Interface
Using File Sinks
Writer Object

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterFileSink2::Close
The Close method closes the sink.

Syntax

HRESULT Close();

Parameters

This method takes no parameters.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

See the Remarks and Example Code sections for IWMWriter::BeginWriting.

See Also

IWMWriterFileSink2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

IWMWriterFileSink2::GetFileDuration
The GetFileDuration method retrieves the duration of the portion of the file that has been written.

Syntax

HRESULT GetFileDuration(
 QWORD* pcnsDuration
);

Parameters

pcnsDuration

[out] Pointer to variable specifying the duration, in 100-nanosecond units.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

See Also

IWMWriterFileSink2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterFileSink2::GetFileSize
The GetFileSize method retrieves the size of the file.

Previous Next

Return code Description

E_INVALIDARG The pcnsDuration parameter is NULL.

Previous Next

Previous Next

Syntax

HRESULT GetFileSize(
 QWORD* pcbFile
);

Parameters

pcbFile

[out] Pointer to a count of the bytes in the file.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

See Also

IWMWriterFileSink2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterFileSink2::IsClosed
The IsClosed method ascertains whether the file sink has been closed.

Syntax

HRESULT IsClosed(
 BOOL* pfClosed
);

Parameters

pfClosed

[out] Pointer to a Boolean value that is set to True if the file sink has been closed.

Return code Description

E_INVALIDARG The pcbFile parameter is NULL.

Previous Next

Previous Next

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

See Also

IWMWriterFileSink2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterFileSink2::IsStopped
The IsStopped method ascertains whether the file sink has stopped writing.

Syntax

HRESULT IsStopped(
 BOOL* pfStopped
);

Parameters

pfStopped

[out] Pointer to a Boolean value that is set to True if writing has stopped.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

See Also

Return code Description

E_INVALIDARG The pfClosed parameter is NULL.

Previous Next

Previous Next

Return code Description

E_INVALIDARG The pfStopped parameter is NULL.

IWMWriterFileSink2 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterFileSink2::Start
The Start method starts recording at the specified time.

Syntax

HRESULT Start(
 QWORD cnsStartTime
);

Parameters

cnsStartTime

[in] Start time in 100-nanosecond units.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

It is not necessary to call this method unless the sink has been stopped. The sink automatically starts (at time 0)
when it is added to the writer by using IWMWriterAdvanced::AddSink.

Because of interleaving of streams with slightly different time stamps at any particular point in the file, the
actual start time might not be exactly as specified in cnsStartTime. To increase the precision, call
IWMWriterFileSink3::SetControlStream.

See Also

Previous Next

Previous Next

Return code Description

NS_E_INVALID_REQUEST The requested start time precedes the last stop time.

E_OUTOFMEMORY Not enough memory to complete the task.

IWMWriterFileSink2 Interface
IWMWriterFileSink2::Close
IWMWriterFileSink2::Stop

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterFileSink2::Stop
The Stop method stops recording at the specified time.

Syntax

HRESULT Stop(
 QWORD cnsStopTime
);

Parameters

cnsStopTime

[in] Stop time in 100-nanosecond units.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

Because of interleaving of streams with slightly different time stamps at any particular point in the file, the
actual stop time might not be exactly as specified in cnsStopTime. To increase the precision, call
IWMWriterFileSink3::SetControlStream.

See Also

IWMWriterFileSink2 Interface
IWMWriterFileSink2::Close
IWMWriterFileSink2::Start

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

IWMWriterFileSink3 Interface
The IWMWriterFileSink3 interface provides additional functionality to the file sink object. To obtain a
pointer to this interface, call QueryInterface on the file sink object.

In addition to the methods inherited from IWMWriterFileSink2, the IWMWriterFileSink3 interface exposes
the following methods.

In addition to the methods of IUnknown, this interface inherits the following methods.

The following interfaces can be obtained by using the QueryInterface method of this interface.

Previous Next

Method Description

CompleteOperations Stops writing after completing all operations in progress.

GetAutoIndexing Ascertains whether automatic indexing is set for the file.

GetMode Retrieves the supported file sink mode.

GetUnbufferedIO Ascertains whether unbuffered I/O is used for the file sink.

OnDataUnitEx Retrieves information about data units.

SetAutoIndexing Enables or disables automatic indexing.

SetControlStream Sets a stream as a control stream or removes control from a
control stream.

SetUnbufferedIO Specifies whether unbuffered I/O is used for the file sink.

Method Description

Close Closes the sink.

GetFileDuration Retrieves the duration of the file.

GetFileSize Retrieves the size of the file.

IsClosed Ascertains whether the file sink has been closed.

IsStopped Ascertains whether the file sink has stopped writing.

Open Opens a file that acts as the writer sink.

Start Starts recording at the specified time.

Stop Stops recording at the specified time.

See Also

IWMWriterFileSink Interface
IWMWriterFileSink2 Interface
IWMWriterSink Interface
Using File Sinks
Writer File Sink Object

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterFileSink3::CompleteOperations
The CompleteOperations method stops the writer sink after completing all operations in progress. This method
is used with unbuffered I/O.

Syntax

HRESULT CompleteOperations();

Parameters

This method takes no parameters.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

This method is called when writes are performed as a result of calls to IWMWriterSink::OnHeader,
IWMWriterSink::OnDataUnit, and IWMWriterFileSink3::OnDataUnitEx. Applications do not call this
method.

See Also

Interface IID

IWMWriterFileSink IID_IWMWriterFileSink

IWMWriterFileSink2 IID_IWMWriterFileSink2

Previous Next

Previous Next

IWMWriterFileSink3 Interface
IWMWriterFileSink3::SetUnbufferedIO

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterFileSink3::GetAutoIndexing
The GetAutoIndexing method retrieves the current state of automatic indexing for the file.

The writer object creates a time-based index for all new files by default. If you generate an ASF file using bit-
rate mutual exclusion for audio content (multiple bit-rate audio), the resulting indexed file will not work with
Windows Media Services version 4.1. If you want to stream your file using Windows Media Services 4.1, you
must make sure that automatic indexing has been disabled before writing the file.

Syntax

HRESULT GetAutoIndexing(
 BOOL* pfAutoIndexing
);

Parameters

pfAutoIndexing

[out] Pointer to a Boolean value that is True if automatic indexing is enabled for the file.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

See Also

IWMWriterFileSink3 Interface
IWMWriterFileSink3::SetAutoIndexing

Previous Next

Previous Next

Return code Description

E_INVALIDARG pfAutoIndexing is NULL.

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterFileSink3::GetMode
The GetMode method retrieves the supported file sink mode. More than one mode can be supported.

Syntax

HRESULT GetMode(
 DWORD* pdwFileSinkMode
);

Parameters

pdwFileSinkMode

[out] Pointer to a DWORD containing a value from the WMT_FILESINK_MODE enumeration type or
multiple values combined with a bitwise OR operator.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an error code.

See Also

IWMWriterFileSink3 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Return code Description

E_INVALIDARG pdwFileSinkMode is NULL.

Previous Next

Previous Next

IWMWriterFileSink3::GetUnbufferedIO
The GetUnbufferedIO method ascertains whether unbuffered I/O is used for the file sink.

Syntax

HRESULT GetUnbufferedIO(
 BOOL* pfUnbufferedIO
);

Parameters

pfUnbufferedIO

[out] Pointer to a Boolean value that is set to True if unbuffered I/O is used with this file sink.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

See Also

IWMWriterFileSink3 Interface
IWMWriterFileSink3::SetUnbufferedIO

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterFileSink3::OnDataUnitEx
The OnDataUnitEx method is called when the writer has finished sending a data unit.

OnDataUnitEx is an enhanced version of IWMWriterSink::OnDataUnit. The difference between these two
methods is that OnDataUnitEx delivers very granular data unit information. You can examine individual
payload headers, payload data fragments, and the packet header.

Return code Description

E_POINTER pfUnbuffered is NULL.

Previous Next

Previous Next

Syntax

HRESULT OnDataUnitEx(
 WMT_FILESINK_DATA_UNIT* pFileSinkDataUnit
);

Parameters

pFileSinkDataUnit

[in] Pointer to a WMT_FILESINK_DATA_UNIT structure containing the data unit information.

Return Values

This method always returns S_OK.

Remarks

Applications do not call this method. If you are implementing the IWMWriterFileSink3 interface on a custom
sink, you have the option of implementing this method. If you do so, your implementation of GetMode should
return WMT_FM_FILESINK_DATA_UNITS.

See Also

IWMWriterFileSink3 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterFileSink3::SetAutoIndexing
The SetAutoIndexing method enables or disables automatic indexing of the file.

Syntax

HRESULT SetAutoIndexing(
 BOOL fDoAutoIndexing
);

Parameters

fDoAutoIndexing

Previous Next

Previous Next

[in] Boolean value that is True to automatically index the file.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

The state of automatic indexing must be set before the header is processed. After the header has been processed,
any call to SetAutoIndexing results in an error.

Files are indexed by default. To disable indexing, you must call this method, passing False as the parameter.

If you generate an ASF file using bit-rate mutual exclusion for audio content (multiple bit-rate audio), the
resulting indexed file will not work with Windows Media Services version 4.1. If you want to stream your file
using Windows Media Services 4.1, you must disable automatic indexing before writing the file.

See Also

IWMWriterFileSink3 Interface
IWMWriterFileSink3::GetAutoIndexing
Working with Indexes

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterFileSink3::SetControlStream
The SetControlStream method enables you to specify that a stream should be used as a control stream. You
can also use this method to indicate that a previously specified control stream should no longer be used as a
control stream.

Syntax

HRESULT SetControlStream(
 WORD wStreamNumber,
 BOOL fShouldControlStartAndStop
);

Return code Description

NS_E_INVALID_REQUEST The header has already been received

Previous Next

Previous Next

Parameters

wStreamNumber

[in] A WORD specifying the stream number to configure. Stream numbers must be in the range of 1 through
63.

fShouldControlStartAndStop

[in] A BOOL specifying whether or not the stream should be used as a control stream.

Return Values

It the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Remarks

Control streams add accuracy to Start and Stop calls. Instead of trying to find the best starting or stopping
place for the file based on times in interleaved streams, the file sink starts and stops the file at exactly the
specified time in the control stream. The other streams are then synchronized with the control stream.

You can have more than one control stream, by making multiple calls to this method. The file sink will start or
stop at the first encountered instance of the desired time.

See Also

IWMWriterFileSink3 Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterFileSink3::SetUnbufferedIO
The SetUnbufferdIO method specifies whether unbuffered I/O is used for the file sink. You can improve
performance by using unbuffered I/O for writer sessions with a high bit rate and a long running time.

Syntax

Return code Description

E_INVALIDARG The stream number specified by wStreamNumber is greater
than the maximum.

Previous Next

Previous Next

HRESULT SetUnbufferedIO(
 BOOL fUnbufferedIO,
 BOOL fRestrictMemUsage
);

Parameters

fUnbufferedIO

[in] A BOOL that specifies whether to use unbuffered I/O.

fRestrictedMemUsage

[in] A BOOL that specifies whether memory usage should be restricted. Passing True for this parameter
severely limits the size of the buffers used to prepare data for unbuffered writing. This limitation usually
counteracts any performance gains from using unbuffered I/O.

Return Values

If the method succeeds, it returns S_OK. If it fails, possible return codes include, but are not limited to, the
values shown in the following table.

Remarks

This method enables the application to override the writer's decision about whether to use unbuffered I/O.

If you want to use unbuffered I/O, you must call this method before writing the header of the file.

This method dynamically allocates a set of buffers to prepare data for unbuffered writing. The size of these
buffers is dependent upon the amount of available physical memory.

See Also

IWMWriterFileSink3 Interface
IWMWriterFileSink3::GetUnbufferedIO

© 2000-2003 Microsoft Corporation. All rights reserved.

Return code Description

NS_E_INVALID_REQUEST The header has already been written.

Previous Next

Previous Next

IWMWriterNetworkSink Interface
The IWMWriterNetworkSink interface is used to deliver streams to the network. It inherits all the methods of
IWMWriterSink, and adds methods to configure the network sink.

The network sink object exposes this interface. To create the network sink object, call the
WMCreateWriterNetworkSink function.

In addition to the methods inherited from IWMWriterSink, the IWMWriterNetworkSink interface exposes
the following methods.

The following interfaces can be obtained by using the QueryInterface method of this interface.

See Also

Broadcasting ASF Data
Interfaces
IWMWriterSink Interface
Writer Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Method Description

Close Disconnects all clients from the network sink, and releases the
port.

Disconnect Disconnects all clients from the network sink.

GetHostURL Retrieves URL from which the stream is broadcast.

GetMaximumClients Retrieves the maximum number of clients that can connect to
this sink.

GetNetworkProtocol Retrieves the network protocol that the network sink uses.

Open Opens a network port.

SetMaximumClients Sets the maximum number of clients that connect to this sink.

SetNetworkProtocol Sets the network protocol that the network sink uses.

Interface IID

IWMAddressAccess IID_IWMAddressAccess

IWMClientConnections IID_IWMClientConnections

IWMClientConnections2 IID_IWMClientConnections2

IWMWriterSink IID_IWMWriterSink

Previous Next

IWMWriterNetworkSink::Close
The Close method disconnects all clients from the network sink, and releases the port.

Syntax

HRESULT Close();

Parameters

This method takes no parameters.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, the values shown in the
following table.

Remarks

See the Remarks and Example Code sections for IWMWriter::BeginWriting.

See Also

IWMWriterNetworkSink Interface
IWMWriterNetworkSink::Open

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Return code Description

NS_E_INVALID_REQUEST The network sink is not connected.

S_OK The method succeeded.

Previous Next

Previous Next

IWMWriterNetworkSink::Disconnect
The Disconnect method disconnects all clients from the network sink.

Syntax

HRESULT Disconnect();

Parameters

This method takes no parameters.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, the values shown in the
following table.

Remarks

This method is equivalent to the IWMWriterNetworkSink::Close method, except that it does not release the
port.

See Also

IWMWriterNetworkSink Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterNetworkSink::GetHostURL
The GetHostURL method retrieves the URL from which the stream is broadcast. Clients will access the stream
from this URL.

Syntax

HRESULT GetHostURL(

Return code Description

S_OK The method succeeded.

Previous Next

Previous Next

 WCHAR* pwszURL,
 DWORD* pcchURL
);

Parameters

pwszURL

[out] Pointer to buffer that receives a string containing the URL. To retrieve the length of the string, set this
parameter to NULL.

pcchURL

[in, out] On input, pointer to the size of pwszURL, in characters. On output, this parameter receives the length
of the URL in characters, including the terminating null character.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, the values shown in the
following table.

Remarks

You should make two calls to GetHostURL. On the first call, pass NULL as pwszURL. On return, the value
pointed to by pcchURL is set to the number of characters, including the terminating null character, required to
hold the URL. Then you can allocate the required amount of memory for the string and pass a pointer to it as
pwszURL on the second call.

See Also

IWMWriterNetworkSink Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Return code Description

ASF_E_BUFFERTOOSMALL The buffer is too small.

E_INVALIDARG Invalid argument; pcchURL cannot be NULL.

NS_E_INVALID_REQUEST The network sink is not connected.

S_OK The method succeeded.

Previous Next

Previous Next

IWMWriterNetworkSink::GetMaximumClients
The GetMaximumClients method retrieves the maximum number of clients that can connect to this sink.

Syntax

HRESULT GetMaximumClients(
 DWORD* pdwMaxClients
);

Parameters

[out]pdwMaxClients

Pointer to a variable that receives the maximum number of clients. The default value is 5.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, the values shown in the
following table.

See Also

IWMWriterNetworkSink Interface
IWMWriterNetworkSink::SetMaximumClients

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterNetworkSink::GetNetworkProtocol
The GetNetworkProtocol method retrieves the network protocol that the network sink uses. Currently, HTTP
is the only protocol the network sink supports.

Syntax

Return code Description

E_INVALIDARG pdwMaxClients is NULL.

S_OK The method succeeded.

Previous Next

Previous Next

HRESULT GetNetworkProtocol(
 WMT_NET_PROTOCOL* pProtocol
);

Parameters

pProtocol

[out] Pointer to a variable that receives a member of the WMT_NET_PROTOCOL enumeration type.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, the values shown in the
following table.

See Also

IWMWriterNetworkSink Interface
IWMWriterNetworkSink::SetNetworkProtocol
WMT_NET_PROTOCOL

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterNetworkSink::Open
The Open method opens a network port, and starts listening for network connections.

Syntax

HRESULT Open(
 DWORD* pdwPortNum
);

Parameters

pdwPortNum

Return code Description

E_INVALIDARG pProtocol is NULL.

S_OK Success.

Previous Next

Previous Next

[in, out] On input, pointer to a variable that specifies the port number. Set this value to zero if you want the
network sink to select a suitable port. On output, the variable receives the port number that was used.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, the values shown in the
following table.

Remarks

This method binds the port. To release the port, call IWMWriterNetworkSink::Close.

See the Remarks and Example Code sections for IWMWriter::BeginWriting.

See Also

IWMWriterNetworkSink Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterNetworkSink::SetMaximumClients
The SetMaximumClients method sets the maximum number of clients that can connect to this sink. Call this
method before streaming begins.

Syntax

HRESULT SetMaximumClients(
 DWORD dwMaxClients
);

Parameters

Return code Description

E_INVALIDARG The pdwPortNum parameter is NULL.

NS_E_INVALID_REQUEST The network sink is already open.

S_OK The method succeeded.

NS_E_NETWORK_RESOURCE_FAILURE The port number specified is already in use.

Previous Next

Previous Next

dwMaxClients

[in] Specifies the maximum number of clients. The value must be from 0 to 50, inclusive. The default value is
5.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, the values shown in the
following table.

See Also

IWMWriterNetworkSink Interface
IWMWriterNetworkSink::GetMaximumClients

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterNetworkSink::SetNetworkProtocol
The SetNetworkProtocol method sets the network protocol that the network sink uses. Currently, HTTP is the
only protocol supported by the network sink.

Syntax

HRESULT SetNetworkProtocol(
 WMT_NET_PROTOCOL protocol
);

Parameters

protocol

[in] Specifies the procotcol, as a value from the WMT_NET_PROTOCOL enumeration type.

Return Values

Return code Description

NS_E_INVALID_REQUEST Streaming has already begun, or the value of dwMaxClients is
invalid.

S_OK The method succeeded.

Previous Next

Previous Next

The method returns an HRESULT. Possible values include, but are not limited to, the values shown in the
following table.

See Also

IWMWriterNetworkSink Interface
IWMWriterNetworkSink::GetNetworkProtocol

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterPostView Interface
The IWMWriterPostView interface manages advanced writing functionality related to the postviewing of
samples. Postviewing displays the media samples as a viewer of the ASF file would see them, and is often used
after encoding to check the output. Postviewing is supported only for video.

This interface can be obtained from any interface on the writer object by calling QueryInterface.

In addition to the methods inherited from IUnknown, the IWMWriterPostView interface exposes the
following methods.

Return code Description

E_INVALIDARG Invalid argument.

S_OK The method succeeded.

Previous Next

Previous Next

Method Description

GetAllocateForPostView Ascertains whether the application, and not the
writer, must supply the buffers.

GetPostViewFormatCount Retrieves the number of possible output formats.

GetPostViewFormat Retrieves the media properties for the specified
output stream and output format.

GetPostViewProps Retrieves the properties for the specified output
stream.

GetReceivePostViewSamples Ascertains whether delivery of postview samples is
enabled for the specified stream.

For information about which interfaces can be obtained by using the QueryInterface method of this interface,
see Writer Object.

See Also

Interfaces
IWMWriterPostViewCallback Interface
To Use Writer Postview
Writer Object

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterPostView::GetAllocateForPostView
The GetAllocateForPostView method ascertains whether the application, and not the writer, must supply the
buffers.

Syntax

HRESULT GetAllocateForPostView(
 WORD wStreamNumber,
 BOOL* pfAllocate
);

Parameters

wStreamNumber

[in] WORD containing the stream number.

pfAllocate

SetAllocateForPostView Specifies whether the application, and not the writer,
must supply the buffers.

SetPostViewCallback Specifies the callback interface to use for receiving
postview samples.

SetPostViewProps Specifies the properties for the output stream.

SetReceivePostViewSamples Enables or disables delivery of postview samples for
the specified stream.

Previous Next

Previous Next

[out] Pointer to Boolean value that is True if the application allocates buffers, and False if this is left to the
writer.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

See the Remarks for SetAllocateForPostView.

See Also

IWMWriterPostView Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterPostView::GetPostViewFormat
The GetPostViewFormat method retrieves the media properties for the specified output stream and output
format.

Syntax

HRESULT GetPostViewFormat(
 WORD wStreamNumber,
 DWORD dwFormatNumber,
 IWMMediaProps** ppProps
);

Parameters

wStreamNumber

[in] WORD containing the stream number.

Return code Description

S_OK The method succeeded.

E_INVALIDARG NULL value passed in to pfAllocate.

Previous Next

Previous Next

dwFormatNumber

[in] DWORD containing the format number.

ppProps

[out] Pointer to a pointer to an IWMMediaProps interface.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

This method can be used along with GetPostViewFormatCount to determine all possible format types
supported by this output on the reader.

See Also

IWMWriterPostView Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterPostView::GetPostViewFormatCount
The GetPostViewFormatCount method is used for ascertaining all possible format types supported for the
specified stream.

Syntax

HRESULT GetPostViewFormatCount(
 WORD wStreamNumber,
 DWORD* pcFormats
);

Return code Description

S_OK The method succeeded.

E_INVALIDARG NULL value passed in to ppProps.

E_OUTOFMEMORY Not enough memory to complete the task.

Previous Next

Previous Next

Parameters

wStreamNumber

[in] WORD containing the stream number.

pcFormats

[out] Pointer to a count of the output formats.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

This method can be used along with GetPostViewFormat to ascertain all possible format types supported by
this output on the reader.

See Also

IWMWriterPostView Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterPostView::GetPostViewProps
The GetPostViewProps method retrieves the properties for the specified output stream.

Syntax

HRESULT GetPostViewProps(
 WORD wStreamNumber,
 IWMMediaProps** ppOutput
);

Return code Description

S_OK The method succeeded.

E_INVALIDARG NULL value passed in to pcFormats.

Previous Next

Previous Next

Parameters

wStreamNumber

[in] WORD containing the stream number.

ppOutput

[out] Pointer to a pointer to an IWMMediaProps interface.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

An application can enumerate through the various outputs, and retrieve the output format properties for that
data. Manipulating the object retrieved has no effect on the output, unless the application also calls
SetPostViewProps.

See Also

IWMReader::SetOutputProps
IWMWriterPostView Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterPostView::GetReceivePostViewSamples
The GetReceivePostViewSamples method retrieves a flag indicating whether delivery of postview samples has
been turned on for the specified stream.

Syntax

HRESULT GetReceivePostViewSamples(
 WORD wStreamNum,

Return code Description

S_OK The method succeeded.

E_INVALIDARG NULL value passed in to ppOutput.

Previous Next

Previous Next

 BOOL* pfReceivePostViewSamples
);

Parameters

wStreamNum

[in] WORD containing the stream number.

pfReceivePostViewSamples

[out] Pointer to a flag; True indicates that postview samples are to be delivered.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

See Also

IWMWriterPostView Interface
IWMWriterPostView::SetReceivePostViewSamples

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterPostView::SetAllocateForPostView
The SetAllocateForPostView method specifies whether the application, and not the writer, must supply the
buffers.

Syntax

HRESULT SetAllocateForPostView(
 WORD wStreamNumber,
 BOOL fAllocate
);

Return code Description

S_OK The method succeeded.

E_INVALIDARG NULL value passed to pfReceivePostViewSamples.

Previous Next

Previous Next

Parameters

wStreamNumber

[in] WORD containing the stream number.

fAllocate

[in] Boolean value. Set to True if the application allocates buffers, and False if this is left to the reader.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

The application can provide buffers for any of the outputs, rather than use those allocated by the reader. For
example, some applications can allocate Microsoft DirectDraw® buffers.

The actual allocation of buffers is handled by the IWMReaderCallbackAdvanced interface.

See Also

IWMWriterPostView Interface
IWMWriterPostView::GetAllocateForPostView

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterPostView::SetPostViewCallback
The SetPostViewCallback method specifies the callback interface to use for receiving postview samples.

Syntax

Return code Description

S_OK The method succeeded.

NS_E_INVALID_STREAM The stream number specified by wStreamNumber is not valid.

E_OUTOFMEMORY The method was unable to create an internal structure.

Previous Next

Previous Next

HRESULT SetPostViewCallback(
 IWMWriterPostViewCallback* pCallback,
 void* pvContext
);

Parameters

pCallback

[in] Pointer to an IWMWriterPostViewCallback interface.

pvContext

[in] Generic pointer, for use by the application.

Return Values

This method always returns S_OK.

See Also

IWMWriterPostView Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterPostView::SetPostViewProps
The SetPostViewProps method specifies the format for the specified output stream.

Syntax

HRESULT SetPostViewProps(
 WORD wStreamNumber,
 IWMMediaProps* pOutput
);

Parameters

wStreamNumber

[in] WORD containing the stream number.

Previous Next

Previous Next

pOutput

[in] Pointer to an IWMMediaProps interface.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

It is not possible to resize the video output using postview properties.

SetPostViewProps fails if IWMWriter::BeginWriting has been called. If any postview properties need to be
changed, this should be done before calling BeginWriting.

See Also

IWMWriterPostView Interface
IWMWriterPostView::GetPostViewProps

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterPostView::SetReceivePostViewSamples
The SetReceivePostViewSamples method enables or disables delivery of postview samples for the specified
stream.

Syntax

HRESULT SetReceivePostViewSamples(
 WORD wStreamNum,
 BOOL fReceivePostViewSamples
);

Return code Description

S_OK The method succeeded.

NS_E_INVALID_STREAM The stream number specified by wStreamNumber is not valid.

E_OUTOFMEMORY The method was unable to create an internal structure.

Previous Next

Previous Next

Parameters

wStreamNum

[in] WORD containing the stream number.

fReceivePostViewSamples

[in] Boolean value that is True if postview samples must be delivered.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

See Also

IWMWriterPostView Interface
IWMWriterPostView::GetReceivePostViewSamples

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterPostViewCallback Interface
The IWMWriterPostViewCallback interface manages the receiving of uncompressed samples from the writer.
Postview can be used only for video streams.

This interface must be implemented by the application and passed to
IWMWriterPostView::SetPostViewCallback.

In addition to the methods inherited from IWMStatusCallback, the IWMWriterPostViewCallback interface
exposes the following methods.

Return code Description

S_OK The method succeeded.

E_INVALIDARG wStreamNum is less than 1 or greater than the maximum
number of streams.

NS_E_INVALID_STREAM Could not get the output for that stream.

NS_E_INVALID_REQUEST Stream does not support postview.

Previous Next

Previous Next

See Also

Interfaces
IWMStatusCallback Interface
To Use Writer Postview
Writer Object

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterPostViewCallback::AllocateForPostView
The AllocateForPostView method allocates a buffer for use in postviewing operations. The application
implements this method.

Syntax

HRESULT AllocateForPostView(
 WORD wStreamNum,
 DWORD cbBuffer,
 INSSBuffer** ppBuffer,
 void* pvContext
);

Parameters

wStreamNum

[in] WORD containing the stream number.

cbBuffer

[in] Size of ppBuffer, in bytes.

ppBuffer

[out] Pointer to a pointer to an INSSBuffer interface.

Method Description

AllocateForPostView Allocates a buffer for use in postviewing operations.

OnPostViewSample Called when new postview data is available.

Previous Next

Previous Next

pvContext

[in] Generic pointer, for use by the application.

Return Values

This method is implemented by the application. It should return S_OK.

See Also

IWMWriterPostViewCallback Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterPostViewCallback::OnPostViewSample
The OnPostViewSample method is called when new postview data is available. The application implements
this method.

Syntax

HRESULT OnPostViewSample(
 WORD wStreamNumber,
 QWORD cnsSampleTime,
 QWORD cnsSampleDuration,
 DWORD dwFlags,
 INSSBuffer* pSample,
 void* pvContext
);

Parameters

wStreamNumber

[in] WORD containing the stream number.

cnsSampleTime

[in] Sample time, in 100-nanosecond units.

cnsSampleDuration

[in] Sample duration, in 100-nanosecond units. This will usually be 10000 (1 millisecond).

Previous Next

Previous Next

dwFlags

[in] DWORD containing none, one, or more of the following flags.

pSample

[in] Pointer to an INSSBuffer interface on an object that contains the sample.

pvContext

[in] Generic pointer, for use by the application.

Return Values

This method is implemented by the application. It should return S_OK.

Remarks

Postview data is available only for video.

See Also

IWMReaderCallback::OnSample
IWMWriterPostViewCallback Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Flag Description

No flag set None of the conditions for the other flags applies. For example,
a delta frame in most cases would not have any flags set for it.

WM_SF_CLEANPOINT This is basically the same as a key frame. It indicates a good
point to go to during a seek, for example.

WM_SF_DISCONTINUITY The data stream has a gap in it, which could be due to a seek, a
network loss, or some other reason. This can be useful extra
information for an application such as a codec or renderer. The
flag is set on the first piece of data following the gap.

WM_SF_DATALOSS Some data has been lost between the previous sample and the
sample with this flag set.

Previous Next

Previous Next

IWMWriterPreprocess Interface
The IWMWriterPreprocess interface handles multi-pass encoding. By making more than one pass, the writer
can obtain better quality with better compression.

An IWMWriterPreprocess interface exists for every instance of the writer object. You can obtain a pointer to
IWMWriterPreprocess with a call to the QueryInterface method of any other interface in the writer object.

In addition to the methods inherited from IUnknown, the IWMWriterPreprocess interface exposes the
following methods.

For information about which interfaces can be obtained by using the QueryInterface method of this interface,
see Writer Object.

See Also

Interfaces
Using Two-Pass Encoding
Writer Object

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterPreprocess::BeginPreprocessingPass
The BeginPreprocessingPass method prepares the writer to begin preprocessing samples for the specified input
stream.

Syntax

Method Description

BeginPreprocessingPass Begins preprocessing a stream.

EndPreprocessingPass Ends preprocessing a stream.

GetMaxPreprocessingPasses Retrieves the maximum number of preprocessing
passes supported for a specified stream.

PreprocessSample Retrieves a sample for preprocessing.

SetNumPreprocessingPasses Sets the number of preprocessing passes to perform.

Previous Next

Previous Next

HRESULT BeginPreprocessingPass(
 DWORD dwInputNum,
 DWORD dwFlags
);

Parameters

dwInputNum

[in] DWORD containing the input number that you want to preprocess.

dwFlags

[in] Reserved. Set to zero.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

To successfully call BeginPreprocessingPass, the preprocessor must be set to make at least one preprocessing
pass with a call to SetNumPreprocessingPasses.

The writer must be activated by calling IWMWriter::BeginWriting before you can call this method.

See Also

IWMWriterPreprocess Interface

Return code Description

S_OK The method succeeded.

E_INVALIDARG dwInputNum specifies an invalid input number.

NS_E_INVALID_REQUEST The writer is not running.

OR

The preprocessor is neither waiting to be run nor stopped in the
middle of a pass.

OR

The preprocessor has already made as many passes as specified
by SetNumPreprocessingPasses.

OR

The input specified is not supported for preprocessing.

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterPreprocess::EndPreprocessingPass
The EndPreprocessingPass method ends a preprocessing pass started with a call to
IWMWriterPreprocess::BeginPreprocessingPass.

Syntax

HRESULT EndPreprocessingPass(
 DWORD dwInputNum,
 DWORD dwFlags
);

Parameters

dwInputNum

[in] DWORD containing the input number for which you want to halt preprocessing.

dwFlags

[in] Reserved. Set to zero.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

See Also

Previous Next

Return code Description

S_OK The method succeeded.

E_INVALIDARG dwInputNum specifies an invalid input number.

NS_E_INVALID_REQUEST The writer is not running.

OR

The preprocessor is not started for the specified stream.

E_FAIL There was an error ending the preprocessing path.

IWMWriterPreprocess Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterPreprocess::GetMaxPreprocessingPasses
The GetMaxPreprocessingPasses method retrieves the maximum number of preprocessing passes for a
specified input stream.

Syntax

HRESULT GetMaxPreprocessingPasses(
 DWORD dwInputNum,
 DWORD dwFlags,
 DWORD* pdwMaxNumPasses
);

Parameters

dwInputNum

[in] DWORD containing the input number for which you want to get the maximum number of preprocessing
passes.

dwFlags

[in] Reserved. Set to zero.

pdwMaxNumPasses

[out] Pointer to a DWORD that will receive the maximum number of preprocessing passes. If the codec
supports two-pass encoding, this value is 1, as the final pass is not counted.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Previous Next

Previous Next

Return code Description

S_OK The method succeeded.

E_POINTER pdwMaxNumPasses is NULL.

Remarks

If no preprocessing is supported for the specified input, pdwMaxNumPasses contains zero upon return.

See Also

IWMWriterPreprocess Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterPreprocess::PreprocessSample
The PreprocessSample method delivers a sample to the writer for preprocessing.

Syntax

HRESULT PreprocessSample(
 DWORD dwInputNum,
 QWORD cnsSampleTime,
 DWORD dwFlags,
 INSSBuffer* pSample
);

Parameters

dwInputNum

[in] DWORD containing the input number of the sample.

cnsSampleTime

[in] Specifies the presentation time of the sample in 100-nanosecond units.

dwFlags

[in] Reserved. Set to zero.

pSample

E_INVALIDARG dwInputNum specifies an invalid input stream number.

NS_E_INVALID_REQUEST The writer is not running.

Previous Next

Previous Next

[in] Pointer to an INSSBuffer interface on an object that contains the sample.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

When performing preprocessing, you should pass the samples for the stream to this method one at a time.

See Also

IWMWriterPreprocess Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Return code Description

S_OK The method succeeded.

E_INVALIDARG dwInputNum specifies an invalid input stream.

OR

pSample is NULL.

NS_E_INVALID_REQUEST The writer is not running.

OR

The preprocessor is neither waiting to be run nor stopped in the
middle of a pass.

OR

The preprocessor has already made as many passes as specified
by SetNumPreprocessingPasses.

OR

The input specified is not supported for preprocessing.

Previous Next

Previous Next

IWMWriterPreprocess::SetNumPreprocessingPasses
The SetNumPreprocessingPasses method sets the number of passes to perform on an input.

Syntax

HRESULT SetNumPreprocessingPasses(
 DWORD dwInputNum,
 DWORD dwFlags,
 DWORD dwNumPasses
);

Parameters

dwInputNum

[in] DWORD containing the input number for which you want to set the number of passes.

dwFlags

[in] Reserved. Set to zero.

dwNumPasses

[in] DWORD containing the number of preprocessing passes.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

See Also

Return code Description

S_OK The method succeeded.

E_INVALIDARG dwNumPasses is zero.

OR

dwInputNum specifies an invalid input stream.

OR

dwNumPasses is greater than the maximum number of passes
allowed for the specified input.

NS_E_INVALID_REQUEST The writer is not running.

OR

The preprocessor has already been configured.

IWMWriterPreprocess Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterPushSink Interface
The IWMWriterPushSink interface enables the application to send ASF files to a publishing point on a
Windows Media server. The writer push sink object exposes this interface. To create an instance of the writer
push sink, call the WMCreateWriterPushSink function.

In addition to the methods inherited from IWMWriterSink, the IWMWriterPushSink interface exposes the
following methods.

In addition to the methods of IUnknown, this interface inherits the following methods.

The following interfaces can be obtained by using the QueryInterface method of this interface.

Previous Next

Previous Next

Method Description

Connect Connects to a publishing point on a Windows Media server.

Disconnect Disconnects the push sink from the server.

EndSession Ends the push distribution session.

Method Description

AllocateDataUnit Allocates memory space for a data unit.

IsRealTime Ascertains whether the sink is operating in real time.

OnDataUnit Retrieves data from the writer.

OnEndWriting Performs cleanup when the writer has finished sending data.

OnHeader Retrieves a header from the writer.

Interface IID

IWMRegisterCallback IID_IWMRegisterCallback

IWMWriterSink IID_IWMWriterSink

See Also

Interfaces
Sending ASF Data to a Publishing Point
Writer Push Sink Object

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterPushSink::Connect
The Connect method connects to a publishing point on a Windows Media server.

Syntax

HRESULT Connect(
 LPCWSTR pwszURL,
 LPCWSTR pwszTemplateURL,
 BOOL fAutoDestroy
);

Parameters

pwszURL

[in] Wide-character string that contains the URL of the publishing point on the Windows Media server. For
example, if the URL is "http://MyServer/MyPublishingPoint", the push sink connects to the publishing point
named MyPublishingPoint on the server named MyServer. The default port number is 80. If the server is using
a different port, specify the port number in the URL. For example, "http://MyServer:8080/MyPublishingPoint"
specifies port number 8080.

pwszTemplateURL

[in] Optional wide-character string that contains the URL of an existing publishing point to use as a template.
This parameter can be NULL.

fAutoDestroy

[in] Boolean value that specifies whether to remove the publishing point after the push sink disconnects from
the server.

Return Values

Previous Next

Previous Next

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

Remarks

If the publishing point specified in pwsURL does not exist, the server creates a new publishing point. The caller
must have write and create permissions on the server. The new publishing point has the same configuration as
the publishing point specified in the pwszTemplateURL parameter. If pwszTemplateURL is NULL, the new
publishing point has the same configuration as the server's default publishing point.

See Also

IWMWriterPushSink Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterPushSink::Disconnect
The Disconnect method disconnects the push sink from the server.

Syntax

HRESULT Disconnect();

Parameters

This method takes no parameters.

Return Values

If the method succeeds, it returns S_OK. If it fails, it returns an HRESULT error code.

Return code Description

S_OK The method succeeded.

E_FAIL The method failed.

E_INVALIDARG Invalid argument; pwszURL cannot be NULL.

E_OUTOFMEMORY Insufficient memory.

NS_E_INVALID_NAME Host name is not valid.

Previous Next

Previous Next

Remarks

The data path on the downstream server remains active for 5 minutes, after which it is cleaned up.

See Also

IWMWriterPushSink Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterPushSink::EndSession
The EndSession method ends the push distribution session. This method sends an end-of-stream message to the
server, and then shuts down the data path on the server.

Syntax

HRESULT EndSession();

Parameters

This method takes no parameters.

Return Values

The method returns an HRESULT. Possible values include, but are not limited to, those in the following table.

See Also

IWMWriterPushSink Interface

Previous Next

Previous Next

Return code Description

S_OK The method succeeded.

NS_E_CONNECTION_FAILURE A connection failure occurred.

NS_E_NOCONNECTION There is no connection to the server. (Possibly this
method was called before any connection was made.)

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterSink Interface
The IWMWriterSink interface is the basic interface of all writer sinks, including the file, network, and push
sinks defined in the Windows Media Format SDK, and custom sinks. If you are using one of the defined writer
sinks, you never need to deal with the methods of this interface. If you are creating your own custom writer
sink, you must implement these methods in your application.

This interface exists on the writer file sink object, the writer network sink object, and the writer push sink
object. You should never obtain a pointer to this interface from one of these objects, however, as its methods are
called internally by the writer sink objects and the writer object. You can create a class in your application that
inherits from this interface to make your own sink.

In addition to the methods inherited from IUnknown, the IWMWriterSink interface exposes the following
methods.

For information about which interfaces can be obtained by using the QueryInterface method of this interface,
see the topic for the object on which this interface is implemented.

See Also

Interfaces
Writer File Sink Object
Writer Network Sink Object
Writer Push Sink Object

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Method Description

AllocateDataUnit Creates a buffer object to receive a data unit.

IsRealTime Ascertains whether the sink requires samples to be sent in real
time.

OnDataUnit Called by the writer object when a data unit is ready for the
sink.

OnEndWriting Called by the writer when all data units have been sent.

OnHeader Called by the writer when the ASF header is ready for the sink.

Previous Next

IWMWriterSink::AllocateDataUnit
The AllocateDataUnit method is called by the writer object when it needs a buffer to deliver a data unit. Your
implementation of this method returns a buffer of at least the size passed in. You can manage buffers internally
in any way that you like. The simplest method is to create a new buffer object for each call, but doing so is quite
inefficient. Instead, most sinks maintain several buffers that are reused.

Syntax

HRESULT AllocateDataUnit(
 DWORD cbDataUnit,
 INSSBuffer** ppDataUnit
);

Parameters

cbDataUnit

[in] Size of the data unit that the writer needs to deliver, in bytes. The buffer you assign to ppDataUnit must be
this size or bigger.

ppDataUnit

[out] On return, set to a pointer to the INSSBuffer interface of a buffer object.

Return Values

This method is implemented by the application. It should always return S_OK.

See Also

IWMWriterSink Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

IWMWriterSink::IsRealTime
The IsRealTime is called by the writer to determine whether the sink needs data units to be delivered in real
time. It is up to you to decide whether your custom sink requires real-time delivery.

Syntax

HRESULT IsRealTime(
 BOOL* pfRealTime
);

Parameters

pfRealTime

[out] Pointer to a Boolean value that is True if the sink requires real time data unit delivery.

Return Values

This method is implemented by the application. It should always return S_OK.

See Also

IWMWriterSink Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterSink::OnDataUnit
The OnDataUnit method is called by the writer when a data unit is ready for the sink. How your application
handles the data unit depends upon the destination of the content.

Syntax

HRESULT OnDataUnit(
 INSSBuffer* pDataUnit
);

Parameters

pDataUnit

Previous Next

Previous Next

[in] Pointer to an INSSBuffer interface on an object containing the data unit.

Return Values

This method is implemented by the application. It should always return S_OK.

See Also

IWMWriterSink Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

IWMWriterSink::OnEndWriting
The OnEndWriting method is called by the writer when writing is complete. This method should conclude
operations for your sink. For example, the writer file sink closes and indexes the file.

Syntax

HRESULT OnEndWriting();

Parameters

This method takes no parameters.

Return Values

This method is implemented by the application. It should always return S_OK.

See Also

IWMWriterSink Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

IWMWriterSink::OnHeader
The OnHeader method is called by the writer when the ASF header is ready for the sink.

Syntax

HRESULT OnHeader(
 INSSBuffer* pHeader
);

Parameters

pHeader

[in] Pointer to an INSSBuffer interface on an object containing the ASF header.

Return Values

This method is implemented by the application. It should always return S_OK.

Remarks

The ASF header will always be sent before any data units, as the header is required for reading the content. The
writer may send the header more than once for a given file. If possible, your sink should write any headers
received.

See Also

IWMWriterSink Interface

© 2000-2003 Microsoft Corporation. All rights reserved.

Structures
The Windows Media Format SDK implements the following structures.

Previous Next

Previous Next

Previous Next

Structure Description

DRM_LICENSE_STATE_DATA Contains license information about a specified DRM
right.

WAVEFORMATEX Defines the format of waveform-audio data.

WAVEFORMATEXTENSIBLE Defines the format of waveform-audio data for
formats having more than two channels.

WM_ADDRESS_ACCESSENTRY Specifies an entry in an IP address access list.

WM_CLIENT_PROPERTIES Records information about the client.

WM_CLIENT_PROPERTIES_EX Records extended information about the client.

WM_GET_LICENSE_DATA Contains information about a DRM license.

WM_INDIVIDUALIZE_STATUS Records the status of the individualization process.

WM_LEAKY_BUCKET_PAIR Describes the buffering requirements for a VBR file.

WM_LICENSE_STATE_DATA Encapsulates a DRM_LICENSE_STATE_DATA
structure which describes DRM license state data.

WM_MEDIA_TYPE Describes a media sample.

WMMPEG2VIDEOINFO Describes an MPEG-2 video stream.

WM_PICTURE Contains the data for the WM/Picture complex
metadata attribute.

WM_PORT_NUMBER_RANGE Describes the range of port numbers used by the
IWMReaderNetworkConfig interface.

WM_READER_CLIENTINFO Describes the client reader (player) accessing the
media stream.

WM_READER_STATISTICS Describes the performance of a reading operation.

WMSCRIPTFORMAT Defines the format of a script stream.

WM_STREAM_PRIORITY_RECORD Contains a stream number and specifies whether
delivery of that stream is mandatory.

WM_SYNCHRONISED_LYRICS Contains the data for the WM/Lyrics_Synchronised
complex metadata attribute.

WM_USER_TEXT Contains the data for the WM/Text complex
metadata attribute.

WM_USER_WEB_URL Contains the data for the WM/UserWebURL
complex metadata attribute.

WM_WRITER_STATISTICS Describes the performance of a writing operation.

WM_WRITER_STATISTICS_EX Contains extended writer statistics.

WMT_BUFFER_SEGMENT Contains the information necessary to specify a
segment in a packet.

See Also

Programming Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

DRM_LICENSE_STATE_DATA
The DRM_LICENSE_STATE_DATA structure contains license information about a specified DRM right.

Syntax

typedef struct DRM_LICENSE_STATE_DATA{
 DWORD dwStreamId;
 DRM_LICENSE_STATE_CATEGORY dwCategory;
 DWORD dwNumCounts;
 DWORD dwCount[4];
 DWORD dwNumDates;
 FILETIME datetime[4];
 DWORD dwVague;
};

WMT_FILESINK_DATA_UNIT Contains information about a packet.

WMT_PAYLOAD_FRAGMENT Contains the information necessary to extract a
payload fragment from a packet.

WMT_TIMECODE_EXTENSION_DATA Contains a single SMPTE time code and related
information.

WMT_VIDEOIMAGE_SAMPLE Contains information about a Video Image sample.

WMT_WATERMARK_ENTRY Contains information about a watermarking system.

WMT_WEBSTREAM_FORMAT Contains information about a Web stream.

WMT_WEBSTREAM_SAMPLE_HEADER Contains header information for Web stream samples.

WMVIDEOINFOHEADER Describes the bitmap and color information for a
video image.

WMVIDEOINFOHEADER2 Describes the bitmap and color information for a
video image, including interlace, copy protection, and
aspect ratio.

Previous Next

Previous Next

Members

dwStreamId

Stream number to which the license applies. Must be 0, which indicates that the license applies to all streams in
the file.

dwCategory

Category of string to be displayed. See DRM_LICENSE_STATE_CATEGORY for possible values and their
meaning.

dwNumCounts

Number of items supplied in dwCount. This value is typically 0 or 1.

dwCount[4]

An array of 0 or 1 or more DWORDs that represent the number of times the action specified in dwCategory
may be performed. See Remarks.

dwNumDates

Number of items supplied in datetime. Typically no more than two dates are used, for example, with a license
that is valid from one date until another date.

datetime[4]

An array of one or more FILETIME structures representing one or more dates in the license. The meaning of a
particular date depends on the value of dwCategory.

dwVague

Certainty of the information. Zero means certain and 1 means there might be more licenses. See Remarks.

Remarks

This structure is returned (encapsulated in a WM_LICENSE_STATE_DATA structure) from a call to
IWMDRMReader::GetDRMProperty when you specify one of the DRM license state properties. These
properties are: DRM_LicenseState_Playback, DRM_LicenseState_CopyToCD,
DRM_LicenseState_CopyToSDMIDevice, or DRM_LicenseState_CopyToNonSDMIDevice.

If dwCatefory is WM_DRM_LICENSE_STATE_COUNT_FROM_UNTIL, then the datetime array will
typically contain two dates, a "from" date and an "until" date. Two date pairs may also be specified to create
more complex licenses.

The elements of the dwCount array correspond to the dates or date ranges specified in the datetime array. If
dwCatefory is WM_DRM_LICENSE_STATE_COUNT_FROM_UNTIL and datetime contains one pair of
dates, then dwCount will contain one element. If datetime contains two date pairs (four elements), then
dwCount should contain two elements, one for each date pair.

In some cases, users may have been issued more than one license for a file. For example, they might have

acquired a license that allowed five plays until the end of the month, and later acquired a second license for
unlimited rights. In such a case, dwVague is 1 and the DRM component will use an algorithm to determine the
most likely set of rights that have been applied. When one license expires, the DRM component will examine
the remaining license(s), and so on until all licenses have expired.

See Also

Structures

© 2000-2003 Microsoft Corporation. All rights reserved.

WAVEFORMATEX
The WAVEFORMATEX structure defines the format of waveform-audio data. Only format information
common to all waveform-audio data formats is included in this structure. For formats that require additional
information, this structure is included as the first member in another structure, along with the additional
information.

This structure is part of the Platform SDK and is declared in Mmreg.h. It is documented here for convenience.

Syntax

typedef struct {
 WORD wFormatTag;
 WORD nChannels;
 DWORD nSamplesPerSec;
 DWORD nAvgBytesPerSec;
 WORD nBlockAlign;
 WORD wBitsPerSample;
 WORD cbSize;
} WAVEFORMATEX;

Members

wFormatTag

Waveform-audio format type. Format tags are registered with Microsoft Corporation for many compression
algorithms. A complete list of format tags can be found in the Mmreg.h header file. For one- or two-channel
PCM data, this value should be WAVE_FORMAT_PCM.

nChannels

Number of channels in the waveform-audio data. Monaural data uses one channel and stereo data uses two

Previous Next

Previous Next

channels.

nSamplesPerSec

Sample rate, in samples per second (hertz). If wFormatTag is WAVE_FORMAT_PCM, then common values
for nSamplesPerSec are 8.0 kHz, 11.025 kHz, 22.05 kHz, and 44.1 kHz. For non-PCM formats, this member
must be computed according to the manufacturer's specification of the format tag.

nAvgBytesPerSec

In most cases, this member contains the required average data-transfer rate, in bytes per second, for the format
tag. If wFormatTag is WAVE_FORMAT_PCM, nAvgBytesPerSec should be equal to the product of
nSamplesPerSec and nBlockAlign. For non-PCM formats, this member must be computed according to the
manufacturer's specification of the format tag. When the Windows Media Audio 9 Codec is in quality-based
variable-bit-rate mode, the high-order bytes of this member are set to 0x7fffff and the low-order byte is set to a
value from one through 100 which indicates the quality level.

nBlockAlign

Block alignment, in bytes. The block alignment is the minimum atomic unit of data for the wFormatTag
format type. If wFormatTag is WAVE_FORMAT_PCM or WAVE_FORMAT_EXTENSIBLE, nBlockAlign
must be equal to the product of nChannels and wBitsPerSample divided by 8 (bits per byte). For non-PCM
formats, this member must be computed according to the manufacturer's specification of the format tag.

Software must process a multiple of nBlockAlign bytes of data at a time. Data written to and read from a device
must always start at the beginning of a block. For example, it is illegal to start playback of PCM data in the
middle of a sample (that is, on a non-block-aligned boundary).

wBitsPerSample

Bits per sample for the wFormatTag format type. If wFormatTag is WAVE_FORMAT_PCM, then
wBitsPerSample should be equal to 8 or 16. For non-PCM formats, this member must be set according to the
manufacturer's specification of the format tag. If wFormatTag is WAVE_FORMAT_EXTENSIBLE, this value
can be any integer multiple of 8. Some compression schemes cannot define a value for wBitsPerSample, so this
member can be zero.

cbSize

Size, in bytes, of extra format information appended to the end of the WAVEFORMATEX structure. This
information can be used by non-PCM formats to store extra attributes for the wFormatTag. If no extra
information is required by the wFormatTag, this member must be set to zero. For WAVE_FORMAT_PCM
formats (and only WAVE_FORMAT_PCM formats), this member is ignored.

See Also

Structures
WAVEFORMATEXTENSIBLE

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

WAVEFORMATEXTENSIBLE
The WAVEFORMATEXTENSIBLE structure defines the format of waveform-audio data for formats having
more than two channels.

This structure is part of the Platform SDK and is declared in Mmreg.h. It is documented here for convenience.

Syntax

typedef struct {
 WAVEFORMATEX Format;
 union {
 WORD wValidBitsPerSample;
 WORD wSamplesPerBlock;
 WORD wReserved;
 } Samples;
 DWORD dwChannelMask;
 GUID SubFormat;
} WAVEFORMATEXTENSIBLE, *PWAVEFORMATEXTENSIBLE;

Members

Format

WAVEFORMATEX structure that specifies the basic format. The wFormatTag member must be
WAVE_FORMAT_EXTENSIBLE, defined in Mmreg.h. The cbSize member must be at least 22.

wValidBitsPerSample

Number of bits of precision in the signal. Usually equal to WAVEFORMATEX.wBitsPerSample.

wSamplesPerBlock

Number of samples contained in one compressed block of audio data. This value is used in buffer estimation.
This value is used with compressed formats that have a fixed number of samples within each block. This value
can be set to zero if a variable number of samples is contained in each block of compressed audio data. In this
case, buffer estimation and position information needs to be obtained in other ways.

wReserved

Reserved for internal use by operating system. Set to zero.

dwChannelMask

Bitmask specifying the assignment of channels in the stream to speaker positions. See Remarks.

Previous Next

SubFormat

Subformat of the data, such as KSDATAFORMAT_SUBTYPE_PCM. The subformat information is similar to
that provided by the tag in the WAVEFORMATEX structure's wFormatTag member.

Remarks

The dwChannelMask member specifies which channels are present in the multichannel stream. The least
significant bit corresponds with the front left speaker, the next least significant bit corresponds to the front right
speaker, and so on. The bits, in order of significance, are defined in Ksmedia.h and Mmreg.h as follows:

For more information on this structure, see the document Multiple Channel Audio Data and WAVE Files,
available at the Microsoft Web site.

See Also

Structures

Speaker position Flag bit

SPEAKER_FRONT_LEFT 0x1

SPEAKER_FRONT_RIGHT 0x2

SPEAKER_FRONT_CENTER 0x4

SPEAKER_LOW_FREQUENCY 0x8

SPEAKER_BACK_LEFT 0x10

SPEAKER_BACK_RIGHT 0x20

SPEAKER_FRONT_LEFT_OF_CENTER 0x40

SPEAKER_FRONT_RIGHT_OF_CENTER 0x80

SPEAKER_BACK_CENTER 0x100

SPEAKER_SIDE_LEFT 0x200

SPEAKER_SIDE_RIGHT 0x400

SPEAKER_TOP_CENTER 0x800

SPEAKER_TOP_FRONT_LEFT 0x1000

SPEAKER_TOP_FRONT_CENTER 0x2000

SPEAKER_TOP_FRONT_RIGHT 0x4000

SPEAKER_TOP_BACK_LEFT 0x8000

SPEAKER_TOP_BACK_CENTER 0x10000

SPEAKER_TOP_BACK_RIGHT 0x20000

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

WM_ADDRESS_ACCESSENTRY
The WM_ADDRESS_ACCESSENTRY structure specifies an entry in an IP address access list.

Syntax

typedef struct _WMAddressAccessEntry{
 DWORD dwIPAddress;
 DWORD dwMask;
} WM_ADDRESS_ACCESSENTRY;

Members

dwIPAddress

An IPv4 address, in network byte order.

dwMask

An IPv4 address, in network byte order, to use as a bitmask. The bitmask defines which bits in the dwIPAdress
field are matched against. For example, if the IP address is 206.73.118.1 and the mask is 255.255.255.0, only
the first 24 bits of the address are examined. Thus, any IP addresses in the range 206.73.118.XXX would match
this entry.

Remarks

You can use the inet_addr function to convert a standard dotted-format string (such as "255.255.255.255") to
the correct binary number in network byte order.

See Also

IWMAddressAccess Interface
Structures

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

WM_CLIENT_PROPERTIES
The WM_CLIENT_PROPERTIES structure records information about the client.

Syntax

typedef struct _WMClientProperties{
 DWORD dwIPAddress;
 DWORD dwPort;
} WM_CLIENT_PROPERTIES;

Members

dwIPAddress

DWORD containing the IP address.

Protocol

DWORD containing the port number.

See Also

IWMClientConnections::GetClientProperties
Structures
WMT_NET_PROTOCOL

© 2000-2003 Microsoft Corporation. All rights reserved.

WM_CLIENT_PROPERTIES_EX
The WM_CLIENT_PROPERTIES_EX structure holds extended client information.

Syntax

Previous Next

Previous Next

Previous Next

typedef struct _WMClientPropertiesEx{
 DWORD cbSize;
 LPCWSTR pwszIPAddress;
 LPCWSTR pwszPort;
 LPCWSTR pwszDNSName;
} WM_CLIENT_PROPERTIES_EX;

Members

cbSize

DWORD containing the size of the structure.

pwszIPAddress

String containing the client's IP address in dot notation (for example, "192.168.10.2").

pwszPort

String containing the client's port number.

pwszDNSName

String containing the client's name on the domain name server (DNS), if known.

See Also

Structures
WM_CLIENT_PROPERTIES

© 2000-2003 Microsoft Corporation. All rights reserved.

WM_GET_LICENSE_DATA
The WM_GET_LICENSE_DATA structure contains information about where to acquire a DRM license.

Syntax

typedef struct _WMGetLicenseData{
 DWORD dwSize;
 HRESULT hr;
 WCHAR* wszURL;
 WCHAR* wszLocalFilename;

Previous Next

Previous Next

 BYTE* pbPostData;
 DWORD dwPostDataSize;
} WM_GET_LICENSE_DATA;

Members

dwSize

DWORD containing the size of the WM_GET_LICENSE_DATA structure, in bytes.

hr

HRESULT return code.

wszURL

Wide-character null-terminated string containing the license acquisition URL. Use this string and the
pbPostData string in non-silent license acquisition.

wszLocalFilename

Wide-character null-terminated string containing a local HTML page that is generated by the DRM component.
When this string is loaded into a browser, it automatically redirects the HTTP request to the license acquisition
URL, along with the necessary post data. Use of this local URL is now deprecated. The recommended approach
is to use the wszURL and pbPostData strings.

pbPostData

Pointer to a byte array containing the data to be posted to the license acquisition URL. You must add the
following string to the beginning of the pbPostData string: "nonsilent=1&challenge=". The resulting string
should then be appended to wszURL when you form the HTTP request.

dwPostDataSize

DWORD that indicates the size of pbPostData without the "nonsilent=1&challenge=" string referred to in
pbPostData.

Remarks

This filled-in structure is returned in the pValue parameter of the IWMStatusCallback::OnStatus method if
WMT_STATUS equals WMT_NO_RIGHTS_EX or WMT_ACQUIRE_LICENSE. For
WMT_NO_RIGHTS_EX events, the hr member will be NS_E_LICENSE_REQUIRED,
NS_E_LICENSE_OUTOFDATE, or NS_E_LICENSE_INCORRECT_RIGHTS. Any of these errors indicates
that a new license must be acquired by navigating to the URL in the wszURL member.

For WMT_ACQUIRE_LICENSE events, the hr member will pass the SUCCEEDED macro if a license was
successfully acquired. If this event is received after an attempt at silent acquisition, and hr equals
NS_E_DRM_LICENSE_NOTACQUIRED, it indicates that only non-silent acquisition is supported by the
license server for this license.

The Audioplayer sample application demonstrates how to correctly use the information returned in this
structure.

See Also

IWMDRMReader::AcquireLicense
Structures

© 2000-2003 Microsoft Corporation. All rights reserved.

WM_INDIVIDUALIZE_STATUS
The WM_INDIVIDUALIZE_STATUS structure records the status of the individualization process.

Syntax

typedef struct _WMIndividualizeStatus{
 HRESULT hr;
 DRM_INDIVIDUALIZATION_STATUS enIndiStatus;
 LPSTR pszIndiRespUrl;
 DWORD dwHTTPRequest;
 DRM_HTTP_STATUS enHTTPStatus;
 DWORD dwHTTPReadProgress;
 DWORD dwHTTPReadTotal;
} WM_INDIVIDUALIZE_STATUS;

Members

hr

HRESULT return code.

enIndiStatus

Value from the DRM_INDIVIDUALIZATION_STATUS enumeration type.

pszIndiRespUrl

Pointer to a null-terminated string containing the individualization response URL.

dwHTTPRequest

DWORD that indicates the number of HTTP round trips to the individualization service that have been
completed..

enHTTPStatus

Previous Next

Previous Next

Value from the DRM_HTTP_STATUS enumeration type.

dwHTTPReadProgress

DWORD containing the number of bytes downloaded until now..

dwHTTPReadTotal

DWORD containing the total number of bytes to be downloaded. Use this value and dwHTTPReadProgress
to display a user interface indicating how much of the download has completed and how much remains to be
done.

Remarks

This structure is filled in by the DRM run-time components and is sent to applications in the pValue parameter
of the applications IWMStatusCallback::OnStatus method when the event equals WMT_INDIVIDUALIZE.
The application receives this event multiple times during the download process.

See Also

DRM_HTTP_STATUS
Structures

© 2000-2003 Microsoft Corporation. All rights reserved.

WM_LEAKY_BUCKET_PAIR
The WM_LEAKY_BUCKET_PAIR structure describes the buffering requirements for a VBR file. This
structure is used with the ASFLeakyBucketPairs attribute.

Syntax

typedef struct _WMLeakyBucketPair{
 DWORD dwBitrate;
 DWORD msBufferWindow;
} WM_LEAKY_BUCKET_PAIR;

Members

dwBitrate

Bit rate, in bits per second.

Previous Next

Previous Next

msBufferWindow

Size of the buffer window, in milliseconds.

Remarks

The ASFLeakyBucketPairs attribute gives a list of bit rates and corresponding buffer windows. For each bit
rate, the msBufferWindow member indicates how much content the reader object will buffer before it begins
playback. The size of the buffer in bytes equals msBufferWinow x dwBitrate / 8000.

See Also

Structures

© 2000-2003 Microsoft Corporation. All rights reserved.

WM_LICENSE_STATE_DATA
The WM_LICENSE_STATE_DATA structure encapsulates a DRM_LICENSE_STATE_DATA structure
which describes DRM license state data.

Syntax

typedef struct _WM_LICENSE_STATE_DATA{
 DWORD dwSize;
 DWORD dwNumStates;
 DRM_LICENSE_STATE_DATA stateData[1];
};

Members

dwSize

Size of the structure, in bytes. This value depends on the size of the DRM_LICENSE_STATE_DATA structure
in the stateData member.

dwNumStates

Number of elements in the stateData array. Typically will be 1.

stateData

Previous Next

Previous Next

A DRM_LICENSE_STATE_DATA structure that contains information about a specified right in the license.

Remarks

When you call IWMDRMReader::GetDRMProperty and specify, for example,
g_wszWMDRM_LicenseState_CopyToCD, in the pwstrName parameter, a filled-in
WM_LICENSE_STATE_DATA structure is returned in the pValue parameter.

See Also

Structures

© 2000-2003 Microsoft Corporation. All rights reserved.

WM_MEDIA_TYPE
The WM_MEDIA_TYPE structure is the primary structure used to describe media formats for the objects of
the Windows Media Format SDK. For more information about media formats and what they are used for, see
Formats.

Syntax

typedef struct _WMMediaType{
 GUID majortype;
 GUID subtype;
 BOOL bFixedSizeSamples;
 BOOL bTemporalCompression;
 ULONG lSampleSize;
 GUID formattype;
 IUnknown* pUnk;
 ULONG cbFormat;
 [size_is(cbFormat)] BYTE *pbFormat;
} WM_MEDIA_TYPE;

Members

majortype

Major type of the media sample. For example, WMMEDIATYPE_Video specifies a video stream. For a list of
possible major media types, see Media Types.

subtype

Previous Next

Previous Next

Subtype of the media sample. The subtype defines a specific format (usually an encoding scheme) within a
major media type. For example, WMMEDIASUBTYPE_WMV3 specifies a video stream encoded with the
Windows Media Video 9 codec. Subtypes can be uncompressed or compressed. For lists of possible media
subtypes, see Uncompressed Media Subtypes and Compressed Media Subtypes.

bFixedSizeSamples

Set to true if the samples are of a fixed size. Compressed audio samples are of a fixed size while video samples
are not.

bTemporalCompression

Set to true if the samples are temporally compressed. Temporal compression is compression where some
samples describe the changes in content from the previous sample, instead of describing the sample in its
entirety. Only compressed video can be temporally compressed. By definition, no media type can use both fixed
sized samples and temporal compression.

lSampleSize

Long integer containing the size of the sample, in bytes. This member is used only if bFixedSizeSamples is
true.

formattype

GUID of the format type. The format type specifies the additional structure used to identify the media format.
This structure is pointed to by pbFormat.

pUnk

Not used. Should be NULL.

cbFormat

Size, in bytes, of the structure pointed to by pbFormat.

pbFormat

Pointer to the format structure of the media type. The structure referenced is determined by the format type
GUID. Format types include:

Remarks

Media type Structure

WMFORMAT_VideoInfo WMVIDEOINFOHEADER

WMFORMAT_WaveFormatEx WAVEFORMATEX

WMFORMAT_MPEG2Video WMMPEG2VIDEOINFO

WMFORMAT_WebStream WMT_WEBSTREAM_FORMAT

WMFORMAT_Script WMSCRIPTFORMAT

This is the same as the DirectShow structure AM_MEDIA_TYPE but is redefined in this SDK to avoid
conflict with DirectShow names.

See Also

IWMMediaProps::GetMediaType
IWMMediaProps::SetMediaType
Media Type Identifiers
Media Types
Structures

© 2000-2003 Microsoft Corporation. All rights reserved.

WMMPEG2VIDEOINFO
The WMMPEG2VIDEOINFO structure describes an MPEG-2 video stream.

Syntax

typedef struct tag
WMMPEG2VIDEOINFO {
 WMVIDEOINFOHEADER2 hdr;
 DWORD dwStartTimeCode;
 DWORD cbSequenceHeader;
 DWORD dwProfile;
 DWORD dwLevel;
 DWORD dwFlags;
 DWORD dwSequenceHeader[1];
} WMMPEG2VIDEOINFO;

Members

hdr

WMVIDEOINFOHEADER2 structure giving header information.

dwStartTimeCode

25-bit group-of-pictures (GOP) time code at start of data. This field is not used for DVD.

cbSequenceHeader

Length of the sequence header, in bytes. For DVD, set this field to zero. The sequence header is given in the

Previous Next

Previous Next

dwSequenceHeader field.

dwProfile

AM_MPEG2Profile enumeration type that specifies the MPEG-2 profile.

dwLevel

AM_MPEG2Level enumeration type that specifies the MPEG-2 level.

dwFlags

Flag indicating preferences. Flags are defined in Dvdmedia.h.

Set undefined bits to zero or the connection will be rejected.

dwSequenceHeader

Address of a buffer that contains the sequence header, including quantization matrices and the sequence
extension, if required. This field is typed as a DWORD array to preserve the 32-bit alignment.

Remarks

This structure is identical to the MPEG2VIDEOINFO structure defined in Dvdmedia.h. For more information,
see the DirectShow documentation in the DirectX SDK.

See Also

Structures

© 2000-2003 Microsoft Corporation. All rights reserved.

WM_PICTURE
The WM_PICTURE structure is used as the data item for the WM/Picture complex metadata attribute.

Syntax

typedef struct _WMPicture{
 LPWSTR pwszMIMEType;
 BYTE bPictureType;
 LPWSTR pwszDescription;

Previous Next

Previous Next

 DWORD dwDataLen;
 BYTE* pbData;
} WM_PICTURE;

Members

pwszMIMEType

Pointer to a wide-character null-terminated string containing the multipurpose Internet mail extension (MIME)
type of the picture.

bPictureType

BYTE value containing one of the following values.

Value Description

0 Picture of a type not specifically listed in this table

1 32 pixel by 32 pixel file icon. Use only with portable network graphics (PNG)
format.

2 File icon not conforming to type 1 above.

3 Front album cover.

4 Back album cover.

5 Leaflet page.

6 Media. Typically this type of image is of the label side of a CD.

7 Picture of the lead artist, lead performer, or soloist.

8 Picture of one of the artists or performers.

9 Picture of the conductor.

10 Picture of the band or orchestra.

11 Picture of the composer.

12 Picture of the lyricist or writer.

13 Picture of the recording studio or location.

14 Picture taken during a recording session.

15 Picture taken during a performance.

16 Screen capture from a movie or video.

17 A bright colored fish.

18 Illustration.

19 Logo of the band or artist.

20 Logo of the publisher or studio.

pwszDescription

Pointer to a wide-character null-terminated string containing a description of the picture.

dwDataLen

DWORD value containing the size, in bytes, of the picture data pointed to by pbData.

pbData

Pointer to a BYTE array containing the picture data.

See Also

Structures

© 2000-2003 Microsoft Corporation. All rights reserved.

WM_PORT_NUMBER_RANGE
The WM_PORT_NUMBER_RANGE structure describes the range of port numbers used by the
IWMReaderNetworkConfig interface.

Syntax

typedef struct WM_PORT_NUMBER_RANGE{
 WORD wPortBegin;
 WORD wPortEnd;
};

Members

wPortBegin

WORD containing the lowest port number.

wPortEnd

WORD containing the highest port number.

See Also

Previous Next

Previous Next

IWMReaderNetworkConfig Interface
IWMReaderNetworkConfig::GetUDPPortRanges
IWMReaderNetworkConfig::SetUDPPortRanges
Structures

© 2000-2003 Microsoft Corporation. All rights reserved.

WM_READER_CLIENTINFO
The WM_READER_CLIENTINFO structure describes the client reader (player) accessing the media stream.

Syntax

typedef struct _WMReaderClientInfo{
 DWORD cbSize;
 WCHAR* wszLang;
 WCHAR* wszBrowserUserAgent;
 WCHAR* wszBrowserWebPage;
 QWORD qwReserved;
 LPARAM* pReserved;
 WCHAR* wszHostExe;
 QWORD qwHostVersion;
 WCHAR* wszPlayerUserAgent;
} WM_READER_CLIENTINFO;

Members

cbSize

Size of the structure in bytes.

wszLang

Two-letter or three-letter language code.

wszBrowserUserAgent

The browser's user-agent string.

wszBrowserWebPage

Web page that contains the plug-in.

Previous Next

Previous Next

qwReserved

Reserved.

pReserved

Unused. See Remarks.

wszHostExe

Host application's .exe file; for example, Iexplore.exe.

qwHostVersion

Version number of the host application. The value is four unsigned WORD values packed into a 64-bit integer.
When the client information is logged, each WORD value is unpacked and translated into its decimal
equivalent. For example, if the value is 0x0001000200030004, the version number is logged as "1.2.3.4"

wszPlayerUserAgent

String identifying the player application. For example, "WMPlayer/9.0.0.0" identifies version 9 of the Windows
Media Player.

Remarks

In earlier versions of this SDK, the pReserved member was named wszHostUniquePID. The application used
this member to specify an ID to send to the server. In the current version, the reader object automatically
generates a GUID for the ID, so this structure member is obsolete. It is present only to provide binary
compatibility with earlier versions of the SDK.

The GUID generated by the reader object represents a unique user on a particular computer. The reader object
stores this value in the registry. If the registry entry does not exist, the SDK dynamically creates it. For more
information, see IWMReaderAdvanced2::SetLogClientID.

See Also

IWMReaderAdvanced::SetClientInfo
Structures

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

WM_READER_STATISTICS
The WM_READER_STATISTICS structure describes the performance of a reading operation.

Syntax

typedef struct _WMReaderStatistics{
 DWORD cbSize;
 DWORD dwBandwidth;
 DWORD cPacketsReceived;
 DWORD cPacketsRecovered;
 DWORD cPacketsLost;
 WORD wQuality;
} WM_READER_STATISTICS;

Members

cbSize

The size of the WM_READER_STATISTICS structure, in bytes.

dwBandwidth

DWORD containing the bandwidth, in bits per second.

cPacketsReceived

Count of packets received.

cPacketsRecovered

Count of lost packets which were recovered. This value is only relevant during network playback.

cPacketsLost

Count of lost packets which were not recovered. This value is only relevant during network playback.

wQuality

WORD containing the quality, which is the percentage of total packets that were received.

Remarks

You must set the cbSize member manually before using this structure. It should always be set to sizeof
(WM_READER_STATISTICS).

See Also

IWMReaderAdvanced::GetStatistics
Structures

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

WMSCRIPTFORMAT
The WMSCRIPTFORMAT structure describes the type of script data used in a script stream.

Syntax

typedef struct tagWMSCRIPTFORMAT{
 GUID scriptType;
} WMSCRIPTFORMAT;

Members

scriptType

GUID identifying the type of script commands in a script stream. Always set to
WMSCRIPTTYPE_TwoStrings.

See Also

Structures

© 2000-2003 Microsoft Corporation. All rights reserved.

WM_STREAM_PRIORITY_RECORD
The WM_STREAM_PRIORITY_RECORD structure contains a stream number and specifies whether
delivery of that stream is mandatory.

Syntax

Previous Next

Previous Next

Previous Next

typedef struct _WMStreamPrioritizationRecord{
 WORD wStreamNumber;
 BOOL fMandatory;
} WM_STREAM_PRIORITY_RECORD;

Members

wStreamNumber

WORD containing the stream number.

fMandatory

Flag indicating whether the listed stream is mandatory. Mandatory streams will not be dropped regardless of
their position in the priority list.

Remarks

WM_STREAM_PRIORITY_RECORD is used in an array by the IWMStreamPrioritization interface.
Each member of the array specifies a stream; the lower the element number in the array, the higher the priority
of the stream.

See Also

IWMStreamPrioritization Interface
Structures

© 2000-2003 Microsoft Corporation. All rights reserved.

WM_SYNCHRONISED_LYRICS
The WM_SYNCHRONISED_LYRICS structure is used as the data item for the WM/Lyrics_Synchronised
complex metadata attribute.

Syntax

typedef struct _WMSynchronisedLyrics{
 BYTE bTimeStampFormat;
 BYTE bContentType;
 LPWSTR pwszContentDescriptor;
 DWORD dwLyricsLen;
 BYTE* pbLyrics;
} WM_SYNCHRONISED_LYRICS;

Previous Next

Previous Next

Members

bTimeStampFormat

BYTE specifying the format of time stamps in the lyrics. Set to one of the following values.

bContentType

BYTE specifying the type of synchronized strings that are in the lyrics data. Set to one of the following values.

pwszContentDescriptor

Pointer to a wide-character null-terminated string containing data from the encoding application. An individual
application can use this member in any way desired.

dwLyricsLen

DWORD containing the length, in bytes, of the lyric data pointed to by pbLyrics.

pbLyrics

Pointer to a BYTE array containing the lyrics. You can break the lyrics into syllables, or divide them in some
other way that suits the needs of your application. Each syllable or part is included as a null-terminated, wide-
character string followed by a 32-bit time stamp. The unit of measurement for the time stamp is determined by
the value of bTimeStampFormat.

Value Description

1 Time stamps are 32-bit values containing the absolute time of the lyric in frame
numbers.

2 Time stamps are 32-bit values containing the absolute time of the lyric in
milliseconds.

Value Description

0 Synchronized strings other than the types listed in this table.

1 Song lyrics.

2 Text transcription.

3 Names of parts of the content. For example, movements of classical pieces, like
"Adagio".

4 Events, such as stage directions in operas.

5 Chord notations.

6 Trivia information.

7 URLs to Web pages.

8 URLs to images.

Remarks

The objects of the Windows Media Format SDK do not validate the values of time stamps for synchronized
lyrics. However, the data is checked to ensure that there is a time stamp for every string, and that the data
alternates between strings and integers.

See Also

Structures

© 2000-2003 Microsoft Corporation. All rights reserved.

WM_USER_TEXT
The WM_USER_TEXT structure is used as the data item for the WM/Text complex metadata attribute.

Syntax

typedef struct _WMUserText{
 LPWSTR pwszDescription;
 LPWSTR pwszText;
} WM_USER_TEXT;

Members

pwszDescription

Pointer to a wide-character null-terminated string containing the description of the text entry.

pwszText

Pointer to a wide-character null-terminated string containing the text.

See Also

Structures

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

WM_USER_WEB_URL
The WM_USER_WEB_URL structure is used as the data item for the WM/UserWebURL complex metadata
attribute.

Syntax

typedef struct _WMUserWebURL{
 LPWSTR pwszDescription;
 LPWSTR pwszURL;
} WM_USER_WEB_URL;

Members

pwszDescription

Pointer to a wide-character null-terminated string containing the description of the Web site pointed to by the
URL.

pwszURL

Pointer to a wide-character null-terminated string containing the URL.

See Also

Structures

© 2000-2003 Microsoft Corporation. All rights reserved.

WM_WRITER_STATISTICS
The WM_WRITER_STATISTICS structure describes the performance of a writing operation.

Syntax

Previous Next

Previous Next

Previous Next

typedef struct _WMWriterStatistics{
 QWORD qwSampleCount;
 QWORD qwByteCount;
 QWORD qwDroppedSampleCount;
 QWORD qwDroppedByteCount;
 DWORD dwCurrentBitrate;
 DWORD dwAverageBitrate;
 DWORD dwExpectedBitrate;
 DWORD dwCurrentSampleRate;
 DWORD dwAverageSampleRate;
 DWORD dwExpectedSampleRate;
} WM_WRITER_STATISTICS;

Members

qwSampleCount

QWORD containing the sample count.

qwByteCount

QWORD containing the byte count.

qwDroppedSampleCount

QWORD containing the dropped sample count.

qwDroppedByteCount

QWORD containing the dropped byte count.

dwCurrentBitrate

DWORD containing the current bit rate.

dwAverageBitrate

DWORD containing the average bit rate.

dwExpectedBitrate

DWORD containing the expected bit rate.

dwCurrentSampleRate

DWORD containing the current sample rate.

dwAverageSampleRate

DWORD containing the average sample rate.

dwExpectedSampleRate

DWORD containing the expected sample rate.

Remarks

Sample rates are specified in kilohertz. For instance, a sample rate of 8 indicates 8000 samples per second.

See Also

IWMWriterAdvanced::GetStatistics
Structures

© 2000-2003 Microsoft Corporation. All rights reserved.

WM_WRITER_STATISTICS_EX
The WM_WRITER_STATISTICS_EX structure is used by IWMWriterAdvanced3::GetStatisticsEx to
obtain extended writer statistics.

Syntax

typedef struct _WMWriterStatisticsEx{
 DWORD dwBitratePlusOverhead;
 DWORD dwCurrentSampleDropRateInQueue;
 DWORD dwCurrentSampleDropRateInCodec;
 DWORD dwCurrentSampleDropRateInMultiplexer;
 DWORD dwTotalSampleDropsInQueue;
 DWORD dwTotalSampleDropsInCodec;
 DWORD dwTotalSampleDropsInMultiplexer;
} WM_WRITER_STATISTICS_EX;

Members

dwBitratePlusOverhead

DWORD containing the bit rate plus any overhead.

dwCurrentSampleDropRateInQueue

DWORD containing the current rate at which samples are dropped in the queue in order to reduce demands on
the CPU.

dwCurrentSampleDropRateInCodec

DWORD containing the current rate at which samples are dropped in the codec. Samples can be dropped when
they contain little new data. To prevent this from happening, call IWMWriterAdvanced2::SetInputSetting to

Previous Next

Previous Next

set the g_wszFixedFrameRate setting to TRUE.

dwCurrentSampleDropRateInMultiplexer

DWORD containing the current rate at which samples are dropped in the multiplexer because they arrived late
or overflowed the buffer window.

dwTotalSampleDropsInQueue

DWORD containing the total number of samples dropped in the queue.

dwTotalSampleDropsInCodec

DWORD containing the total number of samples dropped in the codec.

dwTotalSampleDropsInMultiplexer

DWORD containing the total number of samples dropped in the multiplexer.

Remarks

Sample rates are given in kilohertz.

Basic writer statistics are contained within a WM_WRITER_STATISTICS structure and must be obtained by
calling IWMWriterAdvanced::GetStatistics.

See Also

Structures

© 2000-2003 Microsoft Corporation. All rights reserved.

WMT_BUFFER_SEGMENT
The WMT_BUFFER_SEGMENT structure contains the information needed to specify a segment in a buffer.
It is used as a member of the WMT_FILESINK_DATA_UNIT and WMT_PAYLOAD_FRAGMENT
structures to specify segments of a packet.

Syntax

typedef struct _WMT_BUFFER_SEGMENT{
 INSSBuffer* pBuffer;

Previous Next

Previous Next

 DWORD cbOffset;
 DWORD cbLength;
} WMT_BUFFER_SEGMENT;

Members

pBuffer

Pointer to a buffer object containing the buffer segment.

cbOffset

The offset, in bytes, from the start of the buffer to the buffer segment.

cbLength

The length, in bytes, of the buffer segment.

See Also

Structures

© 2000-2003 Microsoft Corporation. All rights reserved.

WMT_FILESINK_DATA_UNIT
The WMT_FILESINK_DATA_UNIT structure is used by IWMWriterFileSink3::OnDataUnitEx to deliver
information about a packet.

Syntax

typedef struct _WMT_FILESINK_DATA_UNIT{
 WMT_BUFFER_SEGMENT packetHeaderBuffer;
 DWORD cPayloads;
 WMT_BUFFER_SEGMENT* pPayloadHeaderBuffers;
 DWORD cPayloadDataFragments;
 WMT_PAYLOAD_FRAGMENT* pPayloadDataFragments;
} WMT_FILESINK_DATA_UNIT;

Members

packetHeaderBuffer

Previous Next

Previous Next

A WMT_BUFFER_SEGMENT structure specifying the buffer segment that contains the packet header.

cPayloads

Count of payloads in this packet. This is also the number of elements in the array specified in
pPayloadHeaderBuffers.

pPayloadHeaderBuffers

Pointer to an array of WMT_BUFFER_SEGMENT structures. Each element specifies a buffer segment that
contains a payload header. The number of elements is specified by cPayloads.

cPayloadDataFragments

Count of payload data fragments in this packet. This is also the number of elements in the array pointed to by
pPayloadDataFragments.

pPayloadDataFragments

Pointer to an array of WMT_PAYLOAD_FRAGMENT structures. Each element specifies a buffer segment
that contains a payload fragment. The number of elements is specified by cPayloadDataFragments.

See Also

IWMWriterFileSink3::OnDataUnitEx
Structures

© 2000-2003 Microsoft Corporation. All rights reserved.

WMT_PAYLOAD_FRAGMENT
The WMT_PAYLOAD_FRAGMENT structure contains the information needed to extract a payload
fragment from a buffer and identifies the payload to which the fragment belongs. An array of
WMT_PAYLOAD_FRAGMENT structures is used as a member of the WMT_FILESINK_DATA_UNIT
structure to provide access to each payload fragment in a packet.

Syntax

typedef struct _WMT_PAYLOAD_FRAGMENT{
 DWORD dwPayloadIndex;
 WMT_BUFFER_SEGMENT segmentData;
} WMT_PAYLOAD_FRAGMENT;

Previous Next

Previous Next

Members

dwPayloadIndex

DWORD containing the payload index. This identifies the payload item to which this fragment belongs.

segmentData

A WMT_BUFFER_SEGMENT structure specifying the buffer segment containing the payload fragment.

See Also

Structures

© 2000-2003 Microsoft Corporation. All rights reserved.

WMT_TIMECODE_EXTENSION_DATA
The WMT_TIMECODE_EXTENSION_DATA structure contains information needed for a single SMPTE
time code sample extension. One of these structures will be attached to every video frame that requires a
SMPTE time code.

Syntax

typedef struct _WMT_TIMECODE_EXTENSION_DATA{
 WORD wRange;
 DWORD Timecode;
 DWORD dwUserbits;
 DWORD dwAmFlags;
};

Members

wRange

WORD specifying the range to which the time code belongs.

Timecode

DWORD containing the time code. Time code is stored so that the hexadecimal value is read as if it were a
decimal value. That is, the time code value 0x01133512 does not represent decimal 18035986, rather it specifies
1 hour, 13 minutes, 35 seconds, and 12 frames.

Previous Next

Previous Next

dwUserbits

DWORD containing any information that the user desires. Typically, this member is used to store shot or take
numbers, or other information pertinent to the production process.

dwAmFlags

DWORD provided for maintaining any AM_TIMECODE flags that are present in source material. These flags
are not used by any of the objects in the Windows Media Format SDK. For more information about
AM_TIMECODE flags, refer to the SMPTE time code specification.

See Also

Structures

© 2000-2003 Microsoft Corporation. All rights reserved.

WMT_VIDEOIMAGE_SAMPLE
The WMT_VIDEOIMAGE_SAMPLE structure describes a sample for a Video Image stream. This structure
must be used, either alone, or with an accompanying image, in each sample passed to the writer for a Video
Image stream. For more information, see Writing Video Image Samples.

The WMT_VIDEOIMAGE_SAMPLE structure .

Syntax

typedef struct __WMT_VIDEOIMAGE_SAMPLE{
 DWORD dwMagic;
 ULONG cbStruct;
 DWORD dwControlFlags;
 DWORD dwInputFlagsCur;
 LONG lCurMotionXtoX;
 LONG lCurMotionYtoX;
 LONG lCurMotionXoffset;
 LONG lCurMotionXtoY;
 LONG lCurMotionYtoY;
 LONG lCurMotionYoffset;
 LONG lCurBlendCoef1;
 LONG lCurBlendCoef2;
 DWORD dwInputFlagsPrev;
 LONG lPrevMotionXtoX;
 LONG lPrevMotionYtoX;
 LONG lPrevMotionXoffset;

Previous Next

Previous Next

 LONG lPrevMotionXtoY;
 LONG lPrevMotionYtoY;
 LONG lPrevMotionYoffset;
 LONG lPrevBlendCoef1;
 LONG lPrevBlendCoef2;
} WMT_VIDEOIMAGE_SAMPLE;

Members

dwMagic

Reserved value. Always set to WMT_VIDEOIMAGE_MAGIC_NUMBER.

cbStruct

Size of the structure. Always set to sizeof(WMT_VIDEOIMAGE_SAMPLE).

dwControlFlags

One or more of the following values.

Value Description

WMT_VIDEOIMAGE_SAMPLE_INPUT_FRAME Set to signify that the sample
contains an input image. The
image data must immediately
follow the structure in the sample
and must conform to the values
set in the input properties for the
stream.

WMT_VIDEOIMAGE_SAMPLE_OUTPUT_FRAME Set to signify that the sample
should result in a unique frame in
the stream. If this flag is not set,
the remainder of the members of
the structure are ignored and the
frame in the stream will be
identical to the last output stream.

WMT_VIDEOIMAGE_SAMPLE_USES_CURRENT_INPUT_FRAME Set to signify that the sample is
based, either solely or in part, on
the current image. If this flag is
set, the first set of value members
will be used. This flag cannot be
set if the sample is input only.

WMT_VIDEOIMAGE_SAMPLE_USES_PREVIOUS_INPUT_FRAME Set to signify that the sample is
based, either solely or in part, on
the previous image. If this flag is
set, the second set of value
members will be used. This flag
cannot be set if the sample is input
only.

dwInputFlagsCur

One or more flags indicating the operation to perform on the current image. The following flags are available.

lCurMotionXtoX

LONG value containing the horizontal scaling factor of the current image. A scaling factor of 1 means no
horizontal scaling will be performed for this sample. This value must be multiplied by
WMT_VIDEOIMAGE_INTEGER_DENOMINATOR before being set in the structure.

lCurMotionYtoX

Not used.

lCurMotionXoffset

LONG value containing the horizontal offset for the current image, in pixels, in relation to the last output
sample. An offset of 0 means that no panning will be performed for this sample. This value must be multiplied
by WMT_VIDEOIMAGE_INTEGER_DENOMINATOR before being set in the structure.

lCurMotionXtoY

Not used.

lCurMotionYtoY

LONG value containing the vertical scaling factor of the current image. A scaling factor of 1 means no vertical
scaling will be performed for this sample. This value must be multiplied by
WMT_VIDEOIMAGE_INTEGER_DENOMINATOR before being set in the structure.

lCurMotionYoffset

LONG value containing the vertical offset for the current image, in pixels, in relation to the last output sample.
An offset of 0 means that no panning will be performed for this sample. This value must be multiplied by

Value Description

WMT_VIDEOIMAGE_SAMPLE_ADV_BLENDING Set to signify that the sample uses advanced
blending. This feature is not supported in the
current version.

WMT_VIDEOIMAGE_SAMPLE_BLENDING Set to signify that the sample contains
blending. If this flag is set, the sum of the
values of lCurBlendCoef1 and
lPrevBlendCoef1 (before multiplying by the
denominator) must equal 1.

WMT_VIDEOIMAGE_SAMPLE_MOTION Set to signify that the sample uses pan and/or
zoom.

WMT_VIDEOIMAGE_SAMPLE_ROTATION Set to signify that the sample uses rotation.
This feature is not supported in the current
version.

WMT_VIDEOIMAGE_INTEGER_DENOMINATOR before being set in the structure.

lCurBlendCoef1

LONG value containing the blend coefficient for the current image when combined with the previous image for
an output. This coefficient and the coefficient for the previous image must total 1. This value must be multiplied
by WMT_VIDEOIMAGE_INTEGER_DENOMINATOR before being set in the structure.

lCurBlendCoef2

Not used.

dwInputFlagsPrev

One or more flags indicating the operation to perform on the previous image. The following flags are available.

lPrevMotionXtoX

LONG value containing the horizontal scaling factor of the previous image. A scaling factor of 1 means no
horizontal scaling will be performed for this sample. This value must be multiplied by
WMT_VIDEOIMAGE_INTEGER_DENOMINATOR before being set in the structure.

lPrevMotionYtoX

Not used.

lPrevMotionXoffset

LONG value containing the horizontal offset for the previous image, in pixels, in relation to the last output
sample. An offset of 0 means that no panning will be performed for this sample. This value must be multiplied
by WMT_VIDEOIMAGE_INTEGER_DENOMINATOR before being set in the structure.

lPrevMotionXtoY

Value Description

WMT_VIDEOIMAGE_SAMPLE_ADV_BLENDING Set to signify that the sample uses advanced
blending. This feature is not supported in the
current version.

WMT_VIDEOIMAGE_SAMPLE_BLENDING Set to signify that the sample contains
blending. If this flag is set, the sum of the
values of lCurBlendCoef1 and
lPrevBlendCoef1 (before multiplying by the
denominator) must equal 1.

WMT_VIDEOIMAGE_SAMPLE_MOTION Set to signify that the sample uses pan and/or
zoom.

WMT_VIDEOIMAGE_SAMPLE_ROTATION Set to signify that the sample uses rotation.
This feature is not supported in the current
version.

Not used.

lPrevMotionYtoY

LONG value containing the vertical scaling factor of the previous image. A scaling factor of 1 means no
vertical scaling will be performed for this sample. This value must be multiplied by
WMT_VIDEOIMAGE_INTEGER_DENOMINATOR before being set in the structure.

lPrevMotionYoffset

LONG value containing the vertical offset for the previous image, in pixels, in relation to the last output
sample. An offset of 0 means that no panning will be performed for this sample. This value must be multiplied
by WMT_VIDEOIMAGE_INTEGER_DENOMINATOR before being set in the structure.

lPrevBlendCoef1

LONG value containing the blend coefficient for the previous image when combined with the current image for
an output. This coefficient and the coefficient for the current image must total 1. This value must be multiplied
by WMT_VIDEOIMAGE_INTEGER_DENOMINATOR before being set in the structure.

lPrevBlendCoef2

Not used.

See Also

Structures

© 2000-2003 Microsoft Corporation. All rights reserved.

WMT_WATERMARK_ENTRY
The WMT_WATERMARK_ENTRY structure contains information describing a watermarking system.

Syntax

typedef struct __WMT_WATERMARK_ENTRY{
 WMT_WATERMARK_ENTRY_TYPE wmetType;
 CLSID clsid;
 UINT cbDisplayName;
 LPWSTR pwszDisplayName;
};

Previous Next

Previous Next

Members

wmetType

A value from the WMT_WATERMARK_ENTRY_TYPE enumeration type specifying the type of
watermarking system.

clsid

GUID value identifying the watermarking system.

cbDisplayName

The size of display name in wide characters.

pwszDisplayName

Pointer to a wide-character null-terminated string containing the display name.

See Also

Structures

© 2000-2003 Microsoft Corporation. All rights reserved.

WMT_WEBSTREAM_FORMAT
The WMT_WEBSTREAM_FORMAT structure contains information about a Web stream. This structure is
used as the pbFormat member of the WM_MEDIA_TYPE structure for Web streams.

Syntax

typedef struct _WMT_WEBSTREAM_FORMAT{
 WORD cbSize;
 WORD cbSampleHeaderFixedData;
 WORD wVersion;
 WORD wReserved;
} WMT_WEBSTREAM_FORMAT;

Members

cbSize

Previous Next

Previous Next

WORD containing the size of the structure, in bytes.

cbSampleHeaderFixedData

WORD containing the size of Web stream sample header, in bytes.

wVersion

WORD containing the version number. Set to 1 for streams created with the Windows Media Format 9 Series
SDK.

wReserved

WORD. Reserved.

See Also

Structures

© 2000-2003 Microsoft Corporation. All rights reserved.

WMT_WEBSTREAM_SAMPLE_HEADER
The WMT_WEBSTREAM_SAMPLE_HEADER structure is used as a variable-sized header for each Web
stream sample.

Syntax

typedef struct _WMT_WEBSTREAM_SAMPLE_HEADER{
 WORD cbLength;
 WORD wPart;
 WORD cTotalParts;
 WORD wSampleType;
 WCHAR wszURL[1];
} WMT_WEBSTREAM_SAMPLE_HEADER;

Members

cbLength

WORD containing the size of wszURL in wide characters.

Previous Next

Previous Next

wPart

WORD containing the zero-based part number to which the sample applies. When the last part is received,
wPart equals cTotalParts – 1.

cTotalParts

WORD containing the total number of parts in the Web stream.

wSampleType

WORD containing the type of Web stream, either WEBSTREAM_SAMPLE_TYPE_FILE (0x1) or
WEBSTREAM_SAMPLE_TYPE_RENDER (0x2). See Remarks.

wszURL

Wide-character null-terminated string specifying the local URL.

Remarks

In a Web stream, each sample begins with this structure. The application is responsible for determining the size
of the structure for each sample delivered. The size depends on the length of the wszURL member, as reported
in the cbLength member.

If wSampleType is WEBSTREAM_SAMPLE_TYPE_FILE, the sample contains data immediately following
the header that should be cached for later rendering. If the type is WEBSTREAM_SAMPLE_TYPE_RENDER,
the sample contains no data. The application should cause the file named in the wszURL member to be
immediately rendered on the display.

See Also

Structures

© 2000-2003 Microsoft Corporation. All rights reserved.

WMVIDEOINFOHEADER
The WMVIDEOINFOHEADER structure describes the bitmap and color information for a video image.

Syntax

Previous Next

Previous Next

typedef struct _WMVIDEOINFOHEADER{
 RECT rcSource;
 RECT rcTarget;
 DWORD dwBitRate;
 DWORD dwBitErrorRate;
 LONGLONG AvgTimePerFrame;
 BITMAPINFOHEADER bmiHeader;
} WMVIDEOINFOHEADER;

Members

rcSource

RECT structure that specifies the source video window.

rcTarget

RECT structure that specifies the destination video window.

dwBitRate

DWORD containing the approximate bit rate, in bits per second.

dwBitErrorRate

DWORD containing the error rate for this stream, in bits per second.

AvgTimePerFrame

When writing an ASF file, this member specifies the desired average time per frame in 100-nanosecond units.
When reading an ASF file, this member is always zero.

bmiHeader

BITMAPINFOHEADER structure that contains color and dimension information for the video image bitmap.
BITMAPINFOHEADER is a Windows GDI structure.

Remarks

This structure is identical to the DirectShow VIDEOINFOHEADER structure.

For uncompressed video of 16 or fewer bits per pixel (bpp), additional information is required. You must
specify bit fields for 16 bpp and palette information for 8 or fewer bpp video. To convey this information,
allocate enough consecutive memory to hold the additional information and copy the data to the memory
directly following this structure. When you specify the address and size of this structure in the
WM_MEDIA_TYPE structure for a stream, include the size of the palette or bit field data.

See Also

Structures
Source and Target Rectangles in Video Renderers in the DirectShow® SDK Documentation

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

WMVIDEOINFOHEADER2
The WMVIDEOINFOHEADER2 structure describes the bitmap and color information for a video image,
including interlace, copy protection, and aspect ratio.

Syntax

typedef struct tagWMVIDEOINFOHEADER2 {
 RECT rcSource;
 RECT rcTarget;
 DWORD dwBitRate;
 DWORD dwBitErrorRate;
 REFERENCE_TIME AvgTimePerFrame;
 DWORD dwInterlaceFlags;
 DWORD dwCopyProtectFlags;
 DWORD dwPictAspectRatioX;
 DWORD dwPictAspectRatioY;
 DWORD dwReserved1;
 DWORD dwReserved2;
 BITMAPINFOHEADER bmiHeader;
} WMVIDEOINFOHEADER2;

Members

rcSource

RECT structure that specifies what part of the source stream should be used to fill the destination buffer.
Renderers can use this field to ask the decoders to stretch or clip.

rcTarget

RECT structure that specifies that specifies what part of the destination buffer should be used

dwBitRate

Approximate data rate of the video stream, in bits per second.

dwBitErrorRate

Data error rate of the video stream, in bits per second.

AvgTimePerFrame

Previous Next

The video frame's average display time, in 100-nanosecond units.

dwInterlaceFlags

Bit-wise combination of zero or more flags that describe interlacing behavior. The flags are defined in
Dvdmedia.h in the DirectX SDK. Undefined bits must be set to zero or else the connection will be rejected.

dwCopyProtectFlags

Flag set with the AMCOPYPROTECT_RestrictDuplication value (0x00000001) to indicate that the duplication
of the stream should be restricted. Undefined bits must be set to zero or else the connection will be rejected.

dwPictAspectRatioX

The X dimension of the video rectangle's aspect ratio. For example, 16 for a 16:9 rectangle.

dwPictAspectRatioY

The Y dimension of the video rectangle's aspect ratio. For example, 9 for a 16:9 rectangle.

dwReserved

Reserved for future use. Must be zero. (Note: this is different from the corresponding member of the
VIDEOINFOHEADER2 structure used in DirectShow.

dwReserved2

Reserved for future use. Must be zero.

bmiHeader

BITMAPINFOHEADER structure that contains color and dimension information for the video image bitmap.

Remarks

This structure is identical to the VIDEOINFOHEADER2 structure defined in Dvdmedia.h. For more
information, see the DirectShow documentation in the DirectX SDK.

See Also

Structures

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Enumeration Types
The Windows Media Format SDK implements the following enumeration types.

Previous Next

Enumeration type Description

DRM_HTTP_STATUS Defines a range of states for a DRM request.

DRM_LICENSE_STATE_CATEGORY Defines the categories for DRM license strings.

DRM_INDIVIDUALIZATION_STATUS Defines the valid states for DRM individualization.

NETSOURCE_URLCREDPOLICY_SETTINGS Defines possible security policy settings that can
exist on a client computer.

WM_AETYPE Specifies the permissions for an entry in an IP
address access list.

WMT_ATTR_DATATYPE Defines a range of basic data types. These values are
used to identify the type of data returned by various
methods in this SDK.

WMT_ATTR_IMAGETYPE Defines a range of image types that can be stored in
an ASF file header.

WMT_CODEC_INFO_TYPE Defines a range of data sizes used by a codec.

WMT_CREDENTIAL_FLAGS Defines the flags that can be used when acquiring
credentials.

WMT_DRMLA_TRUST Defines the trust state of a DRM license acquisition
URL.

WMT_FILESINK_MODE Defines the types of input accepted by the file sink.

WMT_IMAGE_TYPE Defines the possible image types used for banner
ads.

WMT_INDEX_TYPE Defines the object with which a time-based index
can be associated.

WMT_INDEXER_TYPE Defines the types of indexing supported by the
indexer.

WMT_NET_PROTOCOL Defines the types of protocols that the network sink
supports.

WMT_MUSICSPEECH_CLASS_MODE Defines the compression modes available to the
Windows Media Audio 9 Voice codec.

WMT_OFFSET_FORMAT Defines the types of offsets used in this SDK.

See Also

Programming Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

DRM_HTTP_STATUS
The DRM_HTTP_STATUS enumeration type defines a range of states for a DRM request.

Syntax

typedef enum DRM_HTTP_STATUS{
 HTTP_NOTINITIATED = 0,
 HTTP_CONNECTING = 1,
 HTTP_REQUESTING = 2,
 HTTP_RECEIVING = 3,
 HTTP_COMPLETED = 4
};

Members

HTTP_NOTINITIATED

WMT_PLAY_MODE Defines the playback options of the reader.

WMT_PROXY_SETTINGS Defines the network proxy settings for use with a
reader object.

WMT_RIGHTS Defines the rights that may be specified in a DRM
license.

WMT_STATUS Defines a range of status flags.

WMT_STORAGE_FORMAT Defines the file types that can be manipulated with
this SDK.

WMT_STREAM_SELECTION Defines the status of a stream.

WMT_TRANSPORT_TYPE Defines the transport types supported by this SDK.

WMT_VERSION Defines the version numbers of the Windows Media
Format SDK.

WMT_WATERMARK_ENTRY_TYPE Defines the types of supported watermarks.

Previous Next

Previous Next

The HTTP operations have not been initiated.

HTTP_CONNECTING

The connection is being established.

HTTP_REQUESTING

Data is being requested.

HTTP_RECEIVEING

Data is being received.

HTTP_COMPLETED

The HTTP operations are complete.

Remarks

This enumeration is used by the WM_INDIVIDUALIZE_STATUS structure.

See Also

DRM_INDIVIDUALIZATION_STATUS
Enumeration Types

© 2000-2003 Microsoft Corporation. All rights reserved.

DRM_INDIVIDUALIZATION_STATUS
The DRM_INDIVIDUALIZATION_STATUS enumeration type defines the valid states for DRM
individualization. When an application initiates individualization with a call to
IWMDRMReader::Individualize, the progress of the individualization request is conveyed to the application
through calls to the IWMStatusCallback::OnStatus method. Individualization status messages will all use the
WMT_INDIVIDUALIZE member of the WMT_STATUS enumeration type as the Status parameter. The
status of the individualization is passed to OnStatus in the pValue parameter.

Syntax

typedef enum DRM_INDIVIDUALIZATION_STATUS{
 INDI_UNDEFINED = 0x0000,

Previous Next

Previous Next

 INDI_BEGIN = 0x0001,
 INDI_SUCCEED = 0x0002,
 INDI_FAIL = 0x0004,
 INDI_CANCEL = 0x0008,
 INDI_DOWNLOAD = 0x0010,
 INDI_INSTALL = 0x0020
};

Members

INDI_UNDEFINED

This value is reserved for future use.

INDI_BEGIN

Indicates the start of the individualization process.

INDI_SUCCEED

Indicates that the individualization process has been completed.

INDI_FAIL

Indicates that the individualization process failed.

INDI_CANCEL

Indicates that the individualization process was canceled as the result of a call to
IWMDRMReader::CancelIndividualization.

INDI_DOWNLOAD

Indicates that the security upgrade is being downloaded.

INDI_INSTALL

Indicates that the security upgrade is being installed.

Remarks

This enumeration is used by the WM_INDIVIDUALIZE_STATUS structure.

See Also

DRM_HTTP_STATUS
Enumeration Types

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

DRM_LICENSE_STATE_CATEGORY
The DRM_LICENSE_STATE_CATEGORY enumeration type defines the categories for DRM license
strings that are displayed to the user.

Syntax

typedef enum DRM_LICENSE_STATE_CATEGORY{
 WM_DRM_LICENSE_STATE_NORIGHT =0,
 WM_DRM_LICENSE_STATE_UNLIM ,
 WM_DRM_LICENSE_STATE_COUNT ,
 WM_DRM_LICENSE_STATE_FROM ,
 WM_DRM_LICENSE_STATE_UNTIL ,
 WM_DRM_LICENSE_STATE_FROM_UNTIL ,
 WM_DRM_LICENSE_STATE_COUNT_FROM ,
 WM_DRM_LICENSE_STATE_COUNT_UNTIL ,
 WM_DRM_LICENSE_STATE_COUNT_FROM_UNTIL ,
 WM_DRM_LICENSE_STATE_EXPIRATION_AFTER_FIRSTUSE DRM_LICENSE_STATE_CATEGORY
};

Members

WM_DRM_LICENSE_STATE_NORIGHT

Indicates the string will take the form "Playback not permitted."

WM_DRM_LICENSE_STATE_UNLIM

Indicates the string will take the form "Playback unlimited."

WM_DRM_LICENSE_STATE_COUNT

Indicates the string will take the form "Playback valid 5 times."

WM_DRM_LICENSE_STATE_FROM

Indicates the string will take the form "Playback valid from 7/12/00."

WM_DRM_LICENSE_STATE_UNTIL

Indicates the string will take the form "Playback valid until 7/12/00."

WM_DRM_LICENSE_STATE_FROM_UNTIL

Indicates the string will take the form "Playback valid from 5/12 to 9/12."

Previous Next

WM_DRM_LICENSE_STATE_COUNT_FROM

Indicates the string will take the form "Playback valid 5 times from 5/12 to 9/12."

WM_DRM_LICENSE_STATE_COUNT_UNTIL

Indicates the string will take the form "Playback valid 5 times until 7/12/00."

WM_DRM_LICENSE_STATE_COUNT_FROM_UNTIL

Indicates the string will take the form "Playback valid 5 times from 5/12 to 9/12."

WM_DRM_LICENSE_STATE_EXPIRATION_AFTER_FIRSTUSE

Indicates the string will take the form "Playback valid for 24 hours from first use."

Remarks

This enumeration indicates the category for each possible output string to be displayed. It is a member of the
DRM_LICENSE_STATE_DATA structure.

See Also

Enumeration Types

© 2000-2003 Microsoft Corporation. All rights reserved.

NETSOURCE_URLCREDPOLICY_SETTINGS
The NETSOURCE_URLCREDPOLICY_SETTINGS enumeration type is used for an output parameter of
IWMSInternalAdminNetSource2::GetCredentialsEx. It specifies possible security policy settings that can
exist on a client computer. When you retrieve credentials, you must proceed as dictated by the user's security
preferences. For more information, see GetCredentialsEx.

Syntax

typedef enum NETSOURCE_URLCREDPOLICY_SETTINGS{
 NETSOURCE_URLCREDPOLICY_SETTING_SILENTLOGONOK =0,
 NETSOURCE_URLCREDPOLICY_SETTING_MUSTPROMPTUSER =1,
 NETSOURCE_URLCREDPOLICY_SETTING_ANONYMOUSONLY =2
};

Previous Next

Previous Next

Members

NETSOURCE_URLCREDPOLICY_SETTING_SILENTLOGONOK

Specifies that your application can log on to servers for which passwords are cached without informing the user.

NETSOURCE_URLCREDPOLICY_SETTING_MUSTPROMPTUSER

Specifies that your application must notify the user when your application needs to log on to a server. You
application can fill in the fields of a password dialog, but must get confirmation.

NETSOURCE_URLCREDPOLICY_SETTING_ANONYMOUSONLY

Specifies that your application can never log on to network servers for the user. Your application can still
navigate servers that do not require passwords.

See Also

Enumeration Types

© 2000-2003 Microsoft Corporation. All rights reserved.

WM_AETYPE
The WM_AETYPE enumeration specifies the permissions for an entry in an IP address access list.

Syntax

 WM_AETYPE{
 WM_AETYPE_INCLUDE = 'i',
 WM_AETYPE_EXCLUDE = 'e'
};

Members

WM_AETYPE_INCLUDE

IP addresses that match the access entry are allowed to connect to the network sink.

WM_AETYPE_EXCLUDE

IP addresses that match the access entry are not allowed to connect to the network sink.

Previous Next

Previous Next

See Also

IWMAddressAccess Interface
IWMAddressAccess2 Interface
Enumeration Types

© 2000-2003 Microsoft Corporation. All rights reserved.

WMT_ATTR_DATATYPE
The WMT_ATTR_DATATYPE enumeration defines the data type for a variably typed property.

Syntax

typedef enum WMT_ATTR_DATATYPE{
 WMT_TYPE_DWORD = 0,
 WMT_TYPE_STRING = 1,
 WMT_TYPE_BINARY = 2,
 WMT_TYPE_BOOL = 3,
 WMT_TYPE_QWORD = 4,
 WMT_TYPE_WORD = 5,
 WMT_TYPE_GUID = 6,
} WMT_ATTR_DATATYPE;

Members

WMT_TYPE_DWORD

The property is a 4-byte DWORD value.

WMT_TYPE_STRING

The property is a null-terminated Unicode string.

WMT_TYPE_BINARY

The property is an array of bytes.

WMT_TYPE_BOOL

The property is a 4-byte Boolean value.

WMT_TYPE_QWORD

Previous Next

Previous Next

The property is an 8-byte QWORD value.

WMT_TYPE_WORD

The property is a 2-byte WORD value.

WMT_TYPE_GUID

The property is a 128-bit (6-byte) GUID.

See Also

Attributes
Enumeration Types

© 2000-2003 Microsoft Corporation. All rights reserved.

WMT_ATTR_IMAGETYPE
The WMT_ATTR_IMAGETYPE enumeration type lists image types that can be stored in the header of an
ASF file.

Syntax

typedef enum WMT_ATTR_IMAGETYPE{
 WMT_IMAGETYPE_BITMAP = 1,
 WMT_IMAGETYPE_JPEG = 2,
 WMT_IMAGETYPE_GIF = 3
} WMT_ATTR_IMAGETYPE;

Members

WMT_IMAGETYPE_BITMAP

The image is a device-independent bitmap.

WMT_IMAGETYPE_JPEG

The image is in JPEG format.

WMT_IMAGETYPE_GIF

Previous Next

Previous Next

The image is in GIF format.

See Also

Enumeration Types

© 2000-2003 Microsoft Corporation. All rights reserved.

WMT_CODEC_INFO_TYPE
The WMT_CODEC_INFO_TYPE enumeration type defines the broad categories of codecs supported by this
SDK.

Syntax

typedef enum WMT_CODEC_INFO_TYPE{
 WMT_CODECINFO_AUDIO = 0,
 WMT_CODECINFO_VIDEO = 1,
 WMT_CODECINFO_UNKNOWN = 0XFFFFFFFF
} WMT_CODEC_INFO_TYPE;

Members

WMT_CODECINFO_AUDIO

Audio codec.

WMT_CODECINFO_VIDEO

Video codec.

WMT_CODECINFO_UNKNOWN

Codec of an unknown type.

Remarks

This type is used when adding or retrieving the codecs used in a file using IWMHeaderInfo2::GetCodecInfo
and IWMHeaderInfo3::AddCodecInfo. When enumerating codecs with the methods of IWMCodecInfo,
IWMCodecInfo2, and IWMCodecInfo3, you do not use this type. Those methods use the major media type
GUIDs instead.

Previous Next

Previous Next

See Also

Enumeration Types

© 2000-2003 Microsoft Corporation. All rights reserved.

WMT_CREDENTIAL_FLAGS
The WMT_CREDENTIAL_FLAGS enumeration type contains values used in the
IWMCredentialCallback::AcquireCredentials method.

Syntax

WMT_CREDENTIAL_FLAGS{
 WMT_CREDENTIAL_SAVE = 0x00000001,
 WMT_CREDENTIAL_DONT_CACHE = 0x00000002,
 WMT_CREDENTIAL_CLEAR_TEXT = 0x00000004,
 WMT_CREDENTIAL_PROXY = 0x00000008,
 WMT_CREDENTIAL_ENCRYPT = 0x00000010
};

Members

WMT_CREDENTIAL_SAVE

The application can set this flag to indicate that the caller should save the credentials in a persistent manner.

WMT_CREDENTIAL_DONT_CACHE

The application can set this flag to indicate that the caller should not cache the credentials in memory.

WMT_CREDENTIAL_CLEAR_TEXT

If this flag is set when the AcquireCredentials method is called, it indicates that the credentials will be sent
over the network unencrypted. Applications should not set this flag.

WMT_CREDENTIAL_PROXY

If this flag is set when the AcquireCredentials method is called, it indicates that the credentials are for a proxy
server. Applications should not set this flag.

WMT_CREDENTIAL_ENCRYPT

Previous Next

Previous Next

If this flag is set when the AcquireCredentials method is called, it indicates that the caller can handle
encrypted credentials. When this flag is set, the application has the option of encrypting the credentials. To
encrypt the credentials, use the CryptProtectData function, which is described in the Platform SDK
documentation. The application can also return the credentials in plain text. In that case, the caller automatically
encrypts the credentials, unless the WMT_CREDENTIAL_CLEAR_TEXT flag was set when the
AcquireCredentials method was called.

If the application encrypts the credentials, it must set the WMT_CREDENTIAL_ENCRYPT flag before the
method returns. If the application returns the credentials in clear text, clear this flag before the method returns.

See Also

Enumeration Types

© 2000-2003 Microsoft Corporation. All rights reserved.

WMT_DRMLA_TRUST
Defines the trust state of a DRM license acquisition URL.

Syntax

WMT_DRMLA_TRUST{
 WMT_DRMLA_UNTRUSTED = 0,
 WMT_DRMLA_TRUSTED ,
 WMT_DRMLA_TAMPERED } WMT_DRMLA_TRUST;
};

Members

WMT_DRMLA_UNTRUSTED

Indicates that the validity of the license acquisition URL cannot be guaranteed because it is not signed. All
protected content created prior to Windows Media 9 Series will cause this value to be returned.

WMT_DRMLA_TRUSTED

Indicates that the license acquisition URL is the original one provided with the content.

WMT_DRMLA_TAMPERED

Indicates that the license acquisition URL was originally signed and has been tampered with.

Previous Next

Previous Next

Remarks

When a WMT_LICENSEURL_SIGNATURE_STATE message is received in the OnStatus callback
method, pValue will be set to one of the WMT_DRMLA_TRUST constants, which indicate whether there is
any problem with the digital signature applied to the license acquisition URL.

See Also

Enumeration Types

© 2000-2003 Microsoft Corporation. All rights reserved.

WMT_FILESINK_MODE
The WMT_FILESINK_MODE enumeration type defines the types of input accepted by the file sink.

Syntax

typedef enum tagWMT_FILESINK_MODE{
 WMT_FM_SINGLE_BUFFERS = 1,
 WMT_FM_FILESINK_DATA_UNITS = 2,
 WMT_FM_FILESINK_UNBUFFERED = 4
} WMT_FILESINK_MODE;

Members

WMT_FM_SINGLE_BUFFERS

The file sink accepts normal buffers through calls to IWMWriterSink::OnDataUnit. This is the default
behavior.

WMT_FM_FILESINK_DATA_UNITS

The file sink accepts data as WMT_FILESINK_DATA_UNIT structures delivered by
IWMWriterFileSink3::OnDataUnitEx.

WMT_FM_FILESINK_UNBUFFERED

The file sink accepts unbuffered data. A call to IWMWriterFileSink3::SetUnbufferedIO will succeed.

See Also

Previous Next

Previous Next

Enumeration Types

© 2000-2003 Microsoft Corporation. All rights reserved.

WMT_IMAGE_TYPE
The WMT_IMAGE_TYPE enumeration type defines the types of images that can be used for banner ads. This
type is used as the value of the BannerImageType attribute.

Syntax

 WMT_IMAGE_TYPE{
 WMT_IT_NONE = 0,
 WMT_IT_BITMAP = 1,
 WMT_IT_JPEG = 2,
 WMT_IT_GIF = 3
};

Members

WMT_IT_NONE

There is no image. If a BannerImageData attribute in the file, it will be ignored.

WMT_IT_BITMAP

The banner image is an uncompressed bitmap.

WMT_IT_JPEG

The banner image uses JPEG encoding.

WMT_IT_GIF

The banner image uses GIF encoding.

See Also

Enumeration Types

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

WMT_INDEX_TYPE
The WMT_INDEX_TYPE enumeration type defines the type of object that will be associated with an index.
Because the time specified by an index will not usually correspond exactly with an object in the file, the indexer
must associate the index with an object in the bit stream close to the specified time.

Syntax

typedef enum tagWMT_INDEX_TYPE{
 WMT_IT_NEAREST_DATA_UNIT = 1,
 WMT_IT_NEAREST_OBJECT = 2,
 WMT_IT_NEAREST_CLEAN_POINT = 3
} WMT_INDEX_TYPE;

Members

WMT_IT_NEAREST_DATA_UNIT

The index will associate indexes with the nearest data unit, or packet, in the Windows Media file.

WMT_IT_NEAREST_OBJECT

The index will associate indexes with the nearest data object, or compressed sample, in the Windows Media
file.

WMT_IT_NEAREST_CLEAN_POINT

The index will associate indexes with the nearest cleanpoint, or video key frame, in the Windows Media file.
This is the default index type.

See Also

Enumeration Types

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

WMT_INDEXER_TYPE
The WMT_INDEXER_TYPE enumeration type defines the types of indexing supported by the indexer.

Syntax

typedef enum tagWMT_INDEXER_TYPE{
 WMT_IT_PRESENTATION_TIME = 0,
 WMT_IT_FRAME_NUMBERS = 1,
 WMT_IT_TIMECODE = 2
} WMT_INDEXER_TYPE;

Members

WMT_IT_PRESENTATION_TIME

The indexer will construct an index using presentation times as indexes.

WMT_IT_FRAME_NUMBERS

The indexer will construct an index using frame numbers as indexes.

WMT_IT_TIMECODE

The indexer will construct an index using SMPTE time codes as indexes.

See Also

Enumeration Types

© 2000-2003 Microsoft Corporation. All rights reserved.

WMT_NET_PROTOCOL
The WMT_STREAM_SELECTION enumeration type defines the types of protocols that the network sink

Previous Next

Previous Next

Previous Next

supports.

Syntax

typedef enum WMT_NET_PROTOCOL{
 WMT_PROTOCOL_HTTP = 0,
} WMT_NET_PROTOCOL;

Members

WMT_PROTOCOL_HTTP

The network sink supports hypertext transfer protocol (HTTP).

Remarks

This enumeration is used in two methods, GetNetworkProtocol and SetNetworkProtocol, from the
IWMWriterNetworkSink interface.

See Also

Enumeration Types
IWMWriterNetworkSink::GetNetworkProtocol
IWMWriterNetworkSink::SetNetworkProtocol

© 2000-2003 Microsoft Corporation. All rights reserved.

WMT_MUSICSPEECH_CLASS_MODE
The WMT_MUSICSPEECH_CLASS_MODE enumeration type defines the types of compression supported
by the Windows Media Audio 9 Voice codec.

Syntax

typedef enum tagWMT_MUSICSPEECH_CLASS_MODE{
 WMT_MS_CLASS_MUSIC = 0,
 WMT_MS_CLASS_SPEECH = 1,
 WMT_MS_CLASS_MIXED = 2
} WMT_MUSICSPEECH_CLASS_MODE;

Members

WMT_MS_CLASS_MUSIC

Previous Next

Previous Next

Not currently supported. Do not use.

WMT_MS_CLASS_SPEECH

Compression optimized for speech.

WMT_MS_CLASS_MIXED

Compression optimized for a mixture of music and speech.

See Also

Enumeration Types

© 2000-2003 Microsoft Corporation. All rights reserved.

WMT_OFFSET_FORMAT
The WMT_OFFSET_FORMAT enumeration type defines the types of offsets used in this SDK.

Syntax

typedef enum tagWMT_OFFSET_FORMAT{
 WMT_OFFSET_FORMAT_100NS = 0,
 WMT_OFFSET_FORMAT_FRAME_NUMBERS = 1,
 WMT_OFFSET_FORMAT_PLAYLIST_OFFSET = 2,
 WMT_OFFSET_FORMAT_TIMECODE = 3
} WMT_OFFSET_FORMAT;

Members

WMT_OFFSET_FORMAT_100NS

An offset into a file is specified by presentation time in 100-nanosecond units.

WMT_OFFSET_FORMAT_FRAME_NUMBERS

An offset into a file is specified by frame number.

WMT_OFFSET_FORMAT_PLAYLIST_OFFSET

An offset of playlist entries.

Previous Next

Previous Next

WMT_OFFSET_FORMAT_TIMECODE

An offset into a file is specified by presentation time as identified by SMTPE time codes.

Remarks

WMT_OFFSET_FORMAT is used as an input parameter to IWMReaderAdvanced3::StartAtPosition. The
value passed specifies whether the reader should begin playback at a specified presentation time, frame number,
or offset into a playlist.

See Also

Enumeration Types

© 2000-2003 Microsoft Corporation. All rights reserved.

WMT_PLAY_MODE
The WMT_PLAY_MODE enumeration type defines the playback options of the reader.

Syntax

typedef enum WMT_PLAY_MODE{
 WMT_PLAY_MODE_AUTOSELECT = 0,
 WMT_PLAY_MODE_LOCAL = 1,
 WMT_PLAY_MODE_DOWNLOAD = 2,
 WMT_PLAY_MODE_STREAMING = 3
};

Members

WMT_PLAY_MODE_AUTOSELECT

The reader will select the most appropriate play mode based on the location of the content.

WMT_PLAY_MODE_LOCAL

The reader will read files from a local storage location.

WMT_PLAY_MODE_DOWNLOAD

The reader will download files from network locations.

Previous Next

Previous Next

WMT_PLAY_MODE_STREAMING

The reader will stream files from network locations.

See Also

Enumeration Types
IWMReaderAdvanced2::GetDownloadProgress
IWMReaderAdvanced2::GetPlayMode
IWMReaderAdvanced2::SaveFileAs
IWMReaderAdvanced2::SetPlayMode

© 2000-2003 Microsoft Corporation. All rights reserved.

WMT_PROXY_SETTINGS
The WMT_PROXY_SETTINGS enumeration type defines network proxy settings for use with a reader
object.

Syntax

typedef enum WMT_PROXY_SETTINGS{
 WMT_PROXY_SETTING_NONE = 0,
 WMT_PROXY_SETTING_MANUAL = 1,
 WMT_PROXY_SETTING_AUTO = 2,
 WMT_PROXY_SETTING_BROWSER = 3,
 WMT_PROXY_SETTING_MAX = 4
};

Members

WMT_PROXY_SETTING_NONE

No proxy settings will be used.

WMT_PROXY_SETTING_MANUAL

Proxy settings will be explicitly set.

WMT_PROXY_SETTING_AUTO

Proxy settings will be automatically negotiated.

Previous Next

Previous Next

WMT_PROXY_SETTING_BROWSER

The browser will negotiate the proxy settings. This applies only when using HTTP.

Remarks

The WMT_PROXY_SETTING_BROWSER setting applies only to the HTTP protocol.

This enumeration is used directly in GetProxySettings and SetProxySettings, and referenced in several other
methods of the IWMReaderNetworkConfig interface.

See Also

Enumeration Types
IWMReaderNetworkConfig::GetProxySettings
IWMReaderNetworkConfig::SetProxySettings

© 2000-2003 Microsoft Corporation. All rights reserved.

WMT_RIGHTS
The WMT_RIGHTS enumeration type defines the rights that may be specified in a DRM license.

Syntax

typedef enum WMT_RIGHTS{
 WMT_RIGHT_PLAYBACK = 0x00000001,
 WMT_RIGHT_COPY_TO_NON_SDMI_DEVICE = 0x00000002,
 WMT_RIGHT_COPY_TO_CD = 0x00000008,
 WMT_RIGHT_COPY_TO_SDMI_DEVICE = 0x00000010,
 WMT_RIGHT_ONE_TIME = 0x00000020,
 WMT_RIGHT_SAVE_STREAM_PROTECTED = 0x00000040,
 WMT_RIGHT_SDMI_TRIGGER = 0x00010000,
 WMT_RIGHT_SDMI_NOMORECOPIES = 0x00020000
};

Members

WMT_RIGHT_PLAYBACK

Specifies the right to play content without restriction.

WMT_RIGHT_COPY_TO_NON_SDMI_DEVICE

Previous Next

Previous Next

Specifies the right to copy content to a device not compliant with the Secure Digital Music Initiative (SDMI).

WMT_RIGHT_COPY_TO_CD

Specifies the right to copy content to a CD.

WMT_RIGHT_COPY_TO_SDMI_DEVICE

Specifies the right to copy content to a device compliant with the Secure Digital Music Initiative (SDMI).

WMT_RIGHT_ONE_TIME

Specifies the right to play content one time only.

WMT_RIGHT_SAVE_STREAM_PROTECTED

Specifies the right to save content from a server.

WMT_RIGHT_SDMI_TRIGGER

Reserved for future use. Do not use.

WMT_RIGHT_SDMI_NOMORECOPIES

Reserved for future use. Do not use.

Remarks

These values are bit flags, so one or more can be set by combining them with the bitwise OR operator.

See Also

Enumeration Types
WAVEFORMATEX

© 2000-2003 Microsoft Corporation. All rights reserved.

WMT_STATUS
The WMT_STATUS enumeration type defines a range of file status information. Members of
WMT_STATUS are passed to the common callback function, IWMStatusCallback::OnStatus, so that the

Previous Next

Previous Next

application can respond to the changing status of the objects being used.

Syntax

typedef enum WMT_STATUS{
 WMT_ERROR = 0,
 WMT_OPENED = 1,
 WMT_BUFFERING_START = 2,
 WMT_BUFFERING_STOP = 3,
 WMT_EOF = 4,
 WMT_END_OF_FILE = 4,
 WMT_END_OF_SEGMENT = 5,
 WMT_END_OF_STREAMING = 6,
 WMT_LOCATING = 7,
 WMT_CONNECTING = 8,
 WMT_NO_RIGHTS = 9,
 WMT_MISSING_CODEC = 10,
 WMT_STARTED = 11,
 WMT_STOPPED = 12,
 WMT_CLOSED = 13,
 WMT_STRIDING = 14,
 WMT_TIMER = 15,
 WMT_INDEX_PROGRESS = 16,
 WMT_SAVEAS_START = 17,
 WMT_SAVEAS_STOP. = 18,
 WMT_NEW_SOURCEFLAGS = 19,
 WMT_NEW_METADATA = 20,
 WMT_BACKUPRESTORE_BEGIN = 21,
 WMT_SOURCE_SWITCH = 22,
 WMT_ACQUIRE_LICENSE = 23,
 WMT_INDIVIDUALIZE = 24,
 WMT_NEEDS_INDIVIDUALIZATION = 25,
 WMT_NO_RIGHTS_EX = 26,
 WMT_BACKUPRESTORE_END = 27,
 WMT_BACKUPRESTORE_CONNECTING = 28,
 WMT_BACKUPRESTORE_DISCONNECTING = 29,
 WMT_ERROR_WITHURL = 30,
 WMT_RESTRICTED_LICENSE = 31,
 WMT_CLIENT_CONNECT = 32,
 WMT_CLIENT_DISCONNECT = 33,
 WMT_NATIVE_OUTPUT_PROPS_CHANGED = 34,
 WMT_RECONNECT_START = 35,
 WMT_RECONNECT_END = 36,
 WMT_CLIENT_CONNECT_EX = 37,
 WMT_CLIENT_DISCONNECT_EX = 38,
 WMT_SET_FEC_SPAN = 39,
 WMT_PREROLL_READY = 40,
 WMT_PREROLL_COMPLETE = 41,
 WMT_CLIENT_PROPERTIES = 42,
 WMT_LICENSEURL_SIGNATURE_STATE = 43
} WMT_STATUS;

Members

WMT_ERROR

An error occurred.

WMT_OPENED

A file was opened.

WMT_BUFFERING_START

The reader object is beginning to buffer content.

WMT_BUFFERING_STOP

The reader object has finished buffering content.

WMT_EOF

The end of the file has been reached. Both this member and the next one, WMT_END_OF_FILE, have the
value 4.

WMT_END_OF_FILE

The end of the file has been reached. Both this member and the previous one, WMT_EOF, have the value 4.

WMT_END_OF_SEGMENT

The end of a segment has been encountered.

WMT_END_OF_STREAMING

The end of a server-side playlist has been reached.

WMT_LOCATING

The reader object is locating requested data.

WMT_CONNECTING

A reporting object is connecting to server.

WMT_NO_RIGHTS

There is no license and the content is protected by version 1 digital rights management.

WMT_MISSING_CODEC

The file loaded in the reader object contains compressed data for which no codec is loaded.

WMT_STARTED

A reporting object has begun operations.

WMT_STOPPED

A reporting object has ceased operations.

WMT_CLOSED

A file was closed.

WMT_STRIDING

The reader object is playing content at above normal speed, or in reverse.

WMT_TIMER

Timer event.

WMT_INDEX_PROGRESS

Progress update from the indexer object.

WMT_SAVEAS_START

The reader object has begun saving a file from a server.

WMT_SAVEAS_STOP

The reader has stopped saving a file from a server.

WMT_NEW_SOURCEFLAGS

The current file's header object contains certain attributes that are different from those of the previous file. This
event is sent when playing a server-side playlist. Use the IWMHeaderInfo interface to query for any of the
following attributes in a new file: Stridable, Broadcast, Seekable, and HasImage.

WMT_NEW_METADATA

The current file's header object contains metadata attributes that are different from those of the previous file.
This event is sent when playing a server-side playlist. Use the IWMHeaderInfo interface to query for any
metadata attribute you are interested in.

WMT_BACKUPRESTORE_BEGIN

A license backup or restore has started.

WMT_SOURCE_SWITCH

The next source in the playlist was opened.

WMT_ACQUIRE_LICENSE

The license acquisition process has completed. The pValue parameter in OnStatus contains a
WM_GET_LICENSE_DATA structure. The hr member of this structure indicates whether the license was
successfully acquired.

WMT_INDIVIDUALIZE

Individualization status message.

WMT_NEEDS_INDIVIDUALIZATION

The file loaded in the reader object cannot be played without a security update.

WMT_NO_RIGHTS_EX

There is no license and the content is protected by version 7 digital rights management.

WMT_BACKUPRESTORE_END

A license backup or restore has finished.

WMT_BACKUPRESTORE_CONNECTING

The backup restorer object is connecting to a server.

WMT_BACKUPRESTORE_DISCONNECTING

The backup restorer object is disconnecting from a server.

WMT_ERROR_WITHURL

Error relating to the URL.

WMT_RESTRICTED_LICENSE

The backup restorer object cannot back up one or more licenses because the right has been disallowed by the
content owner.

WMT_CLIENT_CONNECT

Sent when a client (a playing application or server) connects to a writer network sink object. The pValue
parameter of the IWMStatusCallback::OnStatus callback is set to a WM_CLIENT_PROPERTIES
structure. New applications should wait for WMT_CLIENT_CONNECT_EX instead.

WMT_CLIENT_DISCONNECT

Sent when a client (a playing application or server) disconnects from a writer network sink object. The pValue
parameter of the IWMStatusCallback::OnStatus callback is set to a WM_CLIENT_PROPERTIES
structure. The values in this structure are identical to those sent on connection. New applications should wait for
WMT_CLIENT_DISCONNECT_EX instead.

WMT_NATIVE_OUTPUT_PROPS_CHANGED

Change in output properties.

WMT_RECONNECT_START

Start of automatic reconnection to a server.

WMT_RECONNECT_END

End of automatic reconnection to a server.

WMT_CLIENT_CONNECT_EX

Sent when a client (a playing application or server) connects to a writer network sink object. The pValue
parameter of the IWMStatusCallback::OnStatus callback is set to a WM_CLIENT_PROPERTIES_EX
structure.

WMT_CLIENT_DISCONNECT_EX

Sent when a client (a playing application or server) disconnects from a writer network sink object. The pValue
parameter of the IWMStatusCallback::OnStatus callback is set to a WM_CLIENT_PROPERTIES_EX
structure. The client properties are identical to those sent on connection except for the pwszDNSName member,
which may have changed.

WMT_SET_FEC_SPAN

Change to the forward error correction span.

WMT_PREROLL_READY

The reader is ready to begin buffering content.

WMT_PREROLL_COMPLETE

The reader is finished buffering.

WMT_CLIENT_PROPERTIES

Sent by a writer network sink when one or more properties of a connected client changes. The pValue parameter
of the IWMStatusCallback::OnStatus callback is set to a WM_CLIENT_PROPERTIES_EX structure. This
usually means that a DNS name is present for a client for which none was available at connection.

WMT_LICENSEURL_SIGNATURE_STATE

Sent before a WMT_NO_RIGHTS or WMT_NO_RIGHTS_EX status message. The pValue parameter is set
to one of the WMT_DRMLA_TRUST constants indicating whether the license acquisition URL is completely
trusted.

Remarks

For more information on how this enumeration type is used, see the Remarks section for the
IWMStatusCallback::OnStatus method.

See Also

Enumeration Types

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

WMT_STORAGE_FORMAT
The WMT_STORAGE_FORMAT enumeration type defines the file types that can be manipulated with this
SDK.

Syntax

typedef enum tagWMT_STORAGE_FORMAT{
 WMT_Storage_Format_MP3 = 0,
 WMT_Storage_Format_V1 = 1,
} WMT_STORAGE_FORMAT;

Members

WMT_StorageFormat_MP3

The file is encoded in MP3 format.

WMT_StorageFormat_V1

The file is encoded in Windows Media Format.

Remarks

Storage format MP3 is supported for reading, but not writing.

See Also

Enumeration Types

© 2000-2003 Microsoft Corporation. All rights reserved.

WMT_STREAM_SELECTION

Previous Next

Previous Next

Previous Next

The WMT_STREAM_SELECTION enumeration type defines the playback status of a stream.

Syntax

typedef enum WMT_STREAM_SELECTION{
 WMT_OFF = 0,
 WMT_CLEANPOINT_ONLY = 1,
 WMT_ON = 2
} WMT_STREAM_SELECTION;

Members

WMT_OFF

No samples will be delivered for the stream.

WMT_CLEANPOINT_ONLY

Only samples with cleanpoints will be delivered for the stream.

WMT_ON

All samples will be delivered for the stream.

See Also

Enumeration Types

© 2000-2003 Microsoft Corporation. All rights reserved.

WMT_TRANSPORT_TYPE
The WMT_TRANSPORT_TYPE enumeration type defines the transport types supported by this SDK.

Syntax

typedef enum tagWMT_TRANSPORT_TYPE{
 WMT_Transport_Type_Unreliable = 0,
 WMT_Transport_Type_Reliable = 1
} WMT_TRANSPORT_TYPE;

Members

Previous Next

Previous Next

WMT_Transport_Type_Unreliable

The transport type is not reliable.

WMT_Transport_Type_Reliable

The transport type is reliable.

Remarks

This enumeration indicates the type of data communication protocol (reliable or unreliable).

See Also

Enumeration Types

© 2000-2003 Microsoft Corporation. All rights reserved.

WMT_VERSION
The WMT_VERSION enumeration type defines the versions of the Windows Media Format SDK. Every
profile you create will have an associated version identified by one of these enumerations. The version
associated with a profile dictates the types of data allowed. For example, data unit extensions were introduced
with version 8. A profile defined as version 7 cannot include data unit extensions. Under most circumstances,
you will create profiles for the most current version.

Syntax

typedef enum WMT_VERSION{
 WMT_VER_4_0 = 0x00040000,
 WMT_VER_7_0 = 0x00070000,
 WMT_VER_8_0 = 0x00080000,
 WMT_VER_9_0 = 0x00090000
} WMT_VERSION;

Members

WMT_VER_4_0

Compatible with version 4 of the Windows Media Format SDK.

WMT_VER_7_0

Previous Next

Previous Next

Compatible with the Windows Media Format 7 SDK.

WMT_VER_8_0

Compatible with the Windows Media Format 8.2 SDK.

WMT_VER_9_0

Compatible with the Windows Media Format 9 Series SDK.

Remarks

The version assigned to a profile does not directly relate to the codecs used in the profile's individual streams.
However, it is recommended that you use codecs of the same version as the profile. Unless you have specific
requirements to the contrary, you should always use the latest version.

See Also

Enumeration Types

© 2000-2003 Microsoft Corporation. All rights reserved.

WMT_WATERMARK_ENTRY_TYPE
The WMT_WATERMARK_ENTRY_TYPE enumeration type identifies the types of watermarking systems.
Each watermarking system is a DirectX media object (DMO) that embeds some sort of digital watermark in
digital media content.

Syntax

typedef enum tagWMT_WATERMARK_ENTRY_TYPE{
 WMT_WMETYPE_AUDIO = 1,
 WMT_WMETYPE_VIDEO = 2
} WMT_WATERMARK_ENTRY_TYPE;

Members

WMT_WMETYPE_AUDIO

Identifies a watermarking DMO for audio.

WMT_WMETYPE_VIDEO

Previous Next

Previous Next

Identifies a watermarking DMO for video.

See Also

Enumeration Types
Watermarking Support

© 2000-2003 Microsoft Corporation. All rights reserved.

Attributes
An attribute is an individual item of metadata. Most of the attributes can be set by your application and are
written to the header of an ASF file.

Some of the predefined attributes are coded attributes. These attributes are not stored in the header of an ASF
file, but are computed by the objects of the Windows Media Format SDK when the file is loaded. Because
coded attributes are always computed, they are inherently read-only.

This SDK includes many attribute definitions that you can use. You can also create attributes of your own to
describe content.

The following sections describe the predefined attributes.

See Also

IWMHeaderInfo::GetAttributeByIndex
IWMHeaderInfo::GetAttributeByName
IWMHeaderInfo::SetAttribute
Working with Metadata

Previous Next

Previous Next

Section Description

Attribute List Provides an alphabetical list of all of the predefined attributes. After the
list, each attribute is described individually.

Attributes By Type Contains lists of attributes sorted by type. These include lists of special-
purpose attributes (like those dealing with digital rights management)
and lists of suggested attributes by content type.

ID3 Tag Support Lists the attributes that are compatible with ID3 tags.

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Attribute List
The predefined attributes included with this SDK are presented alphabetically in the following table. Each
attribute has a name, a global identifier, and a data type as defined by the appropriate member of the
WMT_ATTR_DATATYPE enumeration. Some attributes do not use a simple data type, or are formatted
according to a structure. Entries for these attributes list a structure name in the data-type column with the data
type used to set the value in parentheses.

Note See DRM Attribute List for a table of all the DRM-related attributes.

When you are programming with these attributes, you should use the global identifier rather than using the
name as a string literal. By using the global identifier, any typographical errors will result in an error at compile
time.

Previous Next

Attribute name Global identifier Data

ASFLeakyBucketPairs g_wszASFLeakyBucketPairs WMT

AspectRatioX g_wszWMAspectRatioX WMT

AspectRatioY g_wszWMAspectRatioY WMT

Author g_wszWMAuthor WMT

AverageLevel g_wszAverageLevel WMT

BannerImageData g_wszWMBannerImageData WMT

BannerImageType g_wszWMBannerImageType WMT

BannerImageURL g_wszWMBannerImageURL WMT

Bitrate g_wszWMBitrate WMT

Broadcast g_wszWMBroadcast WMT

BufferAverage g_wszBufferAverage WMT

Can_Skip_Backward g_wszWMSkipBackward WMT

Can_Skip_Forward g_wszWMSkipForward WMT

Copyright g_wszWMCopyright WMT

CopyrightURL g_wszWMCopyrightURL WMT

CurrentBitrate g_wszWMCurrentBitrate WMT

Description g_wszWMDescription WMT

DRM_ContentID g_wszWMDRM_ContentID WMT

DRM_DRMHeader_ContentDistributor g_wszWMDRM_DRMHeader_ContentDistributor WMT

DRM_DRMHeader_ContentID g_wszWMDRM_DRMHeader_ContentID WMT

DRM_DRMHeader_IndividualizedVersion g_wszWMDRM_DRMHeader_IndividualizedVersion WMT

DRM_DRMHeader_KeyID g_wszWMDRM_DRMHeader_KeyID WMT

DRM_DRMHeader_LicenseAcqURL g_wszWMDRM_DRMHeader_LicenseAcqURL WMT

DRM_DRMHeader_SubscriptionContentID g_wszWMDRM_DRMHeader_SubscriptionContentID WMT

DRM_DRMHeader g_wszWMDRM_DRMHeader WMT

DRM_IndividualizedVersion g_wszWMDRM_IndividualizedVersion WMT

DRM_KeyID g_wszWMDRM_KeyID WMT

DRM_LASignatureCert g_wszWMDRM_LASignatureCert WMT

DRM_LASignatureLicSrvCert g_wszWMDRM_LASignatureLicSrvCert WMT

DRM_LASignaturePrivKey g_wszWMDRM_LASignaturePrivKey WMT

DRM_LASignatureRootCert g_wszWMDRM_LASignatureRootCert WMT

DRM_LicenseAcqURL g_wszWMDRM_LicenseAcqURL WMT

DRM_V1LicenseAcqURL g_wszWMDRM_V1LicenseAcqURL WMT

Duration g_wszWMDuration WMT

FileSize g_wszWMFileSize WMT

HasArbitraryDataStream g_wszWMHasArbitraryDataStream WMT

HasAttachedImages g_wszWMHasAttachedImages WMT

HasAudio g_wszWMHasAudio WMT

HasFileTransferStream g_wszWMHasFileTransferStream WMT

HasImage g_wszWMHasImage WMT

HasScript g_wszWMHasScript WMT

HasVideo g_wszWMHasVideo WMT

Is_Protected g_wszWMProtected WMT

Is_Trusted g_wszWMTrusted WMT

IsVBR g_wszWMIsVBR WMT

NSC_Address g_wszWMNSCAddress WMT

NSC_Description g_wszWMNSCDescription WMT

NSC_Email g_wszWMNSCEmail WMT

NSC_Name g_wszWMNSCName WMT

NSC_Phone g_wszWMNSCPhone WMT

NumberOfFrames g_wszWMNumberOfFrames WMT

OptimalBitrate g_wszWMOptimalBitrate WMT

PeakValue g_wszPeakValue WMT

Rating g_wszWMRating WMT

Seekable g_wszWMSeekable WMT

Signature_Name g_wszWMSignature_Name WMT

Stridable g_wszWMStridable WMT

Title g_wszWMTitle WMT

VBRPeak g_wszVBRPeak WMT

WM/AlbumArtist g_wszWMAlbumArtist WMT

WM/AlbumCoverURL g_wszWMAlbumCoverURL WMT

WM/AlbumTitle g_wszWMAlbumTitle WMT

WM/AudioFileURL g_wszWMAudioFileURL WMT

WM/AudioSourceURL g_wszWMAudioSourceURL WMT

WM/AuthorURL g_wszWMAuthorURL WMT

WM/BeatsPerMinute g_wszWMBeatsPerMinute WMT

WM/Category g_wszWMCategory WMT

WM/Codec g_wszWMCodec WMT

WM/Composer g_wszWMComposer WMT

WM/Conductor g_wszWMConductor WMT

WM/ContainerFormat g_wszWMContainerFormat WMT
(WM

WM/ContentDistributor g_wszWMContentDistributor WMT

WM/ContentGroupDescription g_wszWMContentGroupDescription WMT

WM/Director g_wszWMDirector WMT

WM/DRM g_wszWMDRM WMT

WM/DVDID g_wszWMDVDID WMT

WM/EncodedBy g_wszWMEncodedBy WMT

WM/EncodingSettings g_wszWMEncodingSettings WMT

WM/EncodingTime g_wszWMEncodingTime FILE
(WM

WM/Genre g_wszWMGenre WMT

WM/GenreID g_wszWMGenreID WMT

WM/InitialKey g_wszWMInitialKey WMT

WM/ISRC g_wszWMISRC WMT

WM/Language g_wszWMLanguage WMT

WM/Lyrics g_wszWMLyrics WMT

WM/Lyrics_Synchronised g_wszWMLyrics_Synchronised WM_
(WM

WM/MCDI g_wszWMMCDI WMT

WM/MediaClassPrimaryID g_wszWMMediaClassPrimaryID WMT

WM/MediaClassSecondaryID g_wszWMMediaClassSecondaryID WMT

WM/ModifiedBy g_wszWMModifiedBy WMT

WM/Mood g_wszWMMood WMT

WM/OriginalAlbumTitle g_wszWMOriginalAlbumTitle WMT

WM/OriginalArtist g_wszWMOriginalArtist WMT

WM/OriginalFilename g_wszWMOriginalFilename WMT

WM/OriginalLyricist g_wszWMOriginalLyricist WMT

WM/OriginalReleaseYear g_wszWMOriginalReleaseYear WMT

WM/ParentalRating g_wszWMParentalRating WMT

WM/PartOfSet g_wszWMPartOfSet WMT

WM/Period g_wszWMPeriod WMT

WM/Picture g_wszWMPicture WM_
(WM

WM/PlaylistDelay g_wszWMPlaylistDelay WMT

WM/Producer g_wszWMProducer WMT

WM/PromotionURL g_wszWMPromotionURL WMT

WM/ProtectionType g_wszWMProtectionType WMT

WM/Provider g_wszWMProvider WMT

WM/ProviderRating g_wszWMProviderRating WMT

WM/ProviderStyle g_wszWMProviderStyle WMT

WM/Publisher g_wszWMPublisher WMT

Remarks

The following constants are defined with the attributes. Each one indicates the number of a specific type of
attribute. You do not need to use these values for anything in your applications.

WM/RadioStationName g_wszWMRadioStationName WMT

WM/RadioStationOwner g_wszWMRadioStationOwner WMT

WM/SubscriptionContentID g_wszWMSubscriptionContentID WMT

WM/SubTitle g_wszWMSubTitle WMT

WM/Text g_wszWMText WM_
(WM

WM/ToolName g_wszWMToolName WMT

WM/ToolVersion g_wszWMToolVersion WMT

WM/Track g_wszWMTrack WMT

WM/TrackNumber g_wszWMTrackNumber WMT

WM/UniqueFileIdentifier g_wszWMUniqueFileIdentifier WMT

WM/UserWebURL g_wszWMUserWebURL WM_
(WM

WM/VideoFrameRate g_wszWMVideoFrameRate WMT

WM/VideoHeight g_wszWMVideoHeight WMT

WM/VideoWidth g_wszWMVideoWidth WMT

WM/WMADRCAverageReference g_wszWMWMADRCAverageReference WMT

WM/WMADRCAverageTarget g_wszWMWMADRCAverageTarget WMT

WM/WMADRCPeakReference g_wszWMWMADRCPeakReference WMT

WM/WMADRCPeakTarget g_wszWMWMADRCPeakTarget WMT

WM/WMCollectionGroupID g_wszWMWMCollectionGroupID WMT

WM/WMCollectionID g_wszWMWMCollectionID WMT

WM/WMContentID g_wszWMWMContentID WMT

WM/Writer g_wszWMWriter WMT

WM/Year g_wszWMYear WMT

Constant Value

g_dwWMSpecialAttributes 20

g_dwWMContentAttributes 5

g_dwWMNSCAttributes 5

See Also

Attributes

© 2000-2003 Microsoft Corporation. All rights reserved.

ASFLeakyBucketPairs

The ASFLeakyBucketPairs attribute is an optional attribute that describes the buffering requirements for a
variable bit rate file.

Global Constant

g_wszASFLeakyBucketPairs

Data Type

WMT_TYPE_BINARY

Remarks

This attribute has the following format:

struct
{
 WORD wReserved;
 WM_LEAKY_BUCKET_PAIR bucket[2];
};

Where wReserved must equal zero, and bucket is an array of WM_LEAKY_BUCKET_PAIR structures. The
array must contain at least two entries, but can be larger. The reader object uses this attribute to determine the
amount of content to buffer before playback.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

AspectRatioX

The AspectRatioX attribute contains the width component of the pixel aspect ratio for a video stream.

Global Constant

g_wszWMAspectRatioX

Data Type

WMT_TYPE_DWORD

Remarks

When accessing the IWMHeaderInfo3 interface of the writer object, you can add or change this value. In other
objects (metadata editor, reader, and synchronous reader), this value is read-only.

See Also

Attribute List
To Read and Write Video Streams with Non-Square Pixels

© 2000-2003 Microsoft Corporation. All rights reserved.

AspectRatioY

The AspectRatioY attribute contains the height component of the pixel aspect ratio for a video stream.

Global Constant

g_wszWMAspectRatioY

Data Type

WMT_TYPE_DWORD

Previous Next

Previous Next

Previous Next

Remarks

When accessing the IWMHeaderInfo3 interface of the writer object, you can add or change this value. In other
objects (metadata editor, reader, and synchronous reader), this value is read-only.

See Also

Attribute List
To Read and Write Video Streams with Non-Square Pixels

© 2000-2003 Microsoft Corporation. All rights reserved.

Author

The Author attribute contains the name of a media artist or actor associated with the content.

Global Constant

g_wszWMAuthor

Data Type

WMT_TYPE_STRING

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

AverageLevel

Previous Next

Previous Next

Previous Next

Previous Next

The AverageLevel attribute contains a 16-bit amplitude value designating the average volume level of audio
content. With PeakValue, this attribute is used for normalization. Normalization is the process of adjusting the
playback volume level of audio files so that the loudest parts of files playback at the same level and the average
volume for each is the same.

Global Constant

g_wszAverageLevel

Data Type

WMT_TYPE_DWORD

Remarks

This attribute is set by the writer object based on information from the codec. Only streams compressed with
one of the Windows Media Audio codecs have an automatically set value.

AverageLevel is not read-only. However, if the file will be played by the Windows Media Player, you should
not alter this value. The Windows Media Player uses this for normalizing the levels of files in a playlist.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

BannerImageData

The BannerImageData attribute contains a banner image for branding purposes. The type of image this
attribute contains is described by the BannerImageType attribute.

Global Constant

g_wszWMBannerImageData

Data Type

WMT_TYPE_BINARY

Remarks

Previous Next

Previous Next

The image stored in this attribute can be in bitmap, JPEG, or GIF format.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

BannerImageType

The BannerImageType attribute specifies the type of image stored in the BannerImageData attribute. This
attribute is a value from the WMT_IMAGE_TYPE enumeration type.

Global Constant

g_wszWMBannerImageType

Data Type

WMT_TYPE_DWORD

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

BannerImageURL

The BannerImageURL attribute contains the address of a Web site associated with the banner image.

Global Constant

Previous Next

Previous Next

Previous Next

Previous Next

g_wszWMBannerImageURL

Data Type

WMT_TYPE_STRING

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

Bitrate

The Bitrate attribute is a file-level attribute containing the bit rate of the file in bits per second.

Global Constant

g_wszWMBitrate

Data Type

WMT_TYPE_DWORD

Remarks

This is a coded attribute.

This attribute cannot be duplicated at the file level. If this attribute is used for an individual stream, it will be
treated as custom metadata and will not convey its normal meaning to the objects of the Windows Media
Format SDK.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Broadcast

The Broadcast attribute is a file-level attribute indicating whether the content can be broadcast. It is assumed
that any content for which no copyright has been assigned can be legally broadcast.

Global Constant

g_wszWMBroadcast

Data Type

WMT_TYPE_BOOL

Remarks

This is a coded attribute.

This attribute cannot be duplicated at the file level. If this attribute is used for an individual stream, it will be
treated as custom metadata and will not convey its normal meaning to the objects of the Windows Media
Format SDK.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

BufferAverage

The BufferAverage attribute contains the average buffer size needed for a variable bit rate (VBR) stream.

Global Constant

g_wszBufferAverage

Data Type

Previous Next

Previous Next

Previous Next

WMT_TYPE_DWORD

Remarks

When accessing the IWMHeaderInfo3 interface of the writer object, you can add or change this value. In other
objects (metadata editor, reader, and synchronous reader), this value is read-only.

The writer automatically writes a BufferAverage value for each VBR stream.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

Can_Skip_Backward

The Can_Skip_Backward attribute is a file-level attribute indicating whether you can skip to the previous item
in the server-side playlist.

Global Constant

g_wszWMSkipBackward

Data Type

WMT_TYPE_BOOL

Remarks

This is a coded attribute.

This attribute cannot be duplicated at the file level. If this attribute is used for an individual stream, it will be
treated as custom metadata and will not convey its normal meaning to the objects of the Windows Media
Format SDK.

See Also

Attribute List

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Can_Skip_Forward

The Can_Skip_Forward attribute is a file-level attribute indicating whether you can skip to the next item in the
server-side playlist.

Global Constant

g_wszWMSkipForward

Data Type

WMT_TYPE_BOOL

Remarks

This is a coded attribute.

This attribute cannot be duplicated at the file level. If this attribute is used for an individual stream, it will be
treated as custom metadata and will not convey its normal meaning to the objects of the Windows Media
Format SDK.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

Copyright

The Copyright attribute contains a copyright message for the content.

Global Constant

Previous Next

Previous Next

Previous Next

g_wszWMCopyright

Data Type

WMT_TYPE_STRING

Remarks

The text of a copyright message does not conform to any standard. Individual companies can use whatever
format is appropriate.

This attribute applies to the entire file.

Example

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

CopyrightURL

The CopyrightURL attribute contains the Web address of a copyright page associated with branding.

Global Constant

g_wszWMCopyrightURL

Data Type

WMT_TYPE_STRING

Remarks

This attribute applies to the entire file.

See Also

File type Example value

Any "Copyright (C) Microsoft Corporation."

Previous Next

Previous Next

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

CurrentBitrate

The CurrentBitrate attribute contains the current total bit rate of the active streams in the file.

Global Constant

g_wszWMCurrentBitrate

Data Type

WMT_TYPE_DWORD

Remarks

This is a coded attribute.

The value retrieved for CurrentBitrate is different depending upon the object used. In the reader or
synchronous reader object, the value is the actual bit rate at the time of the call. In the metadata editor object,
the value is the average bit rate of the file.

The actual bit rate of a file is equal to the bit rates of all active streams plus some overhead. This is the value
that is, for example, displayed when playing a file with the Windows Media Player.

This attribute cannot be duplicated at the file level. If this attribute is used for an individual stream, it will be
treated as custom metadata and will not convey its normal meaning to the objects of the Windows Media
Format SDK.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Description

The Description attribute contains a description of the content of the file.

Global Constant

g_wszWMDescription

Data Type

WMT_TYPE_STRING

Remarks

This is a file-level attribute.

For ID3v1 MP3 files, this attribute is limited to 30 characters.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

DRM_ContentID

The DRM_ContentID attribute contains the content identifier for digital rights management.

Global Constant

g_wszWMDRM_ContentID

Data Type

WMT_TYPE_STRING

Previous Next

Previous Next

Previous Next

Remarks

This attribute can be set using IWMDRMWriter::SetDRMAttribute and it can be retrieved with
IWMDRMReader::GetDRMProperty.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

DRM_DRMHeader

DRM_DRMHeader is the base string for the DRMHeader attributes such as DRM_HeaderKeyID.

Global Constant

g_wszWMDRM_DRM_DRMHeader

Data Type

WMT_TYPE_STRING

Remarks

This string can be used to construct custom DRMHeader properties. It is not an attribute in itself.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Previous Next

DRM_DRMHeader_KeyID

The DRM_DRMHeader_KeyID attribute contains the key ID for the file.

Global Constant

g_wszWMDRM_DRMHeader_KeyID

Data Type

WMT_TYPE_STRING

Remarks

This attribute is present with DRM Version 7 content only. It can be set using
IWMDRMWriter::SetDRMAttribute and it can be retrieved with IWMDRMReader::GetDRMProperty.
This attribute is the same as DRM_KeyID.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

DRM_DRMHeader_LicenseAcqURL

The DRM_DRMHeader_LicenseAcqURL attribute contains the license acquisition URL for a DRM version 7
license.

Global Constant

g_wszWMDRM_DRMHeader_LicenseAcqURL

Data Type

WMT_TYPE_STRING

Remarks

This attribute is present with DRM Version 7 content only. It can be set using
IWMDRMWriter::SetDRMAttribute and it can be retrieved with IWMDRMReader::GetDRMProperty.

Previous Next

Previous Next

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

DRM_DRMHeader_ContentID

The DRM_DRMHeader_ContentID attribute contains the contentID that was generated by the content owner.

Global Constant

g_wszWMDRM_DRMHeader_ContentID

Data Type

WMT_TYPE_STRING

Remarks

This attribute is present with DRM Version 7 content only. It can be set using
IWMDRMWriter::SetDRMAttribute and it can be retrieved with IWMDRMReader::GetDRMProperty.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

DRM_DRMHeader_IndividualizedVersion

The DRM_DRMHeaderIndividualizedVersion attribute contains the minimum individualized version

Previous Next

Previous Next

Previous Next

Previous Next

required to play back the file.

Global Constant

g_wszWMDRM_DRMHeader_IndividualizedVersion

Data Type

WMT_TYPE_STRING

Remarks

This attribute is present with DRM Version 7 content only. It can be set using
IWMDRMWriter::SetDRMAttribute and it can be retrieved with IWMDRMReader::GetDRMProperty.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

DRM_DRMHeader_ContentDistributor

The DRM_DRMHeader _ContentDistributor attribute contains a string identifiying the content distributor.

Global Constant

g_wszWMDRM_DRMHeader_ContentDistributor

Data Type

WMT_TYPE_STRING

Remarks

The content ID is determined solely by the content creator. This attribute is present with DRM Version 7
content only. It can be set using IWMDRMWriter::SetDRMAttribute and it can be retrieved with
IWMDRMReader::GetDRMProperty.

See Also

Attribute List

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

DRM_DRMHeader_SubscriptionContentID

The DRM_DRMHeader_SubscriptionContentID attribute contains the subscription content ID.

Global Constant

g_wszWMDRM_DRMHeader_SubscriptionContentID

Data Type

WMT_TYPE_STRING

Remarks

This attribute is present with DRM Version 7 content only. It can be set using
IWMDRMWriter::SetDRMAttribute and it can be retrieved with IWMDRMReader::GetDRMProperty.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

DRM_IndividualizedVersion

The DRM_IndividualizedVersion attribute is stored in the DRM header and contains the minimum
individualized version required to access the content.

Global Constant

Previous Next

Previous Next

Previous Next

Previous Next

g_wszWMDRM_IndividualizedVersion

Data Type

WMT_TYPE_STRING

Remarks

This attribute is present with DRM Version 7 content only. It can be set using
IWMDRMWriter::SetDRMAttribute and it can be retrieved with IWMDRMReader::GetDRMProperty.
This attribute is the same as DRM_DRMHeader_IndividualizedVersion.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

DRM_KeyID

The DRM_KeyID attribute contains the key identifier.

Global Constant

g_wszWMDRM_KeyID

Data Type

WMT_TYPE_STRING

Remarks

This attribute is present for DRM Version 7 content only. It can be set using
IWMDRMWriter::SetDRMAttribute and it can be retrieved with IWMDRMReader::GetDRMProperty.
This attribute is the same as DRM_DRMHeader_KeyID.

The key ID is used in conjunction with the key seed to create the content key which is used to encrypt and
decrypt the file. The writer application uses the key ID to encrypt the file and then it stores the key ID in the file
header. When a player application requests a license for a file, the DRM component sends the key ID (along
with the rest of the DRM header) to the license server. The license server, which has the secret key seed, uses it
and the key ID to create a key for the file, which it then inserts into a license along with the various rights that
will be applied to the file.

Previous Next

Previous Next

Typically, one key seed is used with many key IDs. The key seed is a secret shared only by the content creator
and the license distributor. The key ID is used by DRM client applications and is stored in the DRM header in
the clear.

This attribute is the same as DRM_DRMHeader_KeyID.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

DRM_LASignatureCert

The DRM_LASignatureCert attribute contains the certificate that authenticates the signature in the DRM
header.

Global Constant

g_wszWMDRM_LASignatureCert

Data Type

WMT_TYPE_STRING

Remarks

This property can be set with the IWMDRMWriter::SetDRMAttribute method. It is not accessible to the
reader object.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

DRM_LASignatureLicSrvCert

The DRM_LASignatureLicSrvCert attribute contains the certificate that verifies the certificate contained in
DRM_LASignatureCert.

Global Constant

g_wszWMDRM_LASignatureLicSrvCert

Data Type

WMT_TYPE_STRING

Remarks

This property can be set with the IWMDRMWriter::SetDRMAttribute method. It is not accessible to the
reader object.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

DRM_LASignaturePrivKey

The DRM_LASignaturePrivKey property contains the private key that is used to encrypt the DRM header.

Global Constant

g_wszWMDRM_LASignaturePrivKey

Data Type

WMT_TYPE_STRING

Previous Next

Previous Next

Previous Next

Remarks

This property can be generated using the IWMDRMWriter::GenerateSigningKeyPair method. This property
should remain a secret known only by the content creator. This property can be set with the
IWMDRMWriter::SetDRMAttribute method. It is not accessible to the reader object.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

DRM_LASignatureRootCert

The DRM_LASignatureRootCert attribute contains the root certificate in the certification chain that is used to
authenticate the certificate contained in DRM_LASignatureLicSrvCert.

Global Constant

g_wszWMDRM_LASignatureRootCert

Data Type

WMT_TYPE_STRING

Remarks

This property can be set with the IWMDRMWriter::SetDRMAttribute method. It is not accessible to the
reader object.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

DRM_LicenseAcqURL

The DRM_LicenseAcqURL attribute contains the address of a Web page that the client application can
navigate to in order to obtain a content license for DRM version 7 content.

Global Constant

g_wszWMDRM_LicenseAcqURL

Data Type

WMT_TYPE_STRING

Remarks

This attribute can be set using IWMDRMWriter::SetDRMAttribute and it can be retrieved with
IWMDRMReader::GetDRMProperty.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

DRM_LicenseID

The DRM_LicenseID property contains a string retrieved from the license associated with the currently open
file that uniquely identifies that license.

Global Constant

g_wszWMDRM_LicenseID

Data Type

WMT_TYPE_STRING

Previous Next

Previous Next

Previous Next

Remarks

This attribute is present with DRM Version 7 content only. It can be set using
IWMDRMWriter::SetDRMAttribute and it can be retrieved with IWMDRMReader::GetDRMProperty.

The license ID is stored in a license, not in an ASF file. Each individual license has a unique ID which is
assigned by the license generator at the time the license is created. For example, if you obtain two licenses for
the same content, each one will have a different LicenseID attribute. Typically, applications have no need to
retrieve this value.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

DRM_V1LicenseAcqURL

The DRM_V1LicenseAcqURL attribute contains the address of a Web site where a user can obtain a DRM
version 1 license.

Global Constant

g_wszWMDRM_V1LicenseAcqURL

Data Type

WMT_TYPE_STRING

Remarks

This attribute can be set using IWMDRMWriter::SetDRMAttribute and it can be retrieved with
IWMDRMReader::GetDRMProperty.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Duration

The Duration attribute contains the playing duration of the file, in 100-nanosecond units.

Global Constant

g_wszWMDuration

Data Type

WMT_TYPE_QWORD

Remarks

This is a coded attribute.

This attribute cannot be duplicated at the file level. If this attribute is used for an individual stream, it will be
treated as custom metadata and will not convey its normal meaning to the objects of the Windows Media
Format SDK.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

FileSize

The FileSize attribute contains the size of the file in bytes.

Global Constant

g_wszWMFileSize

Data Type

Previous Next

Previous Next

Previous Next

WMT_TYPE_QWORD

Remarks

This is a coded attribute.

This attribute cannot be duplicated at the file level. If this attribute is used for an individual stream, it will be
treated as custom metadata and will not convey its normal meaning to the objects of the Windows Media
Format SDK.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

HasArbitraryDataStream

The HasArbitraryDataStream attribute is a file-level attribute specifying whether the file contains any
arbitrary data streams.

Global Constant

g_wszWMHasArbitraryDataStream

Data Type

WMT_TYPE_BOOL

Remarks

This is a coded attribute.

This attribute cannot be duplicated at the file level. If this attribute is used for an individual stream, it will be
treated as custom metadata and will not convey its normal meaning to the objects of the Windows Media
Format SDK.

See Also

Attribute List

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

HasAttachedImages

The HasAttachedImages attribute is a file-level attribute specifying whether the file is an MP3 file with
attached APIC ID3 frames.

Global Constant

g_wszWMHasAttachedImages

Data Type

WMT_TYPE_BOOL

Remarks

This is a coded attribute.

This attribute cannot be duplicated at the file level. If this attribute is used for an individual stream, it will be
treated as custom metadata and will not convey its normal meaning to the objects of the Windows Media
Format SDK.

HasAttachedImages was designed to inform an application that images were present so that they could be
retrieved using the IWMImageInfo interface. Now that images are supported using the WM/Picture attribute,
HasAttachedImages is no longer needed.

To determine whether a file contains images, call IWMHeaderInfo3::GetAttributeIndices specifying the
WM/Picture attribute.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

HasAudio

The HasAudio attribute is a file-level attribute that specifies whether the file contains any audio streams.

Global Constant

g_wszWMHasAudio

Data Type

WMT_TYPE_BOOL

Remarks

This is a coded attribute.

This attribute cannot be duplicated at the file level. If this attribute is used for an individual stream, it will be
treated as custom metadata and will not convey its normal meaning to the objects of the Windows Media
Format SDK.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

HasFileTransferStream

The HasFileTransferStream attribute is a file-level attribute specifying whether the file contains any file
transfer streams.

Global Constant

g_wszWMHasFileTransferStream

Data Type

Previous Next

Previous Next

Previous Next

WMT_TYPE_BOOL

Remarks

This is a coded attribute.

This attribute cannot be duplicated at the file level. If this attribute is used for an individual stream, it will be
treated as custom metadata and will not convey its normal meaning to the objects of the Windows Media
Format SDK.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

HasImage

The HasImage attribute is a file-level attribute specifying whether the file contains any image streams.

Global Constant

g_wszWMHasImage

Data Type

WMT_TYPE_BOOL

Remarks

This is a coded attribute.

This attribute cannot be duplicated at the file level. If this attribute is used for an individual stream, it will be
treated as custom metadata and will not convey its normal meaning to the objects of the Windows Media
Format SDK.

See Also

Attribute List

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

HasScript

The HasScript attribute is a file-level attribute specifying whether the file contains any script streams.

Global Constant

g_wszWMHasScript

Data Type

WMT_TYPE_BOOL

Remarks

This is a coded attribute.

This attribute cannot be duplicated at the file level. If this attribute is used for an individual stream, it will be
treated as custom metadata and will not convey its normal meaning to the objects of the Windows Media
Format SDK.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

HasVideo

The HasVideo attribute is a file-level attribute specifying whether the file contains any video streams.

Global Constant

Previous Next

Previous Next

Previous Next

g_wszWMHasVideo

Data Type

WMT_TYPE_BOOL

Remarks

This is a coded attribute.

This attribute cannot be duplicated at the file level. If this attribute is used for an individual stream, it will be
treated as custom metadata and will not convey its normal meaning to the objects of the Windows Media
Format SDK.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

Is_Protected

The Is_Protected attribute is a file-level attribute specifying whether the content in the file was protected using
digital rights management (DRM).

Global Constant

g_wszWMProtected

Data Type

WMT_TYPE_BOOL

Remarks

This is a coded attribute. Retrieving this property provides the same information as calling
WMIsContentProtected.

This attribute cannot be duplicated at the file level. If this attribute is used for an individual stream, it will be
treated as custom metadata and will not convey its normal meaning to the objects of the Windows Media
Format SDK.

Previous Next

Previous Next

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

Is_Trusted

The Is_Trusted attribute is a file-level attribute specifying whether the license acquisition URL in the file is
trusted.

Global Constant

g_wszWMTrusted

Data Type

WMT_TYPE_BOOL

Remarks

This is a coded attribute.

Before navigating to a license acquisition URL contained in a DRM-protected file, an application should first
verify that this property is true. If it is false, the application should notify the user that the URL has possibly
been tampered with.

This attribute cannot be duplicated at the file level. If this attribute is used for an individual stream, it will be
treated as custom metadata and will not convey its normal meaning to the objects of the Windows Media
Format SDK.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

IsVBR

The IsVBR attribute specifies whether the content in a stream was encoded using variable bit rate (VBR)
encoding.

Global Constant

g_wszWMIsVBR

Data Type

WMT_TYPE_BOOL

Remarks

When accessing the IWMHeaderInfo3 interface of the writer object, you can add or change this value. In other
objects (metadata editor, reader, and synchronous reader), this value is read-only.

See Also

Attribute List
Multicast Station Attributes

© 2000-2003 Microsoft Corporation. All rights reserved.

NSC_Address

The NSC_Address attribute contains the address of the multicast station contact.

Global Constant

g_wszWMNSCAddress

Data Type

WMT_TYPE_STRING

Previous Next

Previous Next

Previous Next

See Also

Attribute List
Multicast Station Attributes

© 2000-2003 Microsoft Corporation. All rights reserved.

NSC_Description

The NSC_Description attribute contains a description of the multicast station.

Global Constant

g_wszWMNSCDescription

Data Type

WMT_TYPE_STRING

See Also

Attribute List
Multicast Station Attributes

© 2000-2003 Microsoft Corporation. All rights reserved.

NSC_Email

The NSC_Email attribute contains the e-mail address of the multicast station.

Global Constant

Previous Next

Previous Next

Previous Next

Previous Next

g_wszWMNSCEmail

Data Type

WMT_TYPE_STRING

See Also

Attribute List
Multicast Station Attributes

© 2000-2003 Microsoft Corporation. All rights reserved.

NSC_Name

The NSC_Name attribute contains the name of the multicast station.

Global Constant

g_wszWMNSCName

Data Type

WMT_TYPE_STRING

See Also

Attribute List
Multicast Station Attributes

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Previous Next

NSC_Phone

The NSC_Phone attribute contains the phone number of the multicast station contact.

Global Constant

g_wszWMNSCPhone

Data Type

WMT_TYPE_STRING

See Also

Attribute List
Multicast Station Attributes

© 2000-2003 Microsoft Corporation. All rights reserved.

NumberOfFrames

The NumberOfFrames attribute contains the number of frames in a video stream.

Global Constant

g_wszWMNumberOfFrames

Data Type

WMT_TYPE_QWORD

Remarks

The writer adds this value for a video stream at the time of encoding. NumberOfFrames is not read-only.
However, you should only change the value if you edit the file, changing the number of frames in a video
stream.

See Also

Attribute List

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

OptimalBitrate

The OptimalBitrate attribute contains the bit rate at which the file is best played.

Global Constant

g_wszWMOptimalBitrate

Data Type

WMT_TYPE_DWORD

Remarks

This is a coded attribute.

For files that contain variable bit rate (VBR) streams, this value is the peak bit rate for the streams in the file.
For files without VBR, this value is the same as Bitrate.

This attribute cannot be duplicated at the file level. If this attribute is used for an individual stream, it will be
treated as custom metadata and will not convey its normal meaning to the objects of the Windows Media
Format SDK.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

PeakValue

Previous Next

Previous Next

Previous Next

The PeakValue attribute contains contains a 16-bit amplitude value designating the peak volume level of audio
content. With AverageLevel, this attribute is used for normalization. Normalization is the process of adjusting
the playback volume level of audio files so that the loudest parts of files playback at the same level and the
average volume for each is the same..

Global Constant

g_wszPeakValue

Data Type

WMT_TYPE_DWORD

Remarks

This attribute is set by the writer object based on information from the codec. Only streams compressed with
one of the Windows Media Audio codecs have an automatically set value.

PeakValue is not read-only. However, if the file will be played by the Windows Media Player, you should not
alter this value. The Windows Media Player uses this for normalizing the levels of files in a playlist.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

Rating

The Rating attribute contains the rating of the content.

Global Constant

g_wszWMRating

Data Type

WMT_TYPE_STRING

Remarks

This is a file-level attribute.

Previous Next

Previous Next

Individual implementations in existing files use different scales and notations. Because of this, you should avoid
using this attribute; there is no standardization from which to develop consistent user interfaces.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

Seekable

The Seekable attribute is a file-level attribute specifying whether an application can seek to points within the
content.

Global Constant

g_wszWMSeekable

Data Type

WMT_TYPE_BOOL

Remarks

This is a coded attribute.

This attribute cannot be duplicated at the file level. If this attribute is used for an individual stream, it will be
treated as custom metadata and will not convey its normal meaning to the objects of the Windows Media
Format SDK.

The value of this attribute for a file may vary depending upon the object exposing the IWMHeaderInfo or
IWMHeaderInfo3 interface used to retrieve it. This is because the reader objects (both synchronous and
asynchronous) perform a more thorough check than the metadata editor object does, to ascertain whether you
can seek to a point in a file. The Seekable attribute value returned by a reader object is more accurate.

See Also

Attribute List

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Signature_Name

The Signature_Name attribute contains the name on the certificate used to sign the file. This attribute is valid
only if the Is_Trusted attribute is set to True.

Global Constant

g_wszWMSignature_Name

Data Type

WMT_TYPE_STRING

Remarks

This is a coded attribute.

This attribute cannot be duplicated at the file level. If this attribute is used for an individual stream, it will be
treated as custom metadata and will not convey its normal meaning to the objects of the Windows Media
Format SDK.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

Stridable

The Stridable attribute is a file-level attribute that specifies whether a reading application can fast forward and
rewind the content.

Global Constant

Previous Next

Previous Next

Previous Next

g_wszWMStridable

Data Type

WMT_TYPE_BOOL

Remarks

This is a coded attribute.

This attribute cannot be duplicated at the file level. If this attribute is used for an individual stream, it will be
treated as custom metadata and will not convey its normal meaning to the objects of the Windows Media
Format SDK.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

Title

The Title attribute contains the title of the content in the file.

Global Constant

g_wszWMTitle

Data Type

WMT_TYPE_STRING

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

VBRPeak

The VBRPeak attribute contains the highest momentary bit rate in a variable bit rate (VBR) encoded stream.

Global Constant

g_wszVBRPeak

Data Type

WMT_TYPE_DWORD

Remarks

When accessing the IWMHeaderInfo3 interface of the writer object, you can add or change this value. In other
objects (metadata editor, reader, and synchronous reader), this value is read-only.

The writer automatically writes a VBRPeak value for each VBR stream.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/AlbumArtist

The WM/AlbumArtist attribute contains the name of the primary artist for the album.

Global Constant

g_wszWMAlbumArtist

Data Type

WMT_TYPE_STRING

Previous Next

Previous Next

Previous Next

Remarks

For albums where the tracks may have different artists, such as tribute albums or collaborative albums, this
attribute can be used to specify the primary artist of the album. It is preferable to use this attribute rather than
using an author value of "various artists".

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/AlbumCoverURL

The WM/AlbumCoverURL attribute contains the address of a Web page that contains an image of the album
cover and information about the album.

Global Constant

g_wszWMAlbumCoverURL

Data Type

WMT_TYPE_STRING

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/AlbumTitle

Previous Next

Previous Next

Previous Next

Previous Next

The WM/AlbumTitle attribute contains the title of the album on which the content was originally released.

Global Constant

g_wszWMAlbumTitle

Data Type

WMT_TYPE_STRING

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/AudioFileURL

The WM/AudioFileURL attribute contains the address of an official Web page with information about the file
in which this attribute appears. For example, a song might have a link back to the album page on the artist's
Web site.

Global Constant

g_wszWMAudioFileURL

Data Type

WMT_TYPE_STRING

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

WM/AudioSourceURL

The WM/AudioSourceURL attribute contains the address of an official Web page of the source media. For
example, a song from a soundtrack might have a link to the official page for the movie.

Global Constant

g_wszWMAudioSourceURL

Data Type

WMT_TYPE_STRING

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/AuthorURL

The WM/AuthorURL attribute contains the address of the author's Web site.

Global Constant

g_wszWMAuthorURL

Data Type

WMT_TYPE_STRING

Remarks

The address specified by this attribute should correspond with the artist or author in an Author attribute in the
file.

Previous Next

Previous Next

Previous Next

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/BeatsPerMinute

The WM/BeatsPerMinute attribute contains the beats per minute of the content.

Global Constant

g_wszWMBeatsPerMinute

Data Type

WMT_TYPE_STRING

Remarks

The value of a BeatsPerMinute attribute is an integer stored as a string.

Example

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

File type Example value

Audio "120"

Previous Next

WM/Category

The WM/Category attribute contains the category of the content. There are no specifications for categories.
Users should be encouraged to enter their own categories to organize their content.

Global Constant

g_wszWMCategory

Data Type

WMT_TYPE_STRING

Example

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/Codec

The WM/Codec attribute contains the name of the codec used to encode the content.

Global Constant

g_wszWMCodec

Data Type

Previous Next

File type Example value

Audio "Driving Music"

Video "Home Videos"

Previous Next

Previous Next

WMT_TYPE_STRING

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/Composer

The WM/Composer attribute contains the name of the music composer.

Global Constant

g_wszWMComposer

Data Type

WMT_TYPE_STRING

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/Conductor

The WM/Conductor attribute contains the name of the conductor.

Global Constant

Previous Next

Previous Next

Previous Next

Previous Next

g_wszWMConductor

Data Type

WMT_TYPE_STRING

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/ContainerFormat

The WM/ContainerFormat attribute specifies the type of file that is loaded in the calling object.

Global Constant

g_wszWMContainerFormat

Data Type

WMT_STORAGE_FORMAT (WMT_TYPE_BINARY)

Remarks

This attribute is used in place of IWMProfile3::GetStorageFormat and IWMProfile3::SetStorageFormat,
which are no longer supported.

This is a coded attribute.

This attribute cannot be duplicated at the file level. If this attribute is used for an individual stream, it will be
treated as custom metadata and will not convey its normal meaning to the objects of the Windows Media
Format SDK.

See Also

Attribute List

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/ContentDistributor

The WM/ContentDistributor attribute contains the name of the distributor of the file.

Global Constant

g_wszWMContentDistributor

Data Type

WMT_TYPE_STRING

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/ContentGroupDescription

The WM/ContentGroupDescription attribute contains a description of the content group.

Global Constant

g_wszWMContentGroupDescription

Data Type

WMT_TYPE_STRING

Remarks

Content groups are collections of media to which individual files may belong. For example, an audio file may

Previous Next

Previous Next

Previous Next

be a song that is a track on one compact disc that is part of a boxed set. Similarly, a video clip may be part of a
series.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/Director

The WM/Director attribute contains the name of the director.

Global Constant

g_wszWMDirector

Data Type

WMT_TYPE_STRING

Remarks

Typically video files have directors, audio files are more likely to use WM/Producer.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/DRM

Previous Next

Previous Next

Previous Next

Previous Next

The WM/DRM attribute indicates whether the content has been protected with digital rights management
(DRM).

Global Constant

g_wszWMDRM

Data Type

WMT_TYPE_STRING

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/DVDID

The WM/DVDID attribute contains the digital video disc identifier (DVDID).

Global Constant

g_wszWMDVDID

Data Type

WMT_TYPE_STRING

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

WM/EncodedBy

The WM/EncodedBy attribute contains the name of the person or group that encoded the content.

Global Constant

g_wszWMEncodedBy

Data Type

WMT_TYPE_STRING

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/EncodingSettings

The WM/EncodingSettings attribute contains the settings used to encode the content.

Global Constant

g_wszWMEncodingSettings

Data Type

WMT_TYPE_STRING

Remarks

There is no standard format for indicating encoding settings. However, it is preferable to describe the encoding
settings in English rather than including a dump of the settings.

See Also

Previous Next

Previous Next

Previous Next

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/EncodingTime

The WM/EncodingTime attribute contains a time stamp of the time at which the content was encoded.

Global Constant

g_wszWMEncodingTime

Data Type

FILETIME (WMT_TYPE_QWORD)

Remarks

This attribute uses a FILETIME value, which is a 64-bit value representing the number of 100-nanosecond time
units elapsed since January 1, 1601. For more information about the FILETIME, see the Windows System
Information section of the Platform SDK.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/Genre

The WM/Genre attribute contains the genre of the content.

Previous Next

Previous Next

Previous Next

Previous Next

Global Constant

g_wszWMGenre

Data Type

WMT_TYPE_STRING

Remarks

This is the preferred attribute for specifying the genre of content.

If you change either WM/Genre or WM/GenreID in an MP3 file, the other attribute will be changed to match.

Example

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/GenreID

The WM/GenreID attribute contains a genre identifier compliant with the contents of the TCON tag in ID3v2.
This should contain the genre ID in parentheses, optionally followed by a refinement further describing the
genre. For more information, refer to the ID3v2 specification.

Global Constant

g_wszWMGenreID

Data Type

WMT_TYPE_STRING

File type Example value

Audio "Rock"

Video "Drama"

Previous Next

Previous Next

Remarks

The preferred attribute for specifying a genre is WM/Genre. Use it in preference to this attribute.

If you change either WM/Genre or WM/GenreID in an MP3 file, the other attribute will be changed to match.

Example

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/InitialKey

The WM/InitialKey attribute contains the initial key of the music in the file.

Global Constant

g_wszWMInitialKey

Data Type

WMT_TYPE_STRING

Example

See Also

Attribute List

File type Example value

Audio "(4) Eurodisco"

Previous Next

Previous Next

File type Example value

Audio "A Minor"

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/ISRC

The WM/ISRC attribute contains the international standard recording code (ISRC).

Global Constant

g_wszWMISRC

Data Type

WMT_TYPE_STRING

Remarks

The ISRC is used in the recording industry to identify a recording. It is independent of the MCDI, which
identifies a compact dics by its table of contents.

See Also

Attribute List
WM/MCDI

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/Language

The WM/Language attribute contains the language of the stream.

Global Constant

g_wszWMLanguage

Previous Next

Previous Next

Previous Next

Data Type

WMT_TYPE_STRING

Remarks

The language string used should be compliant with RFC 1766. For more information, see Language Strings.

Example

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/Lyrics

The WM/Lyrics attribute contains the lyrics as a simple string.

Global Constant

g_wszWMLyrics

Data Type

WMT_TYPE_STRING

Remarks

For more structured storage of lyrics, use the WM/Lyrics_Synchronised attribute.

See Also

Attribute List

File type Example value

All "en-us"

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/Lyrics_Synchronised

The WM/Lyrics_Synchronised attribute contains lyrics synchronized to times in the file.

Global Constant

g_wszWMLyrics_Synchronised

Data Type

WM_SYNCHRONISED_LYRICS (WMT_TYPE_BINARY)

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/MCDI

The WM/MCDI attribute contains the music CD identifier. This is a binary dump of the table of contents from
the CD that is used to uniquely identify the CD.

Global Constant

g_wszWMMCDI

Data Type

WMT_TYPE_BINARY

Previous Next

Previous Next

Previous Next

Remarks

This attribute is compatible with the ID3 frame, MCDI. The ID3 specification for the MCDI frame requires that
only one such frame exist per file and that a valid TRCK frame exist. The metadata editor does not perform any
validation for these rules. Also, the size of WM/MCDI is not limited to 804 bytes, as is the MCDI ID3 frame.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/MediaClassPrimaryID

The WM/MediaClassPrimaryID attribute contains the GUID of the primary media class.

Global Constant

g_wszWMMediaClassPrimaryID

Data Type

WMT_TYPE_GUID

Remarks

This attribute should be set to one of the values in the following table.

When you specify a primary class identifier, you should also set a secondary class identifier to clarify the type
of content in the file.

See Also

Previous Next

Previous Next

Primary class GUID Description

"D1607DBC-E323-4BE2-86A1-48A42A28441E" Use for music files. Do not use for audio that is
not music.

"DB9830BD-3AB3-4FAB-8A37-1A995F7FF74B" Use for video files.

"01CD0F29-DA4E-4157-897B-6275D50C4F11" Use for audio files that are not music.

"FCF24A76-9A57-4036-990D-E35DD8B244E1" Use for files that are neither audio or video.

Attribute List
WM/MediaClassSecondaryID

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/MediaClassSecondaryID

The WM/MediaClassSecondaryID attribute contains the GUID of the secondary media class.

Global Constant

g_wszWMMediaClassSecondaryID

Data Type

WMT_TYPE_GUID

Remarks

This attribute should be set to one of the values in the following table.

Previous Next

Previous Next

Secondary class GUID Description

"E0236BEB-C281-4EDE-A36D-7AF76A3D45B5" Use for audio book files.

"3A172A13-2BD9-4831-835B-114F6A95943F" Use for audio files that contain spoken word,
but are not audio books. For example, stand-up
comedy routines.

"6677DB9B-E5A0-4063-A1AD-ACEB52840CF1" Use for audio files related to news.

"1B824A67-3F80-4E3E-9CDE-F7361B0F5F1B" Use for audio files with talk show content.

"1FE2E091-4E1E-40CE-B22D-348C732E0B10" Use for video files related to news.

"D6DE1D88-C77C-4593-BFBC-9C61E8C373E3" Use for video files containing Web-based
shows, short films, movie trailers, and so on.
This is the general identifier for video
entertainment that does not fit into another
category.

"00033368-5009-4AC3-A820-5D2D09A4E7C1" Use for audio files containing sound clips from
games.

"F24FF731-96FC-4D0F-A2F5-5A3483682B1A" Use for audio files containing complete songs

When specifying a secondary class identifier, the file should also contain a primary clas identifier attribute.

See Also

Attribute List
WM/MediaClassPrimaryID

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/ModifiedBy

The WM/ModifiedBy attribute contains the name of a person or group that modified the file.

Global Constant

g_wszWMModifiedBy

Data Type

WMT_TYPE_STRING

See Also

from game sound tracks. If only part of a song
is encoded in the file, use the identifier for
game sound clips instead.

"E3E689E2-BA8C-4330-96DF-A0EEEFFA6876" Use for video files containing music videos.

"B76628F4-300D-443D-9CB5-01C285109DAF" Use for video files containing general home
video.

"A9B87FC9-BD47-4BF0-AC4F-655B89F7D868" Use for video files containing feature films.

"BA7F258A-62F7-47A9-B21F-4651C42A000E" Use for video files containing television
shows. For Web-based shows, use the more
generic identifier.

"44051B5B-B103-4B5C-92AB-93060A9463F0" Use for video files containing corporate video.
For example, recorded meetings or training
videos.

"0B710218-8C0C-475E-AF73-4C41C0C8F8CE" Use for video files containing home video
made from photographs.

Previous Next

Previous Next

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/Mood

The WM/Mood attribute contains a category name for the mood of the content.

Global Constant

g_wszWMMood

Data Type

WMT_TYPE_STRING

Example

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/OriginalAlbumTitle

The WM/OriginalAlbumTitle attribute contains the name of the album on which the song first appeared.

Previous Next

Previous Next

File type Example value

All "Joyous"

Previous Next

Previous Next

Global Constant

g_wszWMOriginalAlbumTitle

Data Type

WMT_TYPE_STRING

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/OriginalArtist

The WM/OriginalArtist attribute contains the name of the artist who originally produced the content.

Global Constant

g_wszWMOriginalArtist

Data Type

WMT_TYPE_STRING

Remarks

Original artist is typically used for remakes of songs. For such files. use the Author name of the band that
originally recorded the song.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

WM/OriginalFilename

The WM/OriginalFilename attribute contains the name of the file from which the content was made.

Global Constant

g_wszWMOriginalFilename

Data Type

WMT_TYPE_STRING

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/OriginalLyricist

The WM/OriginalLyricist attribute contains the name of the person who wrote the original lyrics.

Global Constant

g_wszWMOriginalLyricist

Data Type

WMT_TYPE_STRING

See Also

Attribute List

Previous Next

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/OriginalReleaseYear

The WM/OriginalReleaseYear attribute contains the year during which the content was first released.

Global Constant

g_wszWMOriginalReleaseYear

Data Type

WMT_TYPE_STRING

Example

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/ParentalRating

The WM/ParentalRating attribute contains the parental rating of the content.

Global Constant

g_wszWMParentalRating

Previous Next

File type Example value

All "2002"

Previous Next

Previous Next

Data Type

WMT_TYPE_STRING

Example

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/PartOfSet

The WM/PartOfSet attribute part number and total number of parts of the set to which the file belongs.

Global Constant

g_wszWMPartOfSet

Data Type

WMT_TYPE_STRING

Example

See Also

Attribute List

File type Example value

Audio "Explicit Lyrics"

Video "PG-13"

Previous Next

Previous Next

File type Example value

All "2/3"

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/Period

The WM/Period attribute contains the period of the content.

Global Constant

g_wszWMPeriod

Data Type

WMT_TYPE_STRING

Example

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/Picture

The WM/Picture attribute contains a picture related to the content.

Global Constant

g_wszWMPicture

Previous Next

File type Example value

Audio "Baroque"

Previous Next

Previous Next

Data Type

WM_PICTURE (WMT_TYPE_BINARY)

Remarks

This attribute is compatible with the ID3 frame, APIC. The ID3 specification for the APIC frame stipulates that,
while there may be any number of APIC frames associated with a file, only one may be of type 1 and only one
may be of type 2. The specification also states that the description of the picture can be no longer than 64
characters, but can be empty.

WM/Picture attributes added with the objects of the Windows Media Format SDK are not automatically
validated to conform to ID3 specifications. You must add code in your application to perform validations if you
want to maintain complete compatibility with ID3.

See Also

Attribute List
WM_PICTURE

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/PlaylistDelay

The WM/PlaylistDelay attribute contains the number of milliseconds delay that should precede playback of the
file in a playlist.

Global Constant

g_wszWMPlaylistDelay

Data Type

WMT_TYPE_STRING

Remarks

Not all media players honor the playlist delay.

See Also

Attribute List

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/Producer

The WM/Producer attribute contains the name of the producer of the content.

Global Constant

g_wszWMProducer

Data Type

WMT_TYPE_STRING

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/PromotionURL

The WM/PromotionURL attribute contains the address of a Web site offering a promotion related to the
content.

Global Constant

g_wszWMPromotionURL

Data Type

WMT_TYPE_STRING

Previous Next

Previous Next

Previous Next

Previous Next

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/ProtectionType

The WM/ProtectionType attribute contains the type of protection used on the content.

Global Constant

g_wszWMProtectionType

Data Type

WMT_TYPE_STRING

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/Provider

The WM/Provider attribute contains the name of the metadata content provider. Metadata is often obtained
through a service.

Global Constant

g_wszWMProvider

Previous Next

Previous Next

Previous Next

Previous Next

Data Type

WMT_TYPE_STRING

Example

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/ProviderRating

The WM/ProviderRating attribute contains the rating of the file as assigned by the metadata content provider.

Global Constant

g_wszWMProviderRating

Data Type

WMT_TYPE_STRING

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

File type Example value

All "AMG"

Previous Next

Previous Next

Previous Next

WM/ProviderStyle

The WM/ProviderStyle attribute contains the style of the file as assigned by the metadata content provider.

Global Constant

g_wszWMProviderStyle

Data Type

WMT_TYPE_STRING

Remarks

This attribute is essentially a second genre designation. Because different classifiers have different notions of
the genres associated with content, the provider style may be different than the genre assigned by the content
creator.

See Also

Attribute List
WM/Genre
WM/GenreID

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/Publisher

The WM/Publisher attribute contains the name of the company that published the content.

Global Constant

g_wszWMPublisher

Data Type

Previous Next

Previous Next

Previous Next

WMT_TYPE_STRING

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/RadioStationName

The WM/RadioStationName attribute contains the name of the radio station associated with the content.

Global Constant

g_wszWMRadioStationName

Data Type

WMT_TYPE_STRING

Remarks

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/RadioStationOwner

The WM/RadioStationOwner attribute contains the name of the owner of the radio station associated with the
content.

Previous Next

Previous Next

Previous Next

Previous Next

Global Constant

g_wszWMRadioStationOwner

Data Type

WMT_TYPE_STRING

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/SubscriptionContentID

The WM/SubscriptionContentID attribute contains the subscription content identifier.

Global Constant

g_wszWMSubscriptionContentID

Data Type

WMT_TYPE_STRING

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Previous Next

WM/SubTitle

The WM/SubTitle attribute contains the subtitle of the content.

Global Constant

g_wszWMSubTitle

Data Type

WMT_TYPE_STRING

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/Text

The WM/Text attribute contains arbitrary user text.

Global Constant

g_wszWMText

Data Type

WM_USER_TEXT (WMT_TYPE_BINARY)

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

WM/ToolName

The WM/ToolName attribute contains the name of the application used to create the file. You can also specify
the version of the application using WM/ToolVersion.

Global Constant

g_wszWMToolName

Data Type

WMT_TYPE_STRING

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/ToolVersion

The WM/ToolVersion attribute contains the version number of the application used to create the file. If you use
this attribute, you should also include the name of the application using WM/ToolName.

Global Constant

g_wszWMToolVersion

Data Type

WMT_TYPE_STRING

See Also

Attribute List

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/Track

The WM/Track attribute contains the track number of the content. This attribute is zero-based and is supported
for backward compatibility. New content should use the WM/TrackNumber attribute instead.

Global Constant

g_wszWMTrack

Data Type

WMT_TYPE_STRING

Remarks

Many existing applications write the value for WM/Track as a DWORD. If you create an application that
plays files from unknown sources, you should include code to handle both string and DWORD values.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/TrackNumber

The WM/TrackNumber attribute contains the track number of the content. This attribute is 1-based.

Global Constant

Previous Next

Previous Next

Previous Next

Previous Next

g_wszWMTrackNumber

Data Type

WMT_TYPE_STRING

Remarks

Many existing applications write the value for WM/TrackNumber as a DWORD. If you create an application
that plays files from unknown sources, you should include code to handle both string and DWORD values.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/UniqueFileIdentifier

The WM/UniqueFileIdentifier attribute contains a unique file identifier for the content.

Global Constant

g_wszWMUniqueFileIdentifier

Data Type

WM_TYPE_STRING

Remarks

The unique file identifier is a generic string that can be used by applications and services to uniquely identify
the file. The string contains semicolon-delimited arbitrary values. You should never clear this attribute. You can
append values and remove your own values, but all others should be left unaltered.

See Also

Attribute List

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/UserWebURL

The WM/UserWebURL attribute contains the address of a Web site and a description of the site.

Global Constant

g_wszWMUserWebURL

Data Type

WM_USER_WEB_URL (WMT_TYPE_BINARY)

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/VideoFrameRate

The WM/VideoFrameRate attribute contains the rate, in frames per second, of the video in a stream.

Global Constant

g_wszWMVideoFrameRate

Data Type

WMT_TYPE_DWORD

See Also

Attribute List

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/VideoHeight

The WM/VideoHeight attribute contains the height, in pixels, of a frame of video in a stream.

Global Constant

g_wszWMVideoHeight

Data Type

WMT_TYPE_DWORD

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/VideoWidth

The WM/VideoWidth attribute contains the width, in pixels, of a frame of video in a stream.

Global Constant

g_wszWMVideoWidth

Data Type

WMT_TYPE_DWORD

Previous Next

Previous Next

Previous Next

Previous Next

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/WMADRCAverageReference

The WM/WMADRCAverageReference attribute contains the average volume level of the file as encoded.

Global Constant

g_wszWMWMADRCAverageReference

Data Type

WMT_TYPE_DWORD

Remarks

There are four attributes used by Windows Media Player for dynamic range control:
WM/WMADRCAverageReference, WM/WMADRCPeakReference, WM/WMADRCAverageTarget, and
WM/WMADRCPeakTarget. All of these values are set by the writer based on information from the codec
when writing streams with the Windows Media Audio 9 codec or Windows Media Audio 9 Professional codec.
The average values are set to the average volume level of the stream, and the peak values are set to the
maximum volume level in the stream. The reference values are read-only. The target values are set by Windows
Media Player when the file is being played to record the dynamic range control preferences of the user.

See Also

Attribute List
WM/WMADRCAverageTarget
WM/WMADRCPeakReference
WM/WMADRCPeakTarget

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

WM/WMADRCAverageTarget

The WM/WMADRCAverageTarget attribute contains the average volume level requested by the user. This
value is used by Windows Media Player for dynamic range control.

Global Constant

g_wszWMWMADRCAverageTarget

Data Type

WMT_TYPE_DWORD

Remarks

There are four attributes used by Windows Media Player for dynamic range control:
WM/WMADRCAverageReference, WM/WMADRCPeakReference, WM/WMADRCAverageTarget, and
WM/WMADRCPeakTarget. All of these values are set by the writer based on information from the codec
when writing streams with the Windows Media Audio 9 codec or Windows Media Audio 9 Professional codec.
The average values are set to the average volume level of the stream, and the peak values are set to the
maximum volume level in the stream. The reference values are read-only. The target values are set by Windows
Media Player when the file is being played to record the dynamic range control preferences of the user.

See Also

Attribute List
WM/WMADRCAverageReference
WM/WMADRCPeakReference
WM/WMADRCPeakTarget

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/WMADRCPeakReference

The WM/WMADRCPeakReference attribute contains the maximum volume level of the file as encoded. This
value is used by Windows Media Player for dynamic range control. This value is set by the codec and is read-

Previous Next

Previous Next

Previous Next

only.

Global Constant

g_wszWMWMADRCPeakReference

Data Type

WMT_TYPE_DWORD

Remarks

There are four attributes used by Windows Media Player for dynamic range control:
WM/WMADRCAverageReference, WM/WMADRCPeakReference, WM/WMADRCAverageTarget, and
WM/WMADRCPeakTarget. All of these values are set by the writer based on information from the codec
when writing streams with the Windows Media Audio 9 codec or Windows Media Audio 9 Professional codec.
The average values are set to the average volume level of the stream, and the peak values are set to the
maximum volume level in the stream. The reference values are read-only. The target values are set by Windows
Media Player when the file is being played to record the dynamic range control preferences of the user.

See Also

Attribute List
WM/WMADRCAverageReference
WM/WMADRCAverageTarget
WM/WMADRCPeakTarget

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/WMADRCPeakTarget

The WM/WMADRCPeakTarget attribute contains the maximum volume level requested by the user. This
value is used by Windows Media Player for dynamic range control.

Global Constant

g_wszWMWMADRCPeakTarget

Data Type

WMT_TYPE_DWORD

Previous Next

Previous Next

Remarks

There are four attributes used by Windows Media Player for dynamic range control:
WM/WMADRCAverageReference, WM/WMADRCPeakReference, WM/WMADRCAverageTarget, and
WM/WMADRCPeakTarget. All of these values are set by the writer based on information from the codec
when writing streams with the Windows Media Audio 9 codec or Windows Media Audio 9 Professional codec.
The average values are set to the average volume level of the stream, and the peak values are set to the
maximum volume level in the stream. The reference values are read-only. The target values are set by Windows
Media Player when the file is being played to record the dynamic range control preferences of the user.

See Also

Attribute List
WM/WMADRCAverageReference
WM/WMADRCAverageTarget
WM/WMADRCPeakReference

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/WMCollectionGroupID

The WM/WMCollectionGroupID attribute contains a GUID identifying the collection group.

Global Constant

g_wszWMWMCollectionGroupID

Data Type

WMT_TYPE_GUID

Remarks

Content is identified by Windows Media technologies by using three values: WM/WMCollectionGroupID,
WM/WMCollectionID, and WM/WMContentID. These values identify the content, the collection to which it
belongs, and the group to which the collection belongs. All three of these values are populated by Windows
Media Player when metadata for the content is retrieved. You can have your application record these values and
use them to identify content, but you should not change them if they are present.

See Also

Attribute List

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/WMCollectionID

The WM/WMCollectionID attribute contains a GUID identifying the collection.

Global Constant

g_wszWMWMCollectionID

Data Type

WMT_TYPE_GUID

Remarks

Content is identified by Windows Media technologies by using three values: WM/WMCollectionGroupID,
WM/WMCollectionID, and WM/WMContentID. These values identify the content, the collection to which it
belongs, and the group to which the collection belongs. All three of these values are populated by Windows
Media Player when metadata for the content is retrieved. You can have your application record these values and
use them to identify content, but you should not change them if they are present.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/WMContentID

The WM/WMContentID attribute contains a GUID identifying the content.

Previous Next

Previous Next

Previous Next

Previous Next

Global Constant

g_wszWMWMContentID

Data Type

WMT_TYPE_GUID

Remarks

Content is identified by Windows Media technologies by using three values: WM/WMCollectionGroupID,
WM/WMCollectionID, and WM/WMContentID. These values identify the content, the collection to which it
belongs, and the group to which the collection belongs. All three of these values are populated by Windows
Media Player when metadata for the content is retrieved. You can have your application record these values and
use them to identify content, but you should not change them if they are present.

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

WM/Writer

The WM/Writer attribute contains the name of the writer who wrote the words of the content.

Global Constant

g_wszWMWriter

Data Type

WMT_TYPE_STRING

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

WM/Year

The WM/Year attribute contains the year the content was published.

Global Constant

g_wszWMYear

Data Type

WMT_TYPE_STRING

Example

See Also

Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

Attributes By Type
For convenience, this section lists some of the metadata attributes sorted by type. In some cases additional
information about the type is given. The following groupings are listed.

Previous Next

File type Example value

All "2002"

Previous Next

Previous Next

Attribute type Description

Attributes for Music Files Lists suggestions for attributes to use with music
files.

See Also

Attributes

© 2000-2003 Microsoft Corporation. All rights reserved.

Attributes for Music Files
This section lists the attributes commonly used for audio files containing music. It is recommended that you set
attributes for files according to these lists to ensure that your files are fully compatible with a wide variety of
playback applications. The attributes in this section are listed in three categories: primary, secondary, and
tertiary.

Primary attributes convey the most basic information about a file. If you are creating audio files for distribution,
this is the minimum set of attributes you should use.

Secondary attributes contain common metadata that is important but not universal to all audio files.

Tertiary attributes should be included as needed, but are not essential to describing the file.

Primary Attributes for Music

Author
Title
WM/AlbumArtist
WM/ContentDistributor
WM/Genre
WM/MCDI (if available; otherwise use WM/WMCollectionID, WM/WMCollectionGroupID, or
WM/WMContentID)
WM/MediaClassPrimaryID
WM/MediaClassSecondaryID
WM/Provider
WM/TrackNumber

Secondary Attributes for Music

Attributes for Video Files Lists suggestions for attributes to use with video files.

DRM Attribute List Lists the digital rights management attributes.

Multicast Station Attributes Lists the attributes superimposed on the file by a
multicast station.

Previous Next

Previous Next

Copyright
WM/Composer
WM/EncodingTime
WM/Language
WM/ParentalRating
WM/Producer
WM/ToolName
WM/ToolVersion
WM/WMCollectionGroupID
WM/WMCollectionID
WM/WMContentID
WM/Writer

Tertiary Attributes for Music

Description
WM/AuthorURL
WM/BeatsPerMinute
WM/Conductor
WM/ContentGroupDescription
WM/EncodedBy
WM/EncodingSettings
WM/InitialKey
WM/Lyrics
WM/Lyrics_Synchronised
WM/Mood
WM/PartOfSet
WM/Period
WM/Picture
WM/PromotionURL
WM/Publisher
WM/SubTitle
WM/UniqueFileIdentifier
WM/UserWebURL

See Also

Attributes By Type
Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Attributes for Video Files
This section lists the attributes commonly used for video files. It is recommended that you set attributes for files
according to these lists to ensure that your files are fully compatible with a wide variety of playback
applications. The attributes in this section are listed in three categories: primary, secondary, and tertiary.

Primary attributes convey the most basic information about a file. If you are creating video files for distribution,
this is the minimum set of attributes you should use.

Secondary attributes contain common metadata that is important but not universal to all video files.

Tertiary attributes should be included as needed, but are not essential to describing the file.

Primary Attributes for Video

1Author
Title
WM/ContentDistributor
WM/DVDID (if available; otherwise use WM/WMCollectionID, WM/WMCollectionGroupID, and
WM/WMContentID)
WM/Genre
WM/MediaClassPrimaryID
WM/MediaClassSecondaryID
WM/Provider

Secondary Attributes for Video

Copyright
WM/Composer
WM/Director
WM/EncodingTime
WM/Language
WM/ParentalRating
WM/Producer
WM/ToolName
WM/ToolVersion
WM/WMCollectionGroupID
WM/WMCollectionID
WM/WMContentID
WM/Writer

Tertiary Attributes for Video

Description
WM/AuthorURL
WM/Conductor
WM/ContentGroupDescription
WM/EncodedBy
WM/EncodingSettings
WM/PartOfSet
WM/Picture
WM/PromotionURL

WM/Publisher
WM/SubTitle
WM/UniqueFileIdentifier
WM/UserWebURL

See Also

Attributes By Type
Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

Multicast Station Attributes
When a file is streaming from a multicast station, the station can impose some attributes on the file. These
attributes, listed in the following table, are not actually stored in the file and are only available when the file is
streaming. They contain information about the station and would typically be identical for all content from the
station.

See Also

Attributes By Type
Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Multicast station attribute Global identifier Data type

NSC_Address g_wszWMNSCAddress WMT_TYPE_STRING

NSC_Description g_wszWMNSCDescription WMT_TYPE_STRING

NSC_Email g_wszWMNSCEmail WMT_TYPE_STRING

NSC_Name g_wszWMNSCName WMT_TYPE_STRING

NSC_Phone g_wszWMNSCPhone WMT_TYPE_STRING

Previous Next

DRM Attribute List
For convenience, the following table lists all the DRM-related file attributes. (These attributes are also listed in
the table of all attributes under Attribute List.)

Applications can set these values when writing DRM files and can retrieve them when reading.

See Also

Attributes By Type
DRM Properties

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

DRM file attribute Global identifier Data

DRM_ContentID g_wszWMDRM_ContentID WMT

DRM_DRMHeader_ContentDistributor g_wszWMDRM_DRMHeader_ContentDistributor WMT

DRM_DRMHeader_ContentID g_wszWMDRM_DRMHeader_ContentID WMT

DRM_DRMHeader_IndividualizedVersion g_wszWMDRM_DRMHeader_IndividualizedVersion WMT

DRM_DRMHeader_KeyID g_wszWMDRM_DRMHeader_KeyID WMT

DRM_DRMHeader_LicenseAcqURL g_wszWMDRM_DRMHeader_LicenseAcqURL WMT

DRM_DRMHeader_SubscriptionContentID g_wszWMDRM_DRMHeader_SubscriptionContentID WMT

DRM_DRMHeader g_wszWMDRM_DRMHeader WMT

DRM_IndividualizedVersion g_wszWMDRM_IndividualizedVersion WMT

DRM_KeyID g_wszWMDRM_KeyID WMT

DRM_LASignatureCert g_wszWMDRM_LASignatureCert WMT

DRM_LASignatureLicSrvCert g_wszWMDRM_LASignatureLicSrvCert WMT

DRM_LASignaturePrivKey g_wszWMDRM_LASignaturePrivKey WMT

DRM_LASignatureRootCert g_wszWMDRM_LASignatureRootCert WMT

DRM_LicenseAcqURL g_wszWMDRM_LicenseAcqURL WMT

DRM_V1LicenseAcqURL g_wszWMDRM_V1LicenseAcqURL WMT

Previous Next

ID3 Tag Support
The following table lists all of the attributes that correspond to ID3 tags. If you want to use the ID3 tags as
attributes rather than using the standard attribute names, add the prefix "ID3/" to the tag name. For example,
ID3/TPE2 is equivalent to Author.

Previous Next

Attribute ID3v1.x ID3v2.2 ID3v2.3/v2.4

Author Artist TP1 TPE1

Copyright TCR TCOP

CopyrightURL WCP WCOP

Description Comment COM COMM

Duration TLE TLEN

FileSize TSIZ

Title Title TT2 TIT2

WM/AlbumArtist TP2 TPE2

WM/AlbumSortOrder TSOA

WM/AlbumTitle Album TAL TALB

WM/ArtistSortOrder TSOP

WM/AudioFileURL WAF WOAF

WM/AudioSourceURL WAS WOAS

WM/AuthorURL WAR WOAR

WM/BeatsPerMinute TBPM

WM/Binary GEO GEOB

WM/Comments COM COMM

WM/Composer TCM TCOM

WM/Conductor TP3 TPE3

WM/ContentGroupDescription TT1 TIT1

WM/EncodedBy TEN TENC

WM/EncodingSettings TSS TSSE

See Also

Attributes

WM/EncodingTime TDEN

WM/GenreID GenreID TCO TCON

WM/InitialKey TKEY

WM/ISRC TSRC

WM/Language TLA TLAN

WM/Lyrics_Synchronised SLT SYLT

WM/MCDI MCDI

WM/ModifiedBy TPE4

WM/Mood TMOO

WM/OriginalAlbumTitle TOT TOAL

WM/OriginalArtist TOA TOPE

WM/OriginalFilename TOF TOFN

WM/OriginalLyricist TOL TOLY

WM/OriginalReleaseYear TOR TORY

WM/PartOfSet TPA TPOS

WM/Picture PIC APIC

WM/PlaylistDelay TDLY

WM/Publisher TPB TPUB

WM/RadioStationName TRN TRSN

WM/RadioStationOwner TRO TRSO

WM/SetSubTitle TSST

WM/SubTitle TT3 TIT3

WM/Text TXX TXXX

WM/TitleSortOrder TSOT

WM/TrackNumber Track TRK TRCK

WM/UniqueFileIdentifier UFI UFID

WM/UserWebURL WXX WXXX

WM/Writer TXT TEXT

WM/Year Year TYE TYER

© 2000-2003 Microsoft Corporation. All rights reserved.

DRM Properties
The following table lists DRM properties that applications can get or set when writing or reading protected
files. These properties are not file attributes; they are not written to the ASF file header.

Previous Next

Previous Next

DRM Property Global Identifier

DRM_ActionAllowed g_wszWMDRM_ActionAllowed

DRM_ActionAllowed_Backup g_wszWMDRM_ActionAllowed_Playback

DRM_ActionAllowed_CopyToCD g_wszWMDRM_ActionAllowed_CopyToCD

DRM_ActionAllowed_CopyToNonSDMIDevice g_wszWMDRM_ActionAllowed_CopyToSDMIDevice

DRM_ActionAllowed_CopyToSDMIDevice g_wszWMDRM_ActionAllowed_CopyToNonSDMIDevic

DRM_ActionAllowed_Playback g_wszWMDRM_ActionAllowed_Backup

DRM_BaseLicenseAcqURL g_wszWMDRM_BaseLicenseAcqURL

DRM_Flags g_wszWMDRM_Flags

DRM_HeaderSignPrivKey g_wszWMDRM_HeaderSignPrivKey

DRM_IsDRM g_wszIsDRM

DRM_IsDRMCached g_wszIsDRMCached

DRM_KeySeed g_wszWMDRM_Key_Seed

DRM_Level g_wszWMDRM_Level

DRM_LicenseID g_wszWMDRM_LicenseID

DRM_LicenseState g_wszWMDRM_LicenseState

DRM_LicenseState_Playback g_wszWMDRM_LicenseState_Playback

DRM_LicenseState_CopyToCD g_wszWMDRM_LicenseState_CopyToCD

DRM_LicenseState_CopyToSDMIDevice g_wszWMDRM_LicenseState_CopyToSDMIDevice

DRM_LicenseState_CopyToNonSDMIDevice g_wszWMDRM_LicenseState_CopyToNonSDMIDevice

DRM_Rights g_wszWMDRM_Rights

See Also

DRM Attribute List

© 2000-2003 Microsoft Corporation. All rights reserved.

DRM_ActionAllowed

The DRM_ActionAllowed property is the base string for the other "ActionAllowed" property string constants,
such as DRM_ActionAllowed_CopyToCD, Because the "action allowed" property is not extensible, this base
string is of no use to applications.

Global Constant

g_wszWMDRM_ActionAllowed

Data Type

No data type.

Remarks

"ActionAllowed" properties are not currently extensible.

See Also

DRM Properties

© 2000-2003 Microsoft Corporation. All rights reserved.

Use_Advanced_DRM g_wszWMUse_Advanced_DRM

Use_DRM g_wszWMUse_DRM

Previous Next

Previous Next

Previous Next

DRM_ActionAllowed_Playback

The DRM_ActionAllowed_Playback attribute indicates whether playback of the content is allowed.

Global Constant

g_wszWMDRM_ActionAllowed_Playback

Data Type

WMT_TYPE_BOOL

Remarks

This is a read-only property that is retrieved using IWMDRMReader::GetDRMProperty.

See Also

DRM Properties

© 2000-2003 Microsoft Corporation. All rights reserved.

DRM_ActionAllowed_CopyToCD

The DRM_ActionAllowed_CopyToCD attribute indicates whether the content is allowed to be copied to a
CD.

Global Constant

g_wszWMDRM_ActionAllowed_CopyToCD

Data Type

WMT_TYPE_BOOL

Remarks

Previous Next

Previous Next

Previous Next

This is a read-only property that is retrieved using IWMDRMReader::GetDRMProperty.

See Also

DRM Properties

© 2000-2003 Microsoft Corporation. All rights reserved.

DRM_ActionAllowed_CopyToSDMIDevice

The DRM_ActionAllowed_CopyToSDMIDevice attribute indicates whether the content is allowed to be
copied to an SDMI device.

Global Constant

g_wszWMDRM_ActionAllowed_CopyToSDMIDevice

Data Type

WMT_TYPE_BOOL

Remarks

This is a read-only property that is retrieved using IWMDRMReader::GetDRMProperty.

See Also

DRM Properties

© 2000-2003 Microsoft Corporation. All rights reserved.

DRM_ActionAllowed_CopyToNonSDMIDevice

Previous Next

Previous Next

Previous Next

Previous Next

The DRM_ActionAllowed_CopyToNonSDMIDevice attribute indicates whether the content is allowed to be
copied to a non-SDMI device

Global Constant

g_wszWMDRM_ActionAllowed_CopyToNonSDMIDevice

Data Type

WMT_TYPE_BOOL

Remarks

This is a read-only property that is retrieved using IWMDRMReader::GetDRMProperty.

See Also

DRM Properties

© 2000-2003 Microsoft Corporation. All rights reserved.

DRM_ActionAllowed_Backup

The DRM_ActionAllowed_Backup attribute indicates whether the content is allowed to be backed up.

Global Constant

g_wszWMDRM_ActionAllowed_Backup

Data Type

WMT_TYPE_BOOL

Remarks

This is a read-only property that is retrieved using IWMDRMReader::GetDRMProperty.

See Also

DRM Properties

Previous Next

Previous Next

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

DRM_BaseLicenseAcqURL

The DRM_BaseLicenseAcqURL attribute contains a partial, base URL to which a player application must
navigate in order to obtain a license for the content.

Global Constant

g_wszWMDRM_BaseLicenseAcqURL

Data Type

WMT_TYPE_STRING

Remarks

This is an optional read-write property that is set and retrieved using IWMDRMReader::GetDRMProperty. It
is provided to enable license distribution systems to use relative paths in the license acquisition URL properties.

After setting this property, all partial license acquisition URLs in content headers will have the base URL added
to the front of the partial URL to form a full URL for the player application to navigate to. Calling
IWMDRMReader::GetDRMProperty for DRM_BaseLicenseAcqURL will only work only in the same
session as it was set. The property is not stored in the content header; it is dynamic, and only the relative URL is
stored in the content.

See Also

DRM Properties

© 2000-2003 Microsoft Corporation. All rights reserved.

DRM_Flags

Previous Next

Previous Next

Previous Next

The DRM_Flags property is used with DRM version 1 content only to specify the rights that will be contained
in the local license. Rights are specified with values defined by the WMT_RIGHTS enumeration type. More
than one value can be selected by combining them with the bitwise OR operator.

Global Constant

g_wszWMDRM_Flags

Data Type

WMT_TYPE_DWORD

Remarks

When accessing the IWMHeaderInfo3 interface of the writer object, you can add or change this value. In other
objects (metadata editor, reader, and synchronous reader), this value is read-only. Use
IWMHeaderInfo::SetAttribute to set this property when creating DRM version 1 content.

See Also

DRM Properties

© 2000-2003 Microsoft Corporation. All rights reserved.

DRM_HeaderSignPrivKey

The DRM_HeaderSignPrivKey property contains the private key used to sign the ASF header.

Global Constant

g_wszWMDRM_HeaderSignPrivKey

Data Type

WMT_TYPE_STRING

Remarks

This property is generated using the IWMDRMWriter::GenerateSigningKeyPair. Keep this key secret and
share the public key only with the license service. After you set this key, the DRM component will use it to sign
the ASF file header (not the DRM header which is signed with the digital signature object values such as
DRM_LASignaturePrivKey). Obviously, DRM_HeaderSignPrivKey is not included in the file headert.

Previous Next

Previous Next

This property is not accessible from the reader object. It can be set from the writer object using
IWMDRMWriter::SetDRMAttribute.

See Also

DRM Properties

© 2000-2003 Microsoft Corporation. All rights reserved.

DRM_IsDRM

The DRM_IsDRM property indicates whether a file is a DRM-protected file.

Global Constant

g_wszWMDRM_IsDRM

Data Type

WMT_TYPE_BOOL

This is a read-only property that is retrieved using IWMDRMReader::GetDRMProperty.

See Also

DRM Properties

© 2000-2003 Microsoft Corporation. All rights reserved.

DRM_IsDRMCached

The DRM_IsDRMCached property indicates whether DRM Version 1 license information has been stored on

Previous Next

Previous Next

Previous Next

Previous Next

the local machine.

Global Constant

g_wszWMDRM_IsDRMCached

Data Type

WMT_TYPE_BOOL

Remarks

This is a read-only property that is retrieved using IWMDRMReader::GetDRMProperty. It is TRUE when
the license acquisition URL matches one of two know URLs used for local license acquisition in DRM version
1.

See Also

DRM Properties

© 2000-2003 Microsoft Corporation. All rights reserved.

DRM_KeySeed

The DRM_KeySeed property contains the key seed that will be used in conjunction with the KeyID to create
the key.

Global Constant

g_wszWMDRM_KeySeed

Data Type

WMT_TYPE_STRING

Remarks

This property can be set using IWMDRMWriter::SetDRMAttribute. It is not accessible by the reader object.

A key seed is typically used to protect multiple files or sets of files, for example all the files issued by a license
server, or perhaps all the files by a particular artist. The KeyID, however, is unique for each file.

Previous Next

Previous Next

The key seed must remain a secret that is shared only between the content creator and the license distributor.
This value is not stored in the DRM header and it is neither needed by nor accessible to DRM player
applications.

A new key seed can be generated using the IWMDRMWriter::GenerateKeySeed method or by any other
suitable means.

See Also

DRM Properties

© 2000-2003 Microsoft Corporation. All rights reserved.

DRM_Level

DRM_Level is a license attribute that the Windows Media Format SDK sets when it creates a local license for
files protected with DRM version 1. It contains the security level that the calling application must have to
access the content in the file. The default value is 150.

Global Constant

g_wszWMDRM_Level

Data Type

WMT_TYPE_DWORD

Remarks

An application's DRM security level is determined by the particular wmstubdrm library that it links to at
compile time. For more information on these security levels, see Obtaining the Required DRM Library. Use
IWMHeaderInfo::SetAttribute to set this property when protecting ASF files with DRM version 1.

See Also

DRM Properties

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

DRM_LicenseState

The DRM_LicenseState property is not used. It is actually not a property at all, but rather is simply the root
string for the other license state property string identifiers such as DRM_LicenseState_Playback.

Global Constant

g_wszWMDRM_LicenseState

Data Type

WMT_TYPE_BINARY

Remarks

This property does not return any information.

See Also

DRM Properties

© 2000-2003 Microsoft Corporation. All rights reserved.

DRM_LicenseState_Playback

The DRM_LicenseState_Playback property contains a WM_LICENSE_STATE_DATA structure that
contains details about how this right has been applied to the content.

Global Constant

g_wszWMDRM_LicenseState_Playback

Data Type

WMT_TYPE_BINARY

Previous Next

Previous Next

Previous Next

Remarks

This is a read-only property that is retrieved using IWMDRMReader::GetDRMProperty.

See Also

DRM Properties

© 2000-2003 Microsoft Corporation. All rights reserved.

DRM_LicenseState_CopyToCD

The DRM_LicenseState_CopyToCD property contains a WM_LICENSE_STATE_DATA structure that
contains details about how this right has been applied to the content.

Global Constant

g_wszWMDRM_LicenseState_CopyToCD

Data Type

WMT_TYPE_BINARY

Remarks

This is a read-only property that is retrieved using IWMDRMReader::GetDRMProperty.

See Also

DRM Properties

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Previous Next

Previous Next

DRM_LicenseState_CopyToSDMIDevice

The DRM_LicenseState_CopyToSDMIDevice property contains a WM_LICENSE_STATE_DATA
structure that contains details about how this right has been applied to the content.

Global Constant

g_wszWMDRM_LicenseState_CopyToSDMIDevice

Data Type

WMT_TYPE_BINARY

Remarks

This is a read-only property that is retrieved using IWMDRMReader::GetDRMProperty.

See Also

DRM Properties

© 2000-2003 Microsoft Corporation. All rights reserved.

DRM_LicenseState_CopyToNonSDMIDevice

The DRM_LicenseState_CopyToNonSDMIDevice property contains a WM_LICENSE_STATE_DATA
structure that contains details about how this right has been applied to the content.

Global Constant

g_wszWMDRM_LicenseState_CopyToNonSDMIDevice

Data Type

WMT_TYPE_BINARY

Remarks

This is a read-only property that is retrieved using IWMDRMReader::GetDRMProperty.

See Also

Previous Next

Previous Next

DRM Properties

© 2000-2003 Microsoft Corporation. All rights reserved.

DRM_Rights

The DRM_Rights property specifies the rights that the application will require in the next attempt to open a
protected file.

Global Constant

g_wszWMDRM_Rights

Data Type

WMT_TYPE_STRING

Remarks

This is a read-write property that is retrieved using IWMDRMReader::GetDRMProperty and set using either
IWMDRMReader::SetDRMProperty or IWMDRMWriter::SetDRMAttribute.

The following table lists the supported rights.

This property contains a wide-character string of one or more rights separated by semicolons, for example:
L"Playback;Print.redbook;Transfer.SDMI;Transfer.NonSDMI".

See Also

DRM Properties

Previous Next

Previous Next

Right Description

"Backup" Right to back up the license.

"Playback" Right to play the media file.

"Print.redbook" Right to copy the file to a CD.

"Transfer.SDMI" Right to copy the file to an SDMI-compliant device.

"Transfer.NonSDMI" Right to copy the file to a non-SDMI device.

© 2000-2003 Microsoft Corporation. All rights reserved.

Use_DRM

The Use_DRM attribute instructs the writer object to apply DRM version 1 protection to the current file.

Global Constant

g_wszWMUse_DRM

Data Type

WMT_TYPE_BOOL

Remarks

Use IWMHeaderInfo::SetAttribute to set this property to TRUE when creating DRM version 1 content. This
property is not accessible from the reader object.

See Also

DRM Properties

© 2000-2003 Microsoft Corporation. All rights reserved.

Use_Advanced_DRM

The Use_Advanced_DRM attribute specifies whether DRM version 7 is used to protect the content.

Global Constant

g_wszWMUse_Advanced_DRM

Previous Next

Previous Next

Previous Next

Previous Next

Data Type

WMT_TYPE_BOOL

Remarks

This is a read-write property that is retrieved using IWMDRMReader::GetDRMProperty and set using
IWMDRMWriter::SetDRMAttribute. This property is not accessible from the reader object.

See Also

DRM Properties

© 2000-2003 Microsoft Corporation. All rights reserved.

Media Types
Media types identify the different types of media that can be used by the Windows Media Format SDK. All
media types are GUID values that have been assigned to constants in the SDK. The GUID values represented
by the constants listed in this section are listed in the Media Type Identifiers section of this reference.

The following table lists major media types. These constants define the high level classification of digital media
supported by the Windows Media Format SDK.

In addition to the explicitly supported major media types, you can create your own arbitrary data types. For
custom arbitrary data types, you must ensure that the GUID you use does not match an existing major type.

Previous Next

Previous Next

Major type Description

WMMEDIATYPE_Video A video stream.

WMMEDIATYPE_Audio An audio stream.

WMMEDIATYPE_Script A script stream.

WMMEDIATYPE_FileTransfer A stream that contains data files. Web streams, which
consist of HTML files, also have this major type.

WMMEDIATYPE_Image A JPEG image stream for an illustrated audio file (as
in a slide show).

WMMEDIATYPE_Text A text stream.

A media stream will often have a subtype in addition to its major type. The following sections list the supported
subtypes.

See Also

Media Type Identifiers
Programming Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

Uncompressed Media Subtypes
The following table lists the uncompressed media subtypes. These are types used as input and output formats,
and formats for uncompressed streams. Not all of the types in the following tables are supported in all ways.
Supported input and output format types can be enumerated by codec in the writer and reader/synchronous
reader, respectively. For information about the types supported for uncompressed streams, see Using
Uncompressed Audio and Video Streams.

The various RGB and palettized RGB video types listed here define colors using the RGB format, in which
each color is represented by the intensity values of the red, green, and blue components of the pixel. Each
intensity value can range from 0 to 255, for about 16.78 million unique colors. RGB translates easily into color
values used for computer monitors, which use red, green, and blue phosphors to display color. Palettized video
types must include palette information directly following the WMVIDEOINFOHEADER structure. Likewise,
16 bit video requires bit field information, which should be included after the WMVIDEOINFOHEADER
structure.

Several of the media subtypes in the following table provide fewer colors than the RGB system is capable of, as
described in the Description column. In palettized RGB types, colors in the palette represent RGB values, but
are specified by a value that indicates the position of the color in the palette.

Section Description

Uncompressed Media Subtypes Describes the subtypes available for uncompressed
media. These are the types typically associated with
input or output media.

Compressed Media Subtypes Describes the subtypes available for compressed
media. These are the types typically associated with
media in a stream within an ASF file.

Video Input Formats Lists the video formats accepted as inputs for the
Windows Media Video 9 codec.

Previous Next

Previous Next

Uncompressed media subtype Description

WMMEDIASUBTYPE_RGB1 Palettized RGB video with 1 color bit representing 2
colors. Usually used for monochrome images.

WMMEDIASUBTYPE_RGB4 Palettized RGB video with 4 color bits representing 16
colors.

WMMEDIASUBTYPE_RGB8 Palettized RGB video with 8 color bits representing
256 colors.

WMMEDIASUBTYPE_RGB565 RGB video with 16 color bits representing 65,536
colors. This format uses 5 bits for red, 6 bits for green,
and 5 bits for blue.

WMMEDIASUBTYPE_RGB555 RGB video with 16 color bits representing 32,768
colors. This format uses 5 bits for each color and
ignores the sixteenth bit.

WMMEDIASUBTYPE_RGB24 RGB video with 24 color bits representing all
16,777,216 colors available to the RGB color
representation scheme. This format uses 8 bits for each
color intensity value.

WMMEDIASUBTYPE_RGB32 RGB video with 32 color bits representing all
16,777,216 colors available to the RGB color
representation scheme. This format uses 8 bits for each
color and reserves the remaining 8 bits for
transparency information.

WMMEDIASUBTYPE_I420 YUV video stored in planar 4:2:0 format.

WMMEDIASUBTYPE_IYUV YUV video stored in planar 4:1:1 format.

WMMEDIASUBTYPE_YV12 YUV video stored in planar 4:2:0 or 4:1:1 format.
Identical to I420/IYUV except that the U and V planes
are switched.

WMMEDIASUBTYPE_YUY2 YUV video stored in packed 4:2:2 format.

WMMEDIASUBTYPE_UYVY YUV video stored in packed 4:2:2 format. Similar to
YUY2 but with different ordering of data.

WMMEDIASUBTYPE_YVYU YUV video stored in packed 4:2:2 format. Similar to
YUY2 but with different ordering of data.

WMMEDIASUBTYPE_YVU9 YUV video stored in planar 16:1:1 format.

WMMEDIASUBTYPE_PCM Uncompressed audio data stored using pulse code
modulation.

WMMEDIASUBTYPE_DRM Uncompressed but encrypted audio data used with
secure audio path.

WMSCRIPTTYPE_TwoStrings Script commands consisting of a string containing the
command type and a string containing the command
data. This is the only supported script type in the
Windows Media Format SDK.

See Also

Assigning Output Formats
Compressed Media Subtypes
Media Type Identifiers
Media Types
To Enumerate Input Formats

© 2000-2003 Microsoft Corporation. All rights reserved.

Compressed Media Subtypes
The following table lists the compressed media subtypes. These types are used to identify compressed streams
in a file. When you configure a video or audio stream, you will usually use these types.

WMMEDIASUBTYPE_WebStream File transfer data containing HTML files and
components for Web streaming.

WMMEDIASUBTYPE_VIDEOIMAGE Input type for the Windows Media Video 9 Image
codec. Samples are a combination of bitmap images
and transformation data.

Previous Next

Previous Next

Compressed media subtype Description

WMMEDIASUBTYPE_ACELPnet Audio encoded with the Sipro Labs ACELP codec.
This audio is normally voice data. (Not supported for
encoding in Windows Media Format 9 Series SDK.)

WMMEDIASUBTYPE_MP43 Video encoded by the Microsoft MPEG 4 codec
version 3. This codec is no longer supported by the
Windows Media Format SDK. If you install the 9
Series SDK over an old version, the codec will not be
removed and you will still be able to use it.

WMMEDIASUBTYPE_MP4S Video encoded using the ISO MPEG 4 codec version
1.

WMMEDIASUBTYPE_MPEG2_VIDEO Video encoded to MPEG 2 specifications.

WMMEDIASUBTYPE_MSS1 Video encoded with the Windows Media Screen codec
version 1.

WMMEDIASUBTYPE_MSS2 Video encoded with the Windows Media Video 9

See Also

Compressed Media Subtypes
Media Type Identifiers
Media Types

© 2000-2003 Microsoft Corporation. All rights reserved.

Screen codec.

WMMEDIASUBTYPE_WMVP Video encoded with the Windows Media Video 9
Image codec to transform bitmaps and deformation
data into a video stream.

WMMEDIASUBTYPE_WMAudio_Lossless Audio encoded with the Windows Media Audio 9
Lossless codec.

WMMEDIASUBTYPE_WMAudioV2 Audio encoded with the Windows Media Audio codec
version 2. This value is identical to
WMMEDIASUBTYPE_WMAudioV7 and
WMMEDIASUBTYPE_WMAudioV8, because the
bitstreams for these codec versions are compatible.

WMMEDIASUBTYPE_WMAudioV7 Audio encoded with the Windows Media Audio codec
version 7. This value is identical to
WMMEDIASUBTYPE_WMAudioV2 and
WMMEDIASUBTYPE_WMAudioV8, because the
bitstreams for these codec versions are compatible.

WMMEDIASUBTYPE_WMAudioV8 Audio encoded with the Windows Media Audio 8
codec or the Windows Media Audio 9 codec. This
value is identical to
WMMEDIASUBTYPE_WMAudioV2 and
WMMEDIASUBTYPE_WMAudioV7, because the
bitstreams for these codec versions are compatible.

WMMEDIASUBTYPE_WMAudioV9 Audio encoded with the Windows Media Audio 9
Professional codec.

WMMEDIASUBTYPE_WMSP1 Audio encoded with the Windows Media Audio 9
Voice codec.

WMMEDIASUBTYPE_WMV1 Video encoded using the Windows Media Video codec
version 7.

WMMEDIASUBTYPE_WMV2 Video encoded using the Windows Media Video 8
codec.

WMMEDIASUBTYPE_WMV3 Video encoded using the Windows Media Video 9
codec.

Previous Next

Video Input Formats
The writer accepts the following video formats as input to be compressed using the Windows Media Video 9
codec:

WMMEDIASUBTYPE_IYUV
WMMEDIASUBTYPE_I420
WMMEDIASUBTYPE_YV12
WMMEDIASUBTYPE_YUY2
WMMEDIASUBTYPE_UYVY
WMMEDIASUBTYPE_YVYU
WMMEDIASUBTYPE_YVU9
WMMEDIASUBTYPE_RGB32
WMMEDIASUBTYPE_RGB24
WMMEDIASUBTYPE_RGB565
WMMEDIASUBTYPE_RGB555
WMMEDIASUBTYPE_RGB8

You should always use IWMWriter::GetInputFormatCount and IWMWriter::GetInputFormat to
enumerate the available input formats and to obtain the input media properties object for the desired format.
Video input media properties objects must be changed to reflect the frame size and frame rate of your input
media.

See Also

Media Type Identifiers
Media Types

© 2000-2003 Microsoft Corporation. All rights reserved.

Input Settings
The following global constants are used to identify input settings for the writer.

Previous Next

Previous Next

Previous Next

The following values can be passed in when setting the deinterlaced mode (g_wszDeinterlaceMode) on the
writer object.

Global constant WMT_ATTR_DATATYPE Description of pValue

g_wszDeinterlaceMode WMT_TYPE_DWORD set
to one of the values in the
mode table that follows this
table.

When set, specifies the type of interlace
be input.

g_wszFixedFrameRate WMT_TYPE_BOOL When set to True, instructs the codec n
any frames during encoding. This will c
frame rate of the output video stream to
The frame rate of the input stream does
be constant.

g_wszInitialPatternForInverseTelecine WMT_TYPE_DWORD set
to one of the values in the
initial pattern table at the end
of this topic.

When the deinterlace mode is set to
WM_DM_DEINTERLACE_INVERSE
this can be set to specify the pattern of
input.

g_wszInterlacedCoding WMT_TYPE_BOOL When set to True, specifies that that the
should encode the stream as interlaced

g_wszJPEGCompressionQuality WMT_TYPE_DWORD Specifies the JPEG quality level (from
be used on the input.

g_wszWatermarkCLSID WMT_TYPE_GUID The value is set to the watermark GUID

g_wszWatermarkConfig WMT_TYPE_BINARY The value is set to the watermark config
This value will vary depending upon th
watermarking DMO. Consult the docum
the watermarking system for more info

Value Description

WM_DM_NOTINTERLACED Input is progressive.

WM_DM_DEINTERLACE_NORMAL Select this mode to blend the even
and odd fields of an interlaced frame
(using a motion compensation
mechanism).

Benefits:

The interlace artifacts of the
progressive display are
significantly reduced.
The Windows Media Video
codec produces higher quality
compressed video.

WM_DM_DEINTERLACE_HALFSIZE Select this mode when the output
resolution is half, or less, of the input
resolution. For example, use this

mode when the input video resolution
is 640 x 480 pixels and the output
video resolution is 320 x 240 pixels.

Benefits:

The interlace artifacts of the
progressive display are
significantly reduced.

WM_DM_DEINTERLACE_HALFSIZEDOUBLERATE Select this mode when the output
resolution is half, or less, of the input
resolution and the output frame rate
is twice as high. For example, use
this mode when the input video
resolution is 640 x 480 pixels at 30
interlaced frames/sec and the output
video resolution is 320 x 240 pixels
at 60 frames/sec.

Benefits:

This produces progressive
frames of high quality, because
each field is converted to a
frame and so there is no need
to blend any information.
The full motion of the
interlaced fields is captured.

WM_DM_DEINTERLACE_INVERSETELECINE Select this mode to convert telecined,
30 frames/sec video, into the original
24 frames/sec film.

Benefits:

The compression quality
improves significantly because
only 24 frames/sec of the 30
frames/sec need to be encoded.
Because the result is
progressive film, the same
compression and display
benefits of deinterlacing are
realized.

WM_DM_DEINTERLACE_VERTICALHALFSIZEDOUBLERATE Select this mode when the vertical
output resolution is half, or less, of
the input vertical resolution and the
output frame rate is twice as high.
For example, the input vertical video
resolution is 640 x 480 pixels at 30
interlaced frames/sec and the output

The following values are valid for the initial pattern setting (g_wszInitialPatternForInverseTelecine).

vertical video resolution is 320 x 240
pixels at 60 frames/sec.

Benefits:

This produces progressive
frames of high quality, because
each field is converted to a
frame and so there is no need
to blend any information.
The full motion of the
interlaced fields is captured.

Value Description

WM_DM_IT_DISABLE_COHERENT_MODE Specifies that the input media has gone
through the telecine process but that the
frames are no longer in a predictable pattern.
This usually indicates that the media was
edited after the telecine processing. When you
use this setting, the codec attempts to
reconstruct the original frames on its own.

WM_DM_IT_FIRST_FRAME_IN_CLIP_IS_AA_TOP Specifies that the top field of the AA frame is
the first sample.

WM_DM_IT_FIRST_FRAME_IN_CLIP_IS_BB_TOP Specifies that the top field of the BB frame is
the first sample.

WM_DM_IT_FIRST_FRAME_IN_CLIP_IS_BC_TOP Specifies that the top field of the BC frame is
the first sample.

WM_DM_IT_FIRST_FRAME_IN_CLIP_IS_CD_TOP Specifies that the top field of the CD frame is
the first sample.

WM_DM_IT_FIRST_FRAME_IN_CLIP_IS_DD_TOP Specifies that the top field of the DD frame is
the first sample.

WM_DM_IT_FIRST_FRAME_IN_CLIP_IS_AA_BOTTOM Specifies that the bottom field of the AA
frame is the first sample.

WM_DM_IT_FIRST_FRAME_IN_CLIP_IS_BB_BOTTOM Specifies that the bottom field of the BB
frame is the first sample.

WM_DM_IT_FIRST_FRAME_IN_CLIP_IS_BC_BOTTOM Specifies that the bottom field of the BC
frame is the first sample.

WM_DM_IT_FIRST_FRAME_IN_CLIP_IS_CD_BOTTOM Specifies that the bottom field of the CD
frame is the first sample.

WM_DM_IT_FIRST_FRAME_IN_CLIP_IS_DD_BOTTOM Specifies that the bottom field of the DD
frame is the first sample.

See Also

IWMWriterAdvanced2::GetInputSetting
IWMWriterAdvanced2::SetInputSetting

© 2000-2003 Microsoft Corporation. All rights reserved.

Output Settings
The following global constants are used to identify output settings for the reader and synchronous reader object.

Previous Next

Previous Next

Global constant WMT_ATTR_DATATYPE Description of pValue

g_wszAllowInterlacedOutput WMT_TYPE_BOOL If True, the reader will deliver
interlaced frames, if supported by the
output.

g_wszDedicatedDeliveryThread WMT_TYPE_BOOL If True, this output will have a
dedicated thread created for delivery
of its samples. Not supported on the
synchronous reader.

g_wszDeliverOnReceive WMT_TYPE_BOOL If True, samples for this output will
be delivered as soon as they are
available from the reader. This can
result in samples from this output
being delivered out of order and
before corresponding samples from
other outputs.

g_wszDynamicRangeControl WMT_TYPE_DWORD Dynamic range control.

g_wszEarlyDataDelivery WMT_TYPE_DWORD Time, in milliseconds, which
specifies how much earlier to deliver
the samples. If greater than zero, the
samples from this output will be
retrieved and decoded so that the
samples are delivered earlier than the
samples for other outputs. Normally
the reader delivers samples in order
of presentation time.

g_wszEnableDiscreteOutput WMT_TYPE_BOOL If True, the reader will enable high-

definition, multichannel audio
output. This setting is only valid for
audio streams encoded with the
Windows Media Audio 9
Professional codec. If this setting is
set to true, you must also specify the
speaker configuration of the client
computer by setting
g_wszSpeakerConfig.

g_wszEnableFrameInterpolation WMT_TYPE_BOOL If True, the codec will deliver the
video stream at a higher frame rate,
interpolating the frames
algorithmically.

g_wszJustInTimeDecode WMT_TYPE_BOOL If True, the data must be decoded as
late as possible. Not supported in the
synchronous reader.

g_wszNeedsPreviousSample WMT_TYPE_BOOL If true, the sample requires the
previous sample to be decompressed.
This setting only applies to delta
frames in compressed video and is
read only.

g_wszScrambledAudio WMT_TYPE_BOOL If True, this output will use the
scrambled audio error concealment
scheme. This is a valid setting for
audio outputs only.

g_wszSingleOutputBuffer WMT_TYPE_BOOL If True, a single output buffer must
be used (for example, a
DirectDraw® video buffer). Not
supported in the synchronous reader.

g_wszSoftwareScaling WMT_TYPE_BOOL If False, video is not scaled. (There
must be no change to the resolution.)

g_wszSpeakerConfig WMT_TYPE_DWORD If multichannel audio decoding is
enabled by setting
g_wszEnableDiscreteOutput, this
setting specifies the speaker
configuration of the client computer.
This value is the total number of
speakers in the system, so 6 would
mean 2 front, 2 back, 1 center, and 1
subwoofer.

g_wszStreamLanguage WMT_TYPE_WORD The index in the language list of the
language to be delivered for this
output. Used for outputs representing
streams mutually exclusive by
language.

g_wszVideoSampleDurations WMT_TYPE_BOOL If True, the reader will deliver
accurate sample durations.

See Also

IWMReaderAdvanced2::GetOutputSetting
IWMReaderAdvanced2::SetOutputSetting
IWMSyncReader::GetOutputSetting
IWMSyncReader::SetOutputSetting

© 2000-2003 Microsoft Corporation. All rights reserved.

Language Strings
The multiple language support features of the Windows Media Format SDK use language strings compliant
with RFC1766. The following table lists the commonly supported language strings.

Previous Next

Previous Next

Language string Description

af Afrikaans

ar-ae Arabic (U.A.E.)

ar-bh Arabic (Bahrain)

ar-dz Arabic (Algeria)

ar-eg Arabic (Egypt)

ar-iq Arabic (Iraq)

ar-jo Arabic (Jordan)

ar-kw Arabic (Kuwait)

ar-lb Arabic (Lebanon)

ar-ly Arabic (Libya)

ar-ma Arabic (Morocco)

ar-om Arabic (Oman)

ar-qa Arabic (Qatar)

ar-sa Arabic (Saudi Arabia)

ar-sy Arabic (Syria)

ar-tn Arabic (Tunisia)

ar-ye Arabic (Yemen)

ar Arabic

as Assamese

az Azeri

be Belarusian

bg Bulgarian

bn Bengali

ca Catalan

cs Czech

da Danish

de-at German (Austria)

de-ch German (Switzerland)

de-li German (Liechtenstein)

de-lu German (Luxembourg)

de German (Germany)

div Divehi

el Greek

en-au English (Australia)

en-bz English (Belize)

en-ca English (Canada)

en-gb English (United Kingdom)

en-ie English (Ireland)

en-jm English (Jamaica)

en-nz English (New Zealand)

en-ph English (Philippines)

en-tt English (Trinidad)

en-us English (United States)

en-za English (South Africa)

en-zw English (Zimbabwe)

en English

es-ar Spanish (Argentina)

es-bo Spanish (Bolivia)

es-cl Spanish (Chile)

es-co Spanish (Colombia)

es-cr Spanish (Costa Rica)

es-do Spanish (Dominican Republic)

es-ec Spanish (Ecuador)

es-gt Spanish (Guatemala)

es-hn Spanish (Honduras)

es-mx Spanish (Mexico)

es-ni Spanish (Nicaragua)

es-pa Spanish (Panama)

es-pe Spanish (Peru)

es-pr Spanish (Puerto Rico)

es-py Spanish (Paraguay)

es-sv Spanish (El Salvador)

es-us Spanish (United States)

es-uy Spanish (Uruguay)

es-ve Spanish (Venezuela)

es Spanish

et Estonian

eu Basque

fa Farsi

fi Finnish

fo Faeroese

fr-be French (Belgium)

fr-ca French (Canada)

fr-ch French (Switzerland)

fr-lu French (Luxembourg)

fr-mc French (Monaco)

fr French (France)

gd Gaelic

gl Galician

gu Gujarati

he Hebrew

hi Hindi

hr Croatian

hu Hungarian

hy Armenian

id Indonesian

is Icelandic

it-ch Italian (Switzerland)

it Italian (Italy)

ja Japanese

ka Georgian

kk Kazakh

kn Kannada

ko Korean

kok Konkani

kz Kyrgyz

lt Lithuanian

lv Latvian

mk Macedonian (FYROM)

ml Malayalam

mn Mongolian (Cyrillic)

mr Marathi

ms Malay

mt Maltese

nb-no Norwegian (Bokmal)

ne Nepali (India)

nl-be Dutch (Belgium)

nl Dutch (Netherlands)

nn-no Norwegian (Nynorsk)

no Norwegian (Bokmal)

or Oriya

pa Punjabi

pl Polish

pt-br Portuguese (Brazil)

pt Portuguese (Portugal)

rm Rhaeto-Romanic

ro-md Romanian (Moldova)

ro Romanian

ru-md Russian (Moldova)

ru Russian

sa Sanskrit

sb Sorbian

sk Slovak

sl Slovenian

sq Albanian

sr Serbian

sv-fi Swedish (Finland)

sv Swedish

sw Swahili

sx Sutu

syr Syriac

ta Tamil

te Telugu

th Thai

tn Tswana

tr Turkish

ts Tsonga

tt Tatar

uk Ukrainian

ur Urdu

uz Uzbek

vi Vietnamese

xh Xhosa

See Also

Programming Reference

© 2000-2003 Microsoft Corporation. All rights reserved.

Device Conformance Template Parameters
Each stream in a file can have an associated device conformance template. The templates are different for each
codec.

The following sections describe the device conformance templates.

Video Device Conformance Templates
Audio Device Conformance Templates
Recommended Device Conformance Template Combinations

See Also

Programming Reference
Device Conformance Templates

© 2000-2003 Microsoft Corporation. All rights reserved.

yi Yiddish

zh-cn Chinese (China)

zh-hk Chinese (Hong Kong SAR)

zh-mo Chinese (Macao SAR)

zh-sg Chinese (Singapore)

zh-tw Chinese (Taiwan)

zh Chinese

zu Zulu

Previous Next

Previous Next

Previous Next

Video Device Conformance Templates
The following tables list the device conformance templates and associated parameters for the Windows Media
Video 9 codec.

Simple Profile, Low Level

Simple Profile, Medium Level

Generic Simple Profile

Previous Next

Parameter Value

Template string "SP@LL"

Appropriate devices Wireless handsets (Microsoft Windows-Powered
SmartPhone Solution and similar devices)

Maximum resolution 176 x 144

Maximum frame rate 15 fps

Maximum bit rate 96 Kbps

Maximum buffer size (in 16384-bit units) 20 (about 3.4 seconds at maximum bit rate)

Interlaced Encoding No

Parameter Value

Template string "SP@ML"

Appropriate devices Handheld computers and Personal data assistants

High-end wireless handsets

Maximum resolution 352 x 288

Maximum frame rate 15 fps @ 352 x 288

24 fps @ 320 x 240

Maximum bit rate 384 Kbps

Maximum buffer size (in 16384-bit units) 77 (about 3.3 seconds at maximum bit rate)

Interlaced Encoding No

A stream that complies with the algorithmic limitations of the simple profile, but does not fit into one of the
level specifications, will be assigned "SP" as its device conformance template string.

Main Profile, Low Level

Main Profile, Medium Level

Main Profile, High Level

Parameter Value

Template string "MP@LL"

Appropriate devices Set-top boxes

Maximum resolution 352 x 288

Maximum frame rate 30 fps

Maximum bit rate 2 Mbps

Maximum buffer size (in 16384-bit units) 306 (about 2.5 seconds at maximum bit rate)

Interlaced Encoding No

Parameter Value

Template string "MP@ML"

Appropriate devices Set-top boxes

Slower computers using DirectX Video Acceleration

Windows Media–enabled DVD players

Maximum resolution 720 x 576

Maximum frame rate 30 fps @ 720 x 480

25 fps @ 720 x 576

Maximum bit rate 10 Mbps

Maximum buffer size (in 16384-bit units) 611 (about 1 second at maximum bit rate)

Interlaced Encoding Yes

Parameter Value

Template string "MP@HL"

Appropriate devices Computers using DirectX Video Acceleration

High-Definition Windows Media–enabled DVD
players

Generic Main Profile

A stream that complies with the algorithmic limitations of the main profile, but does not fit into one of the level
specifications, will be assigned "MP" as its device conformance template string.

Complex Profile

The following tables list the parameters of the device conformance templates for the Windows Media Video 9
Image codec.

Video Image Level 1

Video Image Level 2

Digital cinema

high-definition streaming

Maximum resolution 1920 x 1080

Maximum frame rate 30 fps @ 1920 x 1080

60 fps @ 1280 x 720

Maximum bit rate 20 Mbps

Maximum buffer size (in 16384-bit units) 2442 (about 2.66 seconds at maximum bit rate)

Interlaced Encoding Yes

Parameter Value

Template string "CP"

Remarks The complex profile has no explicit limitations. It is
used to enable all of the codec algorithms, usually for
demonstration purposes.

Parameter Value

Template string "I1"

Maximum resolution 352 x 288

Maximum frame rate 30 fps

Maximum bit rate 192 Kbps

Maximum buffer size (in 16384-bit units) 39 (about 3.26 seconds at maximum bit rate)

Interlaced Encoding No

Parameter Value

Generic Video Image

A video image stream that does not fit into one of the level specifications will be assigned "I" as its device
conformance template string.

See Also

Audio Device Conformance Templates
Device Conformance Template Parameters
Recommended Device Conformance Template Combinations

© 2000-2003 Microsoft Corporation. All rights reserved.

Audio Device Conformance Templates
The following table lists the device conformance templates and associated parameters for the Windows Media
Audio 9 codec.

Template string "I2"

Maximum resolution 1024 x 768

Maximum frame rate 30 fps

Maximum bit rate 384 Kbps

Maximum buffer size (in 16384-bit units) 77 (about 3.26 seconds at maximum bit rate)

Interlaced Encoding No

Previous Next

Previous Next

Template string Bit rate range Notes

"L1" 64 Kbps – 160 Kbps This template is intended for constrained
audio-only devices.

"L2" <= 160 Kbps This template corresponds to Class 4 in
the Windows Media Audio porting kit,
which supports the entire Windows Media
Audio decoder implementation.

"L3" <= 384 Kbps This template corresponds to Class 4 in
the Windows Media Audio porting kit,
which supports the entire Windows Media

The following table lists the device conformance templates and associated parameters for the Windows Media
Audio 9 Voice codec.

The following table lists the device conformance templates and associated parameters for the Windows Media
Audio 9 Professional codec.

See Also

Audio decoder implementation.

The bit rate range is the only difference
between this template and L2.

"L" All bit rates This template is for use with personal
computers only, and is usually used to
showcase the full capabilities of the codec.

Template string Bit rate range Notes

"S1" <= 20 Kbps This template is intended for very low-
complexity devices only.

This template is speech only.

"S2" <= 20 Kbps This is the recommended template for
most applications.

This template supports combinations of
speech and music.

Template string Properties Notes

"M1" Bit rate <= 384 Kbps

Sampling rate <= 48 kHz

Channels <= 5.1

This template is recommended for
standard movies with surround sound.

"M2" Bit rate <= 768 Kbps

Sampling rate <= 96 kHz

Channels <= 5.1

This template is recommended for high-
definition movies with surround sound.

"M" All bit rates

All sampling rates

All channels

This template is for use with personal
computers only, and is usually used to
showcase the full capabilities of the codec.

This is also the template designation for
all audio encoded with the Windows
Media Audio 9 Lossless codec.

Device Conformance Template Parameters
Recommended Device Conformance Template Combinations
Video Device Conformance Templates

© 2000-2003 Microsoft Corporation. All rights reserved.

Recommended Device Conformance Template
Combinations
The following table lists recommended combinations of device conformance templates.

See Also

Audio Device Conformance Templates
Device Conformance Template Parameters
Video Device Conformance Templates

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous Next

Previous Next

Windows Media Video
9 codec

Windows Media Audio
9 codec

Windows Media Audio
9 Voice codec

Windows Media Audio
9 Professional codec

SP@LL L2 S2 -

SP@ML L2 S2 -

MP@LL L2 S2 -

MP@ML L3 S2 M1

MP@HL L3 S2 M2

Previous Next

Previous Next

System Profiles
The following table contains the full list of supported system profiles. Each listed profile has a name and a
profile ID. The profile ID is a constant set to the GUID value assigned to the system profile. To use the system
profile IDs in your code, you must include wmsysprf.h in your application. For examples showing how to load a
system profile, see To Load a System Profile.

Important The profiles listed below all use the version 8 Windows Media Audio and Windows Media Video
codecs. There are no predefined system profiles that use the Windows Media 9 Series codecs. You can create
your own Windows Media 9 Series profile by using a version 8 profile as a starting point. For more
information, see Reusing Stream Configurations.

Profile name Profile ID Description

Windows Media Video 8 for
Color Pocket PCs (225 Kbps)

WMProfile_V80_255VideoPDA Use this profile when creating
video files for playback on faster
color Pocket PCs.

Windows Media Video 8 for
Color Pocket PCs (150 Kbps)

WMProfile_V80_150VideoPDA Use this profile when creating
video files for playback on most
Pocket PCs.

Windows Media Video 8 for
Dial-up Modems or Single-
channel ISDN (28.8 to 56 Kbps)

WMProfile_V80_28856VideoMBR Use this multiple bit rate profile
for target audiences with dial-up
modems or single-channel ISDN
connections (bandwidth is
between 28.8 Kbps and 56 Kbps).

Windows Media Video 8 for
LAN, Cable Modem, or xDSL
(100 to 768 Kbps)

WMProfile_V80_100768VideoMBR Use this multiple bit rate profile
for target audiences with dual-
channel ISDN, LAN, cable
modem, or xDSL connections
(bandwidth is between 100 Kbps
and 500 Kbps).

Windows Media Video 8 for
Dial-up Modems or LAN (28.8 to
100 Kbps)

WMProfile_V80_288100VideoMBR Use this multiple bit rate profile
for target audiences with dial-up
modem, LAN, or dual-channel
ISDN connections (bandwidth is
between 28.8 and 100 Kbps).

Windows Media Video 8 for
Dial-up Modems (28.8 Kbps)

WMProfile_V80_288Video Use this profile for low bit rate
audio/video delivery over 28.8
Kbps dial-up connections.

Windows Media Video 8 for
Dial-up Modems (56 Kbps)

WMProfile_V80_56Video Use this profile for low bit rate
audio/video delivery over 56 Kbps
dial-up connections.

Windows Media Video 8 for
Local Area Network (100 Kbps)

WMProfile_V80_100Video Use this profile for medium bit
rate delivery over dual-channel
ISDN, LAN, or cable modem
connections.

Windows Media Video 8 for WMProfile_V80_256Video Use this profile for high quality

Local Area Network (256 Kbps) audio/video content intended for
local playback or for download
and playback.

Windows Media Video 8 for
Local Area Network (384 Kbps)

WMProfile_V80_384Video Use this profile for high quality
audio/video content intended for
local playback or for download
and playback.

Windows Media Video 8 for
Local Area Network (768 Kbps)

WMProfile_V80_768Video Use this profile for high quality
audio/video content intended for
local playback or for download
and playback.

Windows Media Video 8 for
Broadband (NTSC, 700 Kbps)

WMProfile_V80_700NTSCVideo Use this profile for high quality
audio/video content intended for
local playback or download and
playback.

Windows Media Video 8 for
Broadband (NTSC, 1400 Kbps)

WMProfile_V80_1400NTSCVideo Use this profile for high quality
audio/video content intended for
local playback or for download
and playback.

Windows Media Video 8 for
Broadband (PAL, 384 Kbps)

WMProfile_V80_384PALVideo Use this profile for high quality
audio/video content intended for
local playback or for download
and playback.

Windows Media Video 8 for
Broadband (PAL, 700 Kbps)

WMProfile_V80_700PALVideo Use this profile for high quality
audio/video content intended for
local playback or for download
and playback.

Windows Media Audio 8 for
Dial-up Modem (Mono, 28.8
Kbps)

WMProfile_V80_288MonoAudio Use this profile for radio and
music content (audio only).

Windows Media Audio 8 for
Dial-up Modem (FM Radio
Stereo, 28.8 Kbps)

WMProfile_V80_288StereoAudio Use this profile for radio and
music content (audio only).

Windows Media Audio 8 for
Dial-up Modem (32 Kbps)

WMProfile_V80_32StereoAudio Use this profile for radio and
music content (audio only).

Windows Media Audio 8 for
Dial-up Modem (Near CD
quality, 48 Kbps)

WMProfile_V80_48StereoAudio Use for radio, music, and general
purpose audio content.

Windows Media Audio 8 for
Dial-up Modem (CD quality, 64
Kbps)

WMProfile_V80_64StereoAudio Use this profile for target
audiences with high speed Internet
or LAN connections.

Windows Media Audio 8 for
ISDN (Better than CD quality, 96
Kbps)

WMProfile_V80_96StereoAudio Use this profile for target
audiences with high speed Internet
or LAN connections.

The system profiles are available localized for languages other than English. For more information, see
Localized System Profiles.

See Also

IWMProfileManager::LoadProfileByID
IWMProfileManager2 Interface
Working with Profiles

© 2000-2003 Microsoft Corporation. All rights reserved.

Localized System Profiles
The following table lists the localized system profile files included with the Windows Media Format SDK and
the languages associated with each. These files are installed into the [SDKRoot]\WMSDK\WMFSDK9
\LocalizedProfiles folder. To access a particular file with the IWMProfileManagerLanguage methods, you
must move it into the system root directory along with the default system profile files.

Windows Media Audio 8 for
ISDN (Better than CD quality,
128 Kbps)

WMProfile_V80_128StereoAudio Use this profile for target
audiences with high speed Internet
or LAN connections.

Windows Media Video 8 for
Dial-up Modem (No audio, 28.8
Kbps)

WMProfile_V80_288VideoOnly Use this profile when creating
video-only content for target
audiences with dial-up modems.

Windows Media Video 8 for
Dial-up Modem (No audio, 56
Kbps)

WMProfile_V80_56VideoOnly Use this profile when creating
video-only content for target
audiences with dial-up modems.

Windows Media 8 Fair Quality
based VBR for Broadband

WMProfile_V80_FAIRVBRVideo Fair to high quality based profile
for VBR content that is quality
constrained.

Windows Media 8 High Quality
based VBR for Broadband.

WMProfile_V80_HIGHVBRVideo High to best quality based profile
for VBR content that is quality
constrained.

Windows Media 8 Best Quality
based VBR for Broadband.

WMProfile_V80_BESTVBRVideo Best quality based profile for VBR
content that is quality constrained.

Previous Next

Previous Next

Language File name

You can set the language for the profile manager object by calling the
IWMProfileManagerLanguage::SetUserLanguageID method. For most languages, only the primary
language identifier in the LANGID is examined. The exceptions are for the Chinese and Portuguese languages,
where the secondary language identifier is also used. The following table shows how to create a LANGID to
specify in the SetUserLanguageID method.

Arabic WMPrfAra.prx

Chinese – simplified WMPrfCHS.prx

Chinese – traditional WMPrfCHT.prx

Czech WMPrfCsy.prx

Danish WMPrfDan.prx

Dutch WMPrfNld.prx

Finnish WMPrfFin.prx

French WMPrfFra.prx

German WMPrfDeu.prx

Greek WMPrfEll.prx

Hebrew WMPrfHeb.prx

Hungarian WMPrfHun.prx

Italian WMPrfIta.prx

Japanese WMPrfJpn.prx

Korean WMPrfKor.prx

Norwegian WMPrfNor.prx

Polish WMPrfPlk.prx

Portuguese – Brazil WMPrfPtb.prx

Portuguese – Portugal WMPrfPtg.prx

Russian WMPrfRus.prx

Slovak WMPrfSky.prx

Slovenian WMPrfSlv.prx

Spanish WMPrfEsp.prx

Swedish WMPrfSve.prx

Turkish WMPrfTrk.prx

Primary-secondary language MAKELANGID Macro

Chinese (simplified) MAKELANGID(LANG_CHINESE,
SUBLANG_CHINESE_SIMPLIFIED)

See Also

Programming Reference
System Profiles

© 2000-2003 Microsoft Corporation. All rights reserved.

GUID Values
The following sections list the GUID values used in the Windows Media Format SDK and the global constants
that are used to represent them.

See Also

Programming Reference

Chinese (traditional) MAKELANGID(LANG_CHINESE,
SUBLANG_CHINESE_SINGAPORE)

Portuguese (Brazil) MAKELANGID(LANG_PORTUGUESE,
SUBLANG_PORTUGUESE_BRAZILIAN)

Portuguese (Portugal) MAKELANGID(LANG_PORTUGUESE,
SUBLANG_PORTUGUESE)

Previous Next

Previous Next

Section Description

Interface Identifiers Lists the GUID values and associated constants for the
interfaces supported by the Windows Media Format SDK.

Media Type Identifiers Lists the GUID values and associated constants for the media
types supported by the Windows Media Format SDK.

Mutual Exclusion Types Lists the GUID values and associated constants for the mutual
exclusion types supported by the Windows Media Format SDK.

Bandwidth Sharing Types Lists the GUID values and associated constants for the
bandwidth sharing types supported by the Windows Media
Format SDK.

Previous Next

© 2000-2003 Microsoft Corporation. All rights reserved.

Interface Identifiers
You must use an interface identifier (IID) when making calls to the QueryInterface method. An IID is a
globally unique identifier (GUID) value. In the Windows Media Format SDK, the constant assigned to the IID
for a given interface is the interface name preceded by 'IID_'.

The following table lists the interface identifiers and associated constants for the interfaces in this SDK.

Previous Next

Interface IID constant GUID

IWMAddressAccess IID_IWMAddressAccess BB3C6389-1633-4E92-AF14-
9F3173BA39D0

IWMAddressAccess2 IID_IWMAddressAccess2 65A83FC2-3E98-4D4D-81B5-
2A742886B33D

IWMBackupRestoreProps IID_IWMBackupRestoreProps 3C8E0DA6-996F-4FF3-A1AF-
4838F9377E2E

IWMBandwidthSharing IID_IWMBandwidthSharing AD694AF1-F8D9-42F8-BC47-
70311B0C4F9E

IWMClientConnections IID_IWMClientConnections 73C66010-A299-41DF-B1F0-
CCF03B09C1C6

IWMCodecInfo IID_IWMCodecInfo A970F41E-34DE-4A98-B3BA-
E4B3CA7528F0

IWMCodecInfo2 IID_IWMCodecInfo2 AA65E273-B686-4056-91EC-
DD768D4DF710

IWMCodecInfo3 IID_IWMCodecInfo3 7E51F487-4D93-4F98-8AB4-
27D0565ADC51

IWMCredentialCallback IID_IWMCredentialCallback 342E0EB7-E651-450C-975B-
2ACE2C90C48E

IWMDRMReader IID_IWMDRMReader D2827540-3EE7-432C-B14C-
DC17F085D3B3

IWMDRMWriter IID_IWMDRMWriter D6EA5DD0-12A0-43F4-90AB-
A3FD451E6A07

IWMHeaderInfo IID_IWMHeaderInfo 96406BDA-2B2B-11D3-B36B-
00C04F6108FF

IWMHeaderInfo2 IID_IWMHeaderInfo2 15CF9781-454E-482E-B393-
85FAE487A810

IWMImageInfo IID_IWMImageInfo 9F0AA3B6-7267-4D89-88F2-
BA915AA5C4C6

IWMIndexer IID_IWMIndexer 6D7CDC71-9888-11D3-8EDC-
00C04F6109CF

IWMIndexer2 IID_IWMIndexer2 B70F1E42-6255-4DF0-A6B9-
02B212D9E2BB

IWMInputMediaProps IID_IWMInputMediaProps 96406BD5-2B2B-11D3-B36B-
00C04F6108FF

IWMIStreamProps IID_IWMIStreamProps 6816DAD3-2B4B-4C8E-8149-
874C3483A753

IWMLanguageList IID_IWMLanguageList DF683F00-2D49-4D8E-92B7-
FB19F6A0DC57

IWMLicenseBackup IID_IWMLicenseBackup 05E5AC9F-3FB6-4508-BB43-
A4067BA1EBE8

IWMLicenseRestore IID_IWMLicenseRestore C70B6334-A22E-4EFB-A245-
15E65A004A13

IWMMediaProps IID_IWMMediaProps 96406BCE-2B2B-11D3-B36B-
00C04F6108FF

IWMMetadataEditor IID_IWMMetadataEditor 96406BD9-2B2B-11D3-B36B-
00C04F6108FF

IWMMetadataEditor2 IID_IWMMetadataEditor2 203CFFE3-2E18-4FDF-B59D-
6E71530534CF

IWMMutualExclusion IID_IWMMutualExclusion 96406BDE-2B2B-11D3-B36B-
00C04F6108FF

IWMMutualExclusion2 IID_IWMMutualExclusion2 302B57D?-89D1-4BA2-85C9-
166F2C53EB91

IWMOutputMediaProps IID_IWMOutputMediaProps 96406BD7-2B2B-11D3-B36B-
00C04F6108FF

IWMPacketSize IID_IWMPacketSize CDFB97AB-188F-40B3-B643-
5B7903975C59

IWMPacketSize2 IID_IWMPacketSize2 8BFC2B9E-B646-4233-A877-
1C6A7?9669DC

IWMProfile IID_IWMProfile 96406BDB-2B2B-11D3-B36B-
00C04F6108FF

IWMProfile2 IID_IWMProfile2 07E72D33-D94E-4BE7-8843-
60AE5FF7E5F5

IWMProfile3 IID_IWMProfile3 00EF96CC-A461-4546-8BCD-
C9A28F0E06F5

IWMProfileManager IID_IWMProfileManager D16679F2-6CA0-472D-8D31-
2F5D55AEE155

IWMProfileManager2 IID_IWMProfileManager2 7A924E51-73C1-494D-8019-
23D37ED9B89A

IWMPropertyVault IID_IWMPropertyVault 72995A79-5090-42A4-9C8C-
D9D0B6D34BE5

IWMReader IID_IWMReader 96406BD6-2B2B-11D3-B36B-
00C04F6108FF

IWMReaderAccelerator IID_IWMReaderAccelerator BDDC4D08-944D-4D52-A612-
46C3FDA07DD4

IWMReaderAdvanced IID_IWMReaderAdvanced 96406BEA-2B2B-11D3-B36B-
00C04F6108FF

IWMReaderAdvanced2 IID_IWMReaderAdvanced2 AE14A945-B90C-4D0D-9127-
80D665F7D73E

IWMReaderAdvanced3 IID_IWMReaderAdvanced3 5DC0674B-F04B-4A4E-9F2A-
B1AFDE2C8100

IWMReaderAllocatorEx IID_IWMReaderAllocatorEx 9F762FA7-A22E-428D-93C9-
AC82F3AAFE5A

IWMReaderCallback IID_IWMReaderCallback 96406BD8-2B2B-11D3-B36B-
00C04F6108FF

IWMReaderCallbackAdvanced IID_IWMReaderCallbackAdvanced 96406BEB-2B2B-11D3-B36B-
00C04F6108FF

IWMReaderNetworkConfig IID_IWMReaderNetworkConfig 96406BEC-2B2B-11D3-B36B-
00C04F6108FF

IWMReaderStreamClock IID_IWMReaderStreamClock 96406BED-2B2B-11D3-B36B-
00C04F6108FF

IWMReaderTimecode IID_IWMReaderTimecode F369E2F0-E081-4FE6-8450-
B810B2F410D1

IWMReaderTypeNegotiation IID_IWMReaderTypeNegotiation FDBE5592-81A1-41EA-93BD-
735CAD1ADC5?

IWMRegisterCallback IID_IWMRegisterCallback CF4B1F99-4DE2-4E49-A363-
252740D99BC1

IWMStatusCallback IID_IWMStatusCallback 6D7CDC70-9888-11D3-8EDC-
00C04F6109CF

IWMStreamConfig IID_IWMStreamConfig 96406BDC-2B2B-11D3-B36B-
00C04F6108FF

IWMStreamConfig2 IID_IWMStreamConfig2 7688D8CB-FC0D-43BD-9459-
5A8DEC200CFA

IWMStreamList IID_IWMStreamList 96406BDD-2B2B-11D3-B36B-
00C04F6108FF

See Also

GUID Values

IWMStreamPrioritization IID_IWMStreamPrioritization 8C1C6090-F9A8-4748-8EC3-
DD1108BA1E77

IWMSyncReader IID_IWMSyncReader 9397F121-7705-4DC9-B049-
98B698188414

IWMVideoMediaProps IID_IWMVideoMediaProps 96406BCF-2B2B-11D3-B36B-
00C04F6108FF

IWMWatermarkInfo IID_IWMWatermarkInfo 6F497062-F2E2-4624-8EA7-
9DD40D81FC8D

IWMWriter IID_IWMWriter 96406BD4-2B2B-11D3-B36B-
00C04F6108FF

IWMWriterAdvanced IID_IWMWriterAdvanced 96406BE3-2B2B-11D3-B36B-
00C04F6108FF

IWMWriterAdvanced2 IID_IWMWriterAdvanced2 962DC1EC-C046-4DB8-9CC7-
26CEAE500817

IWMWriterAdvanced3 IID_IWMWriterAdvanced3 2CD6492D-7C37-4E76-9D3B-
59261183A22E

IWMWriterFileSink IID_IWMWriterFileSink 96406BE5-2B2B-11D3-B36B-
00C04F6108FF

IWMWriterFileSink2 IID_IWMWriterFileSink2 14282BA7-4AEF-4205-8CE5-
C229035A05BC

IWMWriterFileSink3 IID_IWMWriterFileSink3 3FEA4FEB-2945-47A7-A1DD-
C53A8FC4C45C

IWMWriterFileSinkDataUnit IID_IWMWriterFileSinkDataUnit 633392F0-BE5C-486B-A09C-
10669C7A6C27

IWMWriterNetworkSink IID_IWMWriterNetworkSink 96406BE7-2B2B-11D3-B36B-
00C04F6108FF

IWMWriterPostView IID_IWMWriterPostView 81E20CE4-75EF-491A-8004-
FC53C45BDC3E

IWMWriterPostViewCallback IID_IWMWriterPostViewCallback D9D6549D-A193-4F24-B308-
03123D9B7F8D

IWMWriterPreprocess IID_IWMWriterPreprocess FC54A285-38C4-45B5-AA23-
85B9F7CB424B

IWMWriterPushSink IID_IWMWriterPushSink DC10E6A5-072C-467D-BF57-
6330A9DDE12A

IWMWriterSink IID_IWMWriterSink 96406BE4-2B2B-11D3-B36B-
00C04F6108FF

© 2000-2003 Microsoft Corporation. All rights reserved.

Media Type Identifiers
You must use media types to define the format of media used with the Windows Media Format SDK. For
descriptions of the various media types, see Media Types.

The following table lists the global identifiers for all supported media types and their corresponding GUID
values.

Previous Next

Previous Next

Global media type identifier GUID

MEDIASUBTYPE_I420 30323449-0000-0010-8000-00AA00389B71

MEDIASUBTYPE_IYUV 56555949-0000-0010-8000-00AA00389B71

MEDIASUBTYPE_RGB1 E436EB78-524F-11CE-9F53-0020AF0BA770

MEDIASUBTYPE_RGB24 E436EB7D-524F-11CE-9F53-0020AF0BA770

MEDIASUBTYPE_RGB32 E436EB7E-524F-11CE-9F53-0020AF0BA770

MEDIASUBTYPE_RGB4 E436EB79-524F-11CE-9F53-0020AF0BA770

MEDIASUBTYPE_RGB555 E436EB7C-524F-11CE-9F53-0020AF0BA770

MEDIASUBTYPE_RGB565 E436EB7B-524F-11CE-9F53-0020AF0BA770

MEDIASUBTYPE_RGB8 E436EB7A-524F-11CE-9F53-0020AF0BA770

MEDIASUBTYPE_UYVY 59565955-0000-0010-8000-00AA00389B71

MEDIASUBTYPE_VIDEOIMAGE 1D4A45F2-E5F6-4B44-8388-F0AE5C0E0C37

MEDIASUBTYPE_YUY2 32595559-0000-0010-8000-00AA00389B71

MEDIASUBTYPE_YV12 31313259-0000-0010-8000-00AA00389B71

MEDIASUBTYPE_YVU9 39555659-0000-0010-8000-00AA00389B71

MEDIASUBTYPE_YVYU 55595659-0000-0010-8000-00AA00389B71

WMFORMAT_MPEG2Video E06D80E3-DB46-11CF-B4D1-00805F6CBBEA

WMFORMAT_Script 5C8510F2-DEBE-4CA7-BBA5-F07A104F8DFF

WMFORMAT_VideoInfo 05589F80-C356-11CE-BF01-00AA0055595A

See Also

WMFORMAT_WaveFormatEx 05589F81-C356-11CE-BF01-00AA0055595A

WMFORMAT_WebStream DA1E6B13-8359-4050-B398-388E965BF00C

WMMEDIASUBTYPE_ACELPnet 00000130-0000-0010-8000-00AA00389B71

WMMEDIASUBTYPE_Base 00000000-0000-0010-8000-00AA00389B71

WMMEDIASUBTYPE_DRM 00000009-0000-0010-8000-00AA00389B71

WMMEDIASUBTYPE_MP3 00000050-0000-0010-8000-00AA00389B71

WMMEDIASUBTYPE_MP43 3334504D-0000-0010-8000-00AA00389B71

WMMEDIASUBTYPE_MP4S 5334504D-0000-0010-8000-00AA00389B71

WMMEDIASUBTYPE_MPEG2_VIDEO E06D8026-DB46-11CF-B4D1-00805F6CBBEA

WMMEDIASUBTYPE_MSS1 3153534D-0000-0010-8000-00AA00389B71

WMMEDIASUBTYPE_MSS2 3253534D-0000-0010-8000-00AA00389B71

WMMEDIASUBTYPE_PCM 00000001-0000-0010-8000-00AA00389B71

WMMEDIASUBTYPE_WebStream 776257D4-C627-41CB-8F81-7AC7FF1C40CC

WMMEDIASUBTYPE_WMAudio_Lossless 00000163-0000-0010-8000-00AA00389B71

WMMEDIASUBTYPE_WMAudioV2 00000161-0000-0010-8000-00AA00389B71

WMMEDIASUBTYPE_WMAudioV7 00000161-0000-0010-8000-00AA00389B71

WMMEDIASUBTYPE_WMAudioV8 00000161-0000-0010-8000-00AA00389B71

WMMEDIASUBTYPE_WMAudioV9 00000162-0000-0010-8000-00AA00389B71

WMMEDIASUBTYPE_WMSP1 0000000A-0000-0010-8000-00AA00389B71

WMMEDIASUBTYPE_WMV1 31564D57-0000-0010-8000-00AA00389B71

WMMEDIASUBTYPE_WMV2 32564D57-0000-0010-8000-00AA00389B71

WMMEDIASUBTYPE_WMV3 33564D57-0000-0010-8000-00AA00389B71

WMMEDIASUBTYPE_WMVP 50564D57-0000-0010-8000-00AA00389B71

WMMEDIATYPE_Audio 73647561-0000-0010-8000-00AA00389B71

WMMEDIATYPE_FileTransfer D9E47579-930E-4427-ADFC-AD80F290E470

WMMEDIATYPE_Image 34A50FD8-8AA5-4386-81FE-A0EFE0488E31

WMMEDIATYPE_Script 73636D64-0000-0010-8000-00AA00389B71

WMMEDIATYPE_Text 9BBA1EA7-5AB2-4829-BA57-0940209BCF3E

WMMEDIATYPE_Video 73646976-0000-0010-8000-00AA00389B71

WMSCRIPTTYPE_TwoStrings 82F38A70-C29F-11D1-97AD-00A0C95EA850

GUID Values
Media Types

© 2000-2003 Microsoft Corporation. All rights reserved.

Mutual Exclusion Types
You can use mutual exclusion types to identify the nature of a mutual exclusion object in a profile. Mutual
exclusion types are used as parameters for IWMMutualExclusion::GetType and
IWMMutualExclusion::SetType.

The following table lists the identifiers for mutual exclusion types.

See Also

GUID Values

© 2000-2003 Microsoft Corporation. All rights reserved.

Bandwidth Sharing Types

Previous Next

Previous Next

Mutual exclusion type constant GUID

CLSID_WMMUTEX_Language D6E22A00-35DA-11D1-9034-00A0C90349BE

CLSID_WMMUTEX_Bitrate D6E22A01-35DA-11D1-9034-00A0C90349BE

CLSID_WMMUTEX_Presentation D6E22A02-35DA-11D1-9034-00A0C90349BE

CLSID_WMMUTEX_Unknown D6E22A03-35DA-11D1-9034-00A0C90349BE

Previous Next

Previous Next

You can use bandwidth sharing types to identify the nature of a bandwidth sharing object in a profile.
Bandwidth sharing types are used as parameters for IWMBandwidthSharing::GetType and
IWMBandwidthSharing::SetType.

The following table lists the identifiers for bandwidth sharing types.

See Also

GUID Values

© 2000-2003 Microsoft Corporation. All rights reserved.

Error Codes
Microsoft has defined the following error and success codes for use in the Windows Media Format SDK. These
codes are a subset of a larger collection that can be viewed in the header files asferr.h (ASF codes) and nserror.h
(other codes) that are included in the Windows Media Format SDK. Additional common error codes can be
viewed in Winerror.h.

ASF Error Codes

The following table contains ASF-specific error values in alphabetical order.

Bandwidth sharing type constant GUID

CLSID_WMBandwidthSharing_Exclusive AF6060AA-5197-11D2-B6AF-00C04FD908E9

CLSID_WMBandwidthSharing_Partial AF6060AB-5197-11D2-B6AF-00C04FD908E9

Previous Next

Previous Next

Error code Hexadecimal value Description

ASF_E_ALREADYINITIALIZED 0xC00D07F7L This object has already been
initialized; the setting cannot be
changed.

ASF_E_BADDATADESCRIPTOR 0xC00D0802L One or more data descriptors are not
properly set.

ASF_E_BADDATAUNIT 0xC00D080DL The given data unit is corrupted,
badly formatted, or otherwise not
valid.

ASF_E_BADINDEXINTERVAL 0xC00D0803L The index has an invalid time
interval (probably zero).

ASF_E_BADLANGUAGEID 0xC00D07D2L The language ID was not found.

ASF_E_BADMEDIATYPE 0xC00D0807L The specified media type does not
work with this component.

ASF_E_BUFFEROVERRUN 0xC00D07D0L An attempt was made to seek or
position past the end of a buffer.

ASF_E_BUFFERTOOSMALL 0xC00D07D1L The supplied input or output buffer
was too small.

ASF_E_EXCEEDEDMAXIMUMOBJECTSIZE 0xC00D080CL The object has exceeded its
maximum size.

ASF_E_HEADERSIZE 0xC00D080EL The ASF header has exceeded the
specified maximum size.

ASF_E_INDEXBLOCKUNLOADED 0xC00D080AL The index entries for the specified
index block have been unloaded
from memory and are not available.

ASF_E_INVALIDFLAGS 0xC00D0801L The flags for this object or set of
objects have not been properly set.

ASF_E_INVALIDHEADER 0xC00D07E2L The ASF file header does not
contain enough information.

ASF_E_INVALIDINDEX 0xC00D0805L The given index value is not valid.

ASF_E_INVALIDINIT 0xC00D07F8L This object has not been initialized
properly; that operation cannot be
performed.

ASF_E_INVALIDSTATE 0xC00D07F5L The request is not valid in the
object's current state.

ASF_E_INVALIDTIME 0xC00D0804L The given time value is not valid.

ASF_E_NOCLOCKOBJECT 0xC00D07E6L The object does not have a valid
clock object.

ASF_E_NODATAOBJECT 0xC00D07FAL The ASF Data object could not be
found.

ASF_E_NOFILEPROPS 0xC00D07FDL The File Properties object could not
be found.

ASF_E_NOHEADEROBJECT 0xC00D07F9L The ASF Header object could not
be found.

ASF_E_NOINDEXOBJECT 0xC00D07FBL The ASF Index object could not be
found.

ASF_E_NOLIBRARY 0xC00D07F6L This object does not have a valid
library pointer; it was not properly
created or it has been shut down.

DRM-Related Error and Success Codes

ASF_E_NOPAYLOADLENGTH 0xC00D07DBL The multiple payload packet is
missing the payload length.

ASF_E_NOSTREAMPROPS 0xC00D07FCL A Stream Properties object with
the correct stream number could not
be found.

ASF_E_NOTENOUGHBANDWIDTH 0xC00D080BL The specified bandwidth is not large
enough.

ASF_E_NOTENOUGHDESCRIPTORS 0xC00D0809L The specified data unit requires a
larger number of descriptors before
it can be fully parsed.

ASF_E_NOTFOUND 0xC00D07F0L The object was not found.

ASF_E_OBJECTTOOBIG 0xC00D07F3L The object is too large to be
processed in the requested manner.

ASF_E_OPAQUEPACKET 0xC00D07EDL An attempt was made to restore or
access an opaque packet.

ASF_E_OVERFLOW 0xC00D07EFL An attempt was made to store a
value which was larger than the
destination's maximum value.

ASF_E_PACKETCONTENTTOOLARGE 0xC00D07DEL The packet content is too large.

ASF_E_STREAMNUMBERINUSE 0xC00D0806L The specified stream number is
already in use.

ASF_E_TOOMANYPAYLOADS 0xC00D07DCL The packet contains too many
payloads.

ASF_E_UNEXPECTEDVALUE 0xC00D07F4L A value was not set as expected.

ASF_E_UNKNOWNCLOCKTYPE 0xC00D07EBL An unknown clock type was
specified for the stream clock type.

ASF_E_UNKNOWNPACKETSIZE 0xC00D07E0L Expecting a fixed packet size but
minimum and maximum are not
equal.

ASF_E_WRITEFAILED 0xC00D0808L The object could not be written as
specified.

ASF_E_WRONGVERSION 0xC00D07EEL The wrong ASF version is being
used.

Error code Hexadecimal value Description

NS_E_DRM_INVALID_APPLICATION 0xC00D2711L A problem
has occurred
in the Digital
Rights

Management
component.
Contact
product
support for
this
application.

NS_E_DRM_INVALID_APPLICATION 0xC00D2711L A problem
has occurred
in the Digital
Rights
Management
component.
Contact
product
support for
this
application.

NS_E_DRM_LICENSE_STORE_ERROR 0xC00D2712L License
storage is not
working.
Contact
Microsoft
product
support.

NS_E_DRM_SECURE_STORE_ERROR 0xC00D2713L Secure
storage is not
working.
Contact
Microsoft
product
support.

NS_E_DRM_LICENSE_STORE_SAVE_ERROR 0xC00D2714L License
acquisition
did not work.
Acquire a
new license
or contact the
content
provider for
further
assistance.

NS_E_DRM_SECURE_STORE_UNLOCK_ERROR 0xC00D2715L A problem
has occurred
in the Digital
Rights
Management
component.
Contact

Microsoft
product
support.

NS_E_DRM_INVALID_CONTENT 0xC00D2716L The media
file is
corrupted.
Contact the
content
provider to
get a new
file.

NS_E_DRM_UNABLE_TO_OPEN_LICENSE 0xC00D2717L The license
is corrupted.
Acquire a
new license.

NS_E_DRM_INVALID_LICENSE 0xC00D2718L The license
is corrupted
or invalid.
Acquire a
new license.

NS_E_DRM_INVALID_MACHINE 0xC00D2719L Licenses
cannot be
copied from
one computer
to another.
Use License
Management
to transfer
licenses, or
get a new
license for
the media
file.

NS_E_DRM_ENUM_LICENSE_FAILED 0xC00D271BL License
storage is not
working.
Contact
Microsoft
product
support.

NS_E_DRM_INVALID_LICENSE_REQUEST 0xC00D271CL The media
file is
corrupted.
Contact the
content
provider to
get a new
file.

NS_E_DRM_UNABLE_TO_INITIALIZE 0xC00D271DL A problem
has occurred
in the Digital
Rights
Management
component.
Contact
Microsoft
product
support.

NS_E_DRM_UNABLE_TO_ACQUIRE_LICENSE 0xC00D271EL The license
could not be
acquired. Try
again later.

NS_E_DRM_INVALID_LICENSE_ACQUIRED 0xC00D271FL License
acquisition
did not work.
Acquire a
new license
or contact the
content
provider for
further
assistance.

NS_E_DRM_NO_RIGHTS 0xC00D2720L The
requested
operation
cannot be
performed on
this file.

NS_E_DRM_KEY_ERROR 0xC00D2721L A problem
has occurred
in the Digital
Rights
Management
component.
Contact
Microsoft
product
support.

NS_E_DRM_ENCRYPT_ERROR 0xC00D2722L A problem
has occurred
in the Digital
Rights
Management
component.
Contact
Microsoft
product

support.

NS_E_DRM_DECRYPT_ERROR 0xC00D2723L The media
file is
corrupted.
Contact the
content
provider to
get a new
file.

NS_E_DRM_LICENSE_INVALID_XML 0xC00D2725L The license
is corrupted.
Acquire a
new license.

NS_S_DRM_LICENSE_ACQUIRED 0x000D2726L The license
was
acquired.

NS_S_DRM_INDIVIDUALIZED 0x000D2727L The security
upgrade has
been
completed.

NS_E_DRM_NEEDS_INDIVIDUALIZATION 0xC00D2728L A security
upgrade is
required to
perform the
operation on
this media
file.

NS_E_DRM_NEEDS_ACTIVATION 0xC00D2729L Activation is
required to
perform the
operation on
this media
file.

NS_E_DRM_ACTION_NOT_QUERIED 0xC00D272AL The
application
cannot
perform this
action.
Contact
product
support for
this
application.

NS_E_DRM_ACQUIRING_LICENSE 0xC00D272BL You cannot
begin a new
license
acquisition

process until
the current
one has been
completed.

NS_E_DRM_INDIVIDUALIZING 0xC00D272CL You cannot
begin a new
security
upgrade until
the current
one has been
completed.

NS_E_DRM_PARAMETERS_MISMATCHED 0xC00D272FL A problem
has occurred
in the Digital
Rights
Management
component.
Contact
Microsoft
product
support.

NS_E_DRM_UNABLE_TO_CREATE_LICENSE_OBJECT 0xC00D2730L A license
cannot be
created for
this media
file. Reinstall
the
application.

NS_E_DRM_UNABLE_TO_CREATE_INDI_OBJECT 0xC00D2731L A problem
has occurred
in the Digital
Rights
Management
component.
Contact
Microsoft
product
support.

NS_E_DRM_UNABLE_TO_CREATE_ENCRYPT_OBJECT 0xC00D2732L A problem
has occurred
in the Digital
Rights
Management
component.
Contact
Microsoft
product
support.

NS_E_DRM_UNABLE_TO_CREATE_DECRYPT_OBJECT 0xC00D2733L A problem

has occurred
in the Digital
Rights
Management
component.
Contact
Microsoft
product
support.

NS_E_DRM_UNABLE_TO_CREATE_PROPERTIES_OBJECT 0xC00D2734L A problem
has occurred
in the Digital
Rights
Management
component.
Contact
Microsoft
product
support.

NS_E_DRM_UNABLE_TO_CREATE_BACKUP_OBJECT 0xC00D2735L A problem
has occurred
in the Digital
Rights
Management
component.
Contact
Microsoft
product
support.

NS_E_DRM_INDIVIDUALIZE_ERROR 0xC00D2736L The security
upgrade
failed. Try
again later.

NS_E_DRM_LICENSE_OPEN_ERROR 0xC00D2737L License
storage is not
working.
Contact
Microsoft
product
support.

NS_E_DRM_LICENSE_CLOSE_ERROR 0xC00D2738L License
storage is not
working.
Contact
Microsoft
product
support.

NS_E_DRM_GET_LICENSE_ERROR 0xC00D2739L License
storage is not

working.
Contact
Microsoft
product
support.

NS_E_DRM_QUERY_ERROR 0xC00D273AL A problem
has occurred
in the Digital
Rights
Management
component.
Contact
Microsoft
product
support.

NS_E_DRM_REPORT_ERROR 0xC00D273BL A problem
has occurred
in the Digital
Rights
Management
component.
Contact
product
support for
this
application.

NS_E_DRM_GET_LICENSESTRING_ERROR 0xC00D273CL License
storage is not
working.
Contact
Microsoft
product
support.

NS_E_DRM_GET_CONTENTSTRING_ERROR 0xC00D273DL The media
file is
corrupted.
Contact the
content
provider to
get a new
file.

NS_E_DRM_MONITOR_ERROR 0xC00D273EL A problem
has occurred
in the Digital
Rights
Management
component.
Try again
later.

NS_E_DRM_UNABLE_TO_SET_PARAMETER 0xC00D273F The
application
has made an
invalid call
to the Digital
Rights
Management
component.
Contact
product
support for
this
application.

NS_E_DRM_INVALID_APPDATA 0xC00D2740 A problem
has occurred
in the Digital
Rights
Management
component.
Contact
Microsoft
product
support.

NS_E_DRM_INVALID_APPDATA_VERSION 0xC00D2741 A problem
has occurred
in the Digital
Rights
Management
component.
Contact
product
support for
this
application.

NS_E_DRM_BACKUP_EXISTS 0xC00D2742 Licenses are
already
backed up in
this location.

NS_E_DRM_BACKUP_CORRUPT 0xC00D2743 One or more
backed-up
licenses are
missing or
corrupt.

NS_E_DRM_BACKUPRESTORE_BUSY 0xC00D2744 You cannot
begin a new
backup
process until
the current
process has

been
completed.

NS_S_DRM_MONITOR_CANCELLED 0x000D2746 Status
message:
License
monitoring
has been
cancelled.

NS_S_DRM_ACQUIRE_CANCELLED 0x000D2747 Status
message:
License
acquisition
has been
cancelled.

NS_E_DRM_LICENSE_UNUSABLE 0xC00D2748 The license
is invalid.
Contact the
content
provider for
further
assistance.

NS_E_DRM_INVALID_PROPERTY 0xC00D2749 A required
property was
not set by the
application.
Contact
product
support for
this
application.

NS_E_DRM_SECURE_STORE_NOT_FOUND 0xC00D274A A problem
has occurred
in the Digital
Rights
Management
component
of this
application.
Try to
acquire a
license again.

NS_E_DRM_CACHED_CONTENT_ERROR 0xC00D274B A license
cannot be
found for this
media file.
Use License
Management
to transfer a
license for

this file from
the original
computer, or
acquire a
new license.

NS_E_DRM_INDIVIDUALIZATION_INCOMPLETE 0xC00D274C A problem
occurred
during the
security
upgrade. Try
again later.

NS_E_DRM_DRIVER_AUTH_FAILURE 0xC00D274D Certified
driver
components
are required
to play this
media file.
Contact
Windows
Update to see
whether
updated
drivers are
available for
your
hardware.

NS_E_DRM_NEED_UPGRADE_MSSAP 0xC00D274E One or more
of the Secure
Audio Path
components
were not
found or an
entry point in
those
components
was not
found.

NS_E_DRM_REOPEN_CONTENT 0xC00D274F Status
message:
Reopen the
file.

NS_E_DRM_DRIVER_DIGIOUT_FAILURE 0xC00D2750 Certain
driver
functionality
is required to
play this
media file.
Contact
Windows

Update to see
whether
updated
drivers are
available for
your
hardware.

NS_E_DRM_INVALID_SECURESTORE_PASSWORD 0xC00D2751 A problem
has occurred
in the Digital
Rights
Management
component.
Contact
Microsoft
product
support.

NS_E_DRM_APPCERT_REVOKED 0xC00D2752 A problem
has occurred
in the Digital
Rights
Management
component.
Contact
Microsoft
product
support.

NS_E_DRM_RESTORE_FRAUD 0xC00D2753 You cannot
restore your
license(s).

NS_E_DRM_HARDWARE_INCONSISTENT 0xC00D2754 The licenses
for your
media files
are
corrupted.
Contact
Microsoft
product
support.

NS_E_DRM_SDMI_TRIGGER 0xC00D2755 To transfer
this media
file, you
must upgrade
the
application.

NS_E_DRM_SDMI_NOMORECOPIES 0xC00D2756 You cannot
make any
more copies
of this media

file.

NS_E_DRM_UNABLE_TO_CREATE_HEADER_OBJECT 0xC00D2757 A problem
has occurred
in the Digital
Rights
Management
component.
Contact
Microsoft
product
support.

NS_E_DRM_UNABLE_TO_CREATE_KEYS_OBJECT 0xC00D2758 A problem
has occurred
in the Digital
Rights
Management
component.
Contact
Microsoft
product
support.

NS_E_DRM_LICENSE_NOTACQUIRED 0xC00D2759 Unable to
obtain
license.

NS_E_DRM_UNABLE_TO_CREATE_CODING_OBJECT 0xC00D275A A problem
has occurred
in the Digital
Rights
Management
component.
Contact
Microsoft
product
support.

NS_E_DRM_UNABLE_TO_CREATE_STATE_DATA_OBJECT 0xC00D275B A problem
has occurred
in the Digital
Rights
Management
component.
Contact
Microsoft
product
support.

NS_E_DRM_BUFFER_TOO_SMAL 0xC00D275C The buffer
supplied is
not
sufficient.

NS_E_DRM_UNSUPPORTED_PROPERTY 0xC00D275D The property
requested is
not
supported.

NS_E_DRM_ERROR_BAD_NET_RESP 0xC00D275E The specified
server cannot
perform the
requested
operation.

NS_E_DRM_STORE_NOTALLSTORED 0xC00D275F Some of the
licenses
could not be
stored.

NS_E_DRM_SECURITY_COMPONENT_SIGNATURE_INVALID 0xC00D2760 The Digital
Rights
Management
security
upgrade
component
could not be
validated.
Contact
Microsoft
product
support.

NS_E_DRM_INVALID_DATA 0xC00D2761 Invalid or
corrupt data
was
encountered.

NS_E_DRM_UNABLE_TO_CONTACT_SERVER 0xC00D2762 Unable to
contact the
server for the
requested
operation.

NS_E_DRM_UNABLE_TO_CREATE_AUTHENTICATION_OBJECT 0xC00D2763 A problem
has occurred
in the Digital
Rights
Management
component.
Contact
Microsoft
product
support.

NS_E_DRM_NOT_CONFIGURED 0xC00D2764 Not all of the
necessary
properties for
DRM have

been set.

NS_E_DRM_LICENSE_EXPIRED 0xC00D27D8 The license
for this file
has expired
and is no
longer valid.
Contact your
content
provider for
further
assistance.

NS_E_DRM_LICENSE_NOTENABLED 0xC00D27D9 The license
for this file is
not valid yet,
but will be at
a future date.

NS_E_DRM_LICENSE_APPSECLOW 0xC00D27DA The license
for this file
requires a
higher level
of security
than the
player you
are currently
using has.
Try using a
different
player or
download a
newer
version of
your current
player.

NS_E_DRM_STORE_NEEDINDI 0xC00D27DB The license
cannot be
stored as it
requires
security
upgrade of
Digital
Rights
Management
component.

NS_E_DRM_STORE_NOTALLOWED 0xC00D27DC Your
machine does
not meet the
requirements
for storing
the license.

NS_E_DRM_LICENSE_APP_NOTALLOWED 0xC00D27DD The license
for this file
requires an
upgraded
version of
your player
or a different
player.

NS_S_DRM_NEEDS_INDIVIDUALIZATION 0x000D27DE A security
upgrade is
required to
perform the
operation on
this media
file.

NS_E_DRM_LICENSE_CERT_EXPIRED 0xC00D27DF The license
server's
certificate
expired.
Make sure
your system
clock is set
correctly.
Contact your
content
provider for
further
assistance.

NS_E_DRM_LICENSE_SECLOW 0xC00D27E0 he license for
this file
requires a
higher level
of security
than the
player you
are currently
using has.
Try using a
different
player or
download a
newer
version of
your current
player.

NS_E_DRM_LICENSE_CONTENT_REVOKED 0xC00D27E1 The content
owner for the
license you
just acquired
is no longer

supporting
their content.
Contact the
content
owner for a
newer
version of
the content.

NS_E_DRM_LICENSE_NOSAP 0xC00D280A The license
for this file
requires a
feature that is
not supported
in your
current
player or
operating
system. You
can try with
newer
version of
your current
player or
contact your
content
provider for
further
assistance.

NS_E_DRM_LICENSE_NOSVP 0xC00D280B The license
for this file
requires a
feature that is
not supported
in your
current
player or
operating
system. You
can try with
newer
version of
your current
player or
contact your
content
provider for
further
assistance.

NS_E_DRM_LICENSE_NOWDM 0xC00D280C The license
for this file
requires

Windows
Driver Model
(WDM)
audio
drivers.
Contact your
sound card
manufacturer
for further
assistance.

NS_E_DRM_LICENSE_NOTRUSTEDCODEC 0xC00D280D The license
for this file
requires a
higher level
of security
than the
player you
are currently
using has.
Try using a
different
player a
newer
version of
your current
player.

NS_E_DRM_NEEDS_UPGRADE_TEMPFILE 0xC00D283D An updated
version of
your media
player is
required to
play the
selected
content.

NS_E_DRM_NEED_UPGRADE_PD 0xC00D283E A new
version of
the Digital
Rights
Management
component is
required.
Contact
product
support for
this
application to
get the latest
version.

NS_E_DRM_SIGNATURE_FAILURE 0xC00D283F Failed to
either create

Other Error Codes

The following table contains non-ASF error codes that may be encountered while using the Windows Media
Format SDK.

© 2000-2003 Microsoft Corporation. All rights reserved.

or verify the
content
header.

NS_E_DRM_LICENSE_SERVER_INFO_MISSING 0xC00D2840 Could not
read the
necessary
information
from the
system
registry.

Error code Hexadecimal value Description

E_FAIL 0x80000008L Unspecified error.

E_INVALIDARG 0x80000003L Invalid argument sent to a function.

E_NOTIMPL 0x80000001L Function is not yet implemented.

E_OUTOFMEMORY 0x8007000EL Not enough memory to complete the task.

E_POINTER 0x80004003L Invalid pointer.

E_UNEXPECTED 0x8000FFFFL Unspecified error.

NS_E_BUSY 0xC00D0025L The requested resource is in use.

NS_E_FILE_OPEN_FAILED 0xC00D001DL Failed to open a file.

NS_E_FILE_WRITE 0xC00D0018L Error writing to a file.

NS_E_INVALID_DATA 0xC00D002FL Invalid or corrupt data was encountered.

NS_E_INVALID_OUTPUT_FORMAT 0xC00D0BBBL The output media format is invalid.

NS_E_INVALID_REQUEST 0xC00D002BL The request is not valid in the current state.

NS_E_INVALIDPROFILE 0xC00D0BC6L The profile is not valid.

NS_E_NO_MORE_SAMPLES 0xC00D0BCFL There are no more samples in the current
range.

NS_E_NOMATCHING_ELEMENT 0xC00D1B5EL No matching element is found in the list.

NS_E_NOT_CONFIGURED 0xC00D0BBCL The object must be fully configured before
audio samples can be processed.

Previous Next

Glossary
To find a term in the glossary, click the letter of the alphabet that is the first letter in the term you want to look
up.

You can also read glossary terms within the text of Help by clicking the underlined glossary term links. After
you click a glossary link, the glossary term and definition appear in a pop-up window. To close the window,
click anywhere on the screen.

B

bandwidth

A network's capacity for transferring an amount of data in a given time.

bit rate

The number of bits transferred per second.

broadband

A transmission medium designed for high-speed data transfers over long distances. Cable modem services and
DSL are examples of broadband networks.

Back to Top

C

cleanpoint

A compressed sample that does not depend upon any other sample for decompression. It is only valid to seek to
a cleanpoint.

clear content

A Windows Media file that is not encrypted.

codec

Previous

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

An abbreviation for compressor/decompressor. Software or hardware used to compress and decompress digital
media.

content

Audio, video, images, text, or any other information that is contained in a digital media file or stream.

content header

Part of the file structure of a Windows Media file that contains information necessary for a client computer to
decompress and render the content data. In a packaged file, an additional content header exists and contains the
key ID, content ID, and license acquisition URL. This content header can also include a required
individualization version number and attributes defined by the content provider.

content owner

The person or organization that creates Windows Media files, for example, a record label, a movie studio, or
artist.

cookie

A block of data placed by the server on a client computer that identifies the client for future connections.

custom profile

A group of settings, defined by an end user, for configuring the encoder output.

Back to Top

D

decrypt

To convert encrypted content back into its original form.

See also: encrypt

deinterlace

To combine the interlaced fields in a video frame so that, during playback, the lines of the video frame are
painted sequentially.

See also: interlace

delta frame

A video frame that contains only the changes from the previous frame. In contrast, a key frame contains all the
data necessary to construct that frame.

digital rights management (DRM)

A technology that provides a persistent level of protection to digital content by encrypting it with a
cryptographic key. Authorized recipients (or end users) must acquire a license in order to unlock and consume
the content.

digital rights management (DRM) component

The component of a player that handles all functions of digital rights management, such as decrypting packaged
files or initiating license acquisition.

DirectX Media Object (DMO)

A COM object that processes multimedia data streams from buffers allocated by the client.

DMO

See definition for: DirectX Media Object (DMO)

DRM

See definition for: digital rights management (DRM)

Back to Top

E

encode

To convert audio and video content to a specified digital format.

encrypt

To programmatically disguise content to hide its substance.

See also: decrypt

Back to Top

F

frame

One of many sequential images that make up video.

frame rate

The number of video frames displayed per second. Higher frame rates generally produce smoother movement in
the picture.

Back to Top

I

ID3

A standard for adding metadata to MP3 files.

index

A marker produced by the Windows Media Format Software Development Kit (SDK) to enable seeking in a
video file.

individualization

The process of making the digital rights management (DRM) component in the consumer's player unique. This
process increases security by making it difficult to corrupt more than one player at a time. This process is also
known as obtaining a security upgrade.

interlace

To display a video frame in two fields. One field contains the even lines of the frame, the other field contains
the odd lines. During playback, the lines in one field are displayed first, then the lines in the second field are
displayed.

inverse telecine

The process that removes the frames that were added when 24-fps film was converted to 30-fps video.

Back to Top

K

key

A piece of data that is required to unlock a packaged Windows Media file. This key is included in a separate
license.

key frame

A video frame containing all the data needed to construct an image without reference to previous frames.

See also: delta frame

key ID

A value that identifies the key for a protected Windows Media file.

Back to Top

L

license

Data attached to protected content that describes how the content can be used.

license acquisition

The process of obtaining a license to play a packaged Windows Media file. The player attempts to obtain a
license from a license acquisition URL, which is specified in the Windows Media file.

License Management Service

The Microsoft service that runs the license management process in the Windows Media Rights Manager
Software Development Kit (SDK).

Back to Top

M

marker

A text string that is associated with a designated time in Windows Media-based content. Markers often denote
convenient points to begin playback, such as the start of a new scene.

MBR

See definition for: multiple bit rate (MBR)

MIME

See definition for: Multipurpose Internet Mail Extension (MIME)

multiple bit rate (MBR)

A characteristic of a data stream in which the same content is encoded at several different bit rates in order to
optimize content delivery.

Multipurpose Internet Mail Extension (MIME)

A standard that extends the Simple Mail Transport Protocol (SMTP) for encoding non-ASCII data files such as
video, sound, and binary files for attachment to Internet e-mail.

Back to Top

P

packaging

The process that protects and signs a Windows Media file, producing a packaged Windows Media file. The
packaging process includes generating or specifying a key, generating and signing the content header, and then
encrypting the Windows Media file with this information.

packet

A unit of information transmitted as a whole from one device to another on a network.

plug-in

An auxiliary software component that extends or enhances the features of other software.

profile

A group of settings that match content type and bit rate with appropriate audio and video codecs.

Back to Top

R

registration

The process in which a consumer enters information to acquire a license, such as an e-mail address.

revocation list

A list that contains all the application certificates of those player applications known to be damaged or
corrupted. This list is included in licenses and then is stored on consumers' computers by the digital rights
management (DRM) component of the player application.

RGB

A color model that describes color information in terms of the red (R), green (G), and blue (B) intensities that
make up the color.

Back to Top

S

SDMI

See definition for: Secure Digital Music Initiative (SDMI)

Secure Digital Music Initiative (SDMI)

An organization that sets standards for secure digital music. One of the main goals of SDMI is to create a
framework for the secure playing, storing, and distribution of digital music.

security upgrade

See definition for: individualization

streaming

A method of delivering digital media across a network in a continuous flow. The digital media is played by
client software as it is received. Typically, streaming makes it unnecessary for users to download a file before
playing it.

Back to Top

T

telecine

The film-to-video conversion system that adds frames to video to compensate for the differences in frame rates
between film and video.

Back to Top

U

UDP

See definition for: User Datagram Protocol (UDP)

User Datagram Protocol (UDP)

A connectionless transport protocol in the TCP/IP protocol stack that is used in cases where some packet loss is
acceptable, for example, with digital media streams.

Back to Top

V

variable bit rate (VBR)

A characteristic of a data stream in which the bit rate fluctuates, depending upon the complexity of the data.

VBR

See definition for: variable bit rate (VBR)

Back to Top

W

Windows Media file

A file containing audio, video, or script data that is stored in Windows Media Format. Depending on their
content and purpose, Windows Media files use a variety of file name extensions, such as: .wma, .wme, .wms,
.wmv, .wmx, .wmz, or .wvx.

Windows Media Format

The format used by Microsoft Windows Media Technologies (or a third-party product that incorporates a
licensed Windows Media technology) to author, store, edit, distribute, stream, or play timeline-based content.

Windows Media License Service

The Windows Media Rights Manager Software Development Kit (SDK) component on a licensing server that
issues licenses.

Back to Top

Y

YUV

A color model that describes color information in terms of its brightness (luminance, or Y), and color
(chrominance, or U and V).

Back to Top

© 2000-2003 Microsoft Corporation. All rights reserved.

Previous

